1/* Copyright (c) 2012 Massachusetts Institute of Technology
2 *
3 * Permission is hereby granted, free of charge, to any person obtaining a copy
4 * of this software and associated documentation files (the "Software"), to deal
5 * in the Software without restriction, including without limitation the rights
6 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7 * copies of the Software, and to permit persons to whom the Software is
8 * furnished to do so, subject to the following conditions:
9 *
10 * The above copyright notice and this permission notice shall be included in
11 * all copies or substantial portions of the Software.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19 * THE SOFTWARE.
20 */
21
22#include "model/std_cells/BUF.h"
23
24#include <cmath>
25
26#include "model/PortInfo.h"
27#include "model/TransitionInfo.h"
28#include "model/EventInfo.h"
29#include "model/std_cells/StdCellLib.h"
30#include "model/std_cells/CellMacros.h"
31#include "model/timing_graph/ElectricalNet.h"
32#include "model/timing_graph/ElectricalDriver.h"
33#include "model/timing_graph/ElectricalLoad.h"
34#include "model/timing_graph/ElectricalDelay.h"
35
36namespace DSENT
37{
38    using std::max;
39
40    BUF::BUF(const String& instance_name_, const TechModel* tech_model_)
41        : StdCell(instance_name_, tech_model_)
42    {
43        initProperties();
44    }
45
46    BUF::~BUF()
47    {}
48
49    void BUF::initProperties()
50    {
51        return;
52    }
53
54    void BUF::constructModel()
55    {
56        createInputPort("A");
57        createOutputPort("Y");
58
59        createLoad("A_Cap");
60        createDelay("A_to_Y_delay");
61        createDriver("Y_Ron", true);
62
63        ElectricalLoad* a_cap = getLoad("A_Cap");
64        ElectricalDelay* a_to_y_delay = getDelay("A_to_Y_delay");
65        ElectricalDriver* y_ron = getDriver("Y_Ron");
66
67        getNet("A")->addDownstreamNode(a_cap);
68        a_cap->addDownstreamNode(a_to_y_delay);
69        a_to_y_delay->addDownstreamNode(y_ron);
70        y_ron->addDownstreamNode(getNet("Y"));
71
72        // Create Area result
73        // Create NDD Power result
74        createElectricalAtomicResults();
75        // Create OR Event Energy Result
76        createElectricalEventAtomicResult("BUF");
77
78        getEventInfo("Idle")->setStaticTransitionInfos();
79
80        return;
81    }
82
83    void BUF::updateModel()
84    {
85        // Get parameters
86        double drive_strength = getDrivingStrength();
87        Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
88
89        // Standard cell cache string
90        const String& cell_name = "BUF_X" + (String) drive_strength;
91
92        // Get timing parameters
93        getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A"));
94        getDelay("A_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_Y"));
95        getDriver("Y_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Y"));
96
97        // Set the cell area
98        getAreaResult("Active")->setValue(cache->get(cell_name + "->ActiveArea"));
99        getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->ActiveArea"));
100
101        return;
102    }
103
104    void BUF::evaluateModel()
105    {
106        return;
107    }
108
109    void BUF::useModel()
110    {
111        // Get parameters
112        double drive_strength = getDrivingStrength();
113        Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
114
115        // Stadard cell cache string
116        const String& cell_name = "BUF_X" + (String) drive_strength;
117
118        // Propagate the transition info and get the 0->1 transtion count
119        propagateTransitionInfo();
120        double P_A = getInputPort("A")->getTransitionInfo().getProbability1();
121        double Y_num_trans_01 = getOutputPort("Y")->getTransitionInfo().getNumberTransitions01();
122
123        // Calculate leakage
124        double leakage = 0;
125        leakage += cache->get(cell_name + "->Leakage->!A") * (1 - P_A);
126        leakage += cache->get(cell_name + "->Leakage->A") * P_A;
127        getNddPowerResult("Leakage")->setValue(leakage);
128
129        // Get VDD
130        double vdd = getTechModel()->get("Vdd");
131
132        // Get capacitances
133        double y_b_cap = cache->get(cell_name + "->Cap->Y_b");
134        double y_cap = cache->get(cell_name + "->Cap->Y");
135        double y_load_cap = getNet("Y")->getTotalDownstreamCap();
136
137        // Calculate BUFEvent energy
138        double energy_per_trans_01 = (y_b_cap + y_cap + y_load_cap) * vdd * vdd;
139        getEventResult("BUF")->setValue(energy_per_trans_01 * Y_num_trans_01);
140
141        return;
142    }
143
144    void BUF::propagateTransitionInfo()
145    {
146        // Get input signal transition info
147        const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo();
148
149        getOutputPort("Y")->setTransitionInfo(trans_A);
150        return;
151    }
152
153    // Creates the standard cell, characterizes and abstracts away the details
154    void BUF::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_)
155    {
156        // Get parameters
157        double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted");
158        Map<double>* cache = cell_lib_->getStdCellCache();
159
160        // Stadard cell cache string
161        const String& cell_name = "BUF_X" + (String) drive_strength_;
162
163        Log::printLine("=== " + cell_name + " ===");
164
165        // Now actually build the full standard cell model
166        createInputPort("A");
167        createOutputPort("Y");
168
169        createNet("Y_b");
170
171        // Adds macros
172        CellMacros::addInverter(this, "INV0", false, true, "A", "Y_b");
173        CellMacros::addInverter(this, "INV1", false, true, "Y_b", "Y");
174
175        // Update macros
176        CellMacros::updateInverter(this, "INV0", drive_strength_ * 0.367);
177        CellMacros::updateInverter(this, "INV1", drive_strength_ * 1.0);
178
179        // Cache area result
180        double area = 0.0;
181        area += gate_pitch * getTotalHeight() * 1;
182        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV0_GatePitches").toDouble();
183        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV1_GatePitches").toDouble();
184        cache->set(cell_name + "->ActiveArea", area);
185        Log::printLine(cell_name + "->ActiveArea=" + (String)area);
186
187        // --------------------------------------------------------------------
188        // Leakage Model Calculation
189        // --------------------------------------------------------------------
190        // Cache leakage power results (for every single signal combination)
191        double leakage_0 = 0.0; // !A
192        double leakage_1 = 0.0; // A
193
194        leakage_0 += getGenProperties()->get("INV0_LeakagePower_0").toDouble();
195        leakage_0 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
196
197        leakage_1 += getGenProperties()->get("INV0_LeakagePower_1").toDouble();
198        leakage_1 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
199
200        cache->set(cell_name + "->Leakage->!A", leakage_0);
201        cache->set(cell_name + "->Leakage->A", leakage_1);
202        Log::printLine(cell_name + "->Leakage->!A=" + (String) leakage_0);
203        Log::printLine(cell_name + "->Leakage->A=" + (String) leakage_1);
204        // --------------------------------------------------------------------
205
206        // --------------------------------------------------------------------
207        // Get Node Capacitances
208        // --------------------------------------------------------------------
209        double a_cap = getNet("A")->getTotalDownstreamCap();
210        double y_b_cap = getNet("Y_b")->getTotalDownstreamCap();
211        double y_cap = getNet("Y")->getTotalDownstreamCap();
212
213        cache->set(cell_name + "->Cap->A", a_cap);
214        cache->set(cell_name + "->Cap->Y_b", y_b_cap);
215        cache->set(cell_name + "->Cap->Y", y_cap);
216        Log::printLine(cell_name + "->Cap->A_Cap=" + (String) a_cap);
217        Log::printLine(cell_name + "->Cap->Y_b_Cap=" + (String) y_b_cap);
218        Log::printLine(cell_name + "->Cap->Y_Cap=" + (String) y_cap);
219        // --------------------------------------------------------------------
220
221        // --------------------------------------------------------------------
222        // Build Internal Delay Model
223        // --------------------------------------------------------------------
224        double y_ron = getDriver("INV1_RonZN")->getOutputRes();
225        double a_to_y_delay = getDriver("INV0_RonZN")->calculateDelay() +
226                              getDriver("INV1_RonZN")->calculateDelay();
227
228        cache->set(cell_name + "->DriveRes->Y", y_ron);
229        cache->set(cell_name + "->Delay->A_to_Y", a_to_y_delay);
230        Log::printLine(cell_name + "->DriveRes->Y=" + (String) y_ron);
231        Log::printLine(cell_name + "->Delay->A_to_Y=" + (String) a_to_y_delay);
232        // --------------------------------------------------------------------
233
234        return;
235    }
236} // namespace DSENT
237
238