1/* Copyright (c) 2012 Massachusetts Institute of Technology
2 *
3 * Permission is hereby granted, free of charge, to any person obtaining a copy
4 * of this software and associated documentation files (the "Software"), to deal
5 * in the Software without restriction, including without limitation the rights
6 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7 * copies of the Software, and to permit persons to whom the Software is
8 * furnished to do so, subject to the following conditions:
9 *
10 * The above copyright notice and this permission notice shall be included in
11 * all copies or substantial portions of the Software.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19 * THE SOFTWARE.
20 */
21
22#include "model/optical/OpticalLinkBackendRx.h"
23
24#include "util/Constants.h"
25#include "model/PortInfo.h"
26#include "model/TransitionInfo.h"
27#include "model/EventInfo.h"
28#include "model/electrical/DemuxTreeDeserializer.h"
29#include "model/electrical/BarrelShifter.h"
30#include "model/electrical/Multiplexer.h"
31#include <cmath>
32
33namespace DSENT
34{
35    // TODO: Kind of don't like the way thermal tuning is written here. Maybe will switch
36    // to curve fitting the CICC paper, which uses results from a monte-carlo sim. Also, there is
37    // redundant code between this one and the tx one...
38
39    OpticalLinkBackendRx::OpticalLinkBackendRx(const String& instance_name_, const TechModel* tech_model_)
40        : ElectricalModel(instance_name_, tech_model_)
41    {
42        initParameters();
43        initProperties();
44    }
45
46    OpticalLinkBackendRx::~OpticalLinkBackendRx()
47    {}
48
49    void OpticalLinkBackendRx::initParameters()
50    {
51        addParameterName("OutBits");
52        addParameterName("CoreDataRate");
53        addParameterName("LinkDataRate");
54        addParameterName("RingTuningMethod");
55        addParameterName("BitDuplicate");
56        return;
57    }
58
59    void OpticalLinkBackendRx::initProperties()
60    {
61        return;
62    }
63
64    void OpticalLinkBackendRx::constructModel()
65    {
66        unsigned int out_bits = getParameter("OutBits");
67        double core_data_rate = getParameter("CoreDataRate");
68        double link_data_rate = getParameter("LinkDataRate");
69        const String& tuning_method = getParameter("RingTuningMethod");
70        bool bit_duplicate = getParameter("BitDuplicate");
71
72        // Calculate deserialization ratio
73        unsigned int deserialization_ratio = (unsigned int) floor(link_data_rate / core_data_rate);
74        ASSERT(deserialization_ratio == link_data_rate / core_data_rate,
75            "[Error] " + getInstanceName() + " -> Cannot have non-integer deserialization ratios!");
76        ASSERT((deserialization_ratio & (deserialization_ratio - 1)) == 0,
77            "[Error] " + getInstanceName() + " -> Deserialization ratio must be a power of 2");
78
79        // Calculate output width
80        unsigned int in_bits = out_bits / deserialization_ratio;
81        ASSERT(out_bits >= deserialization_ratio, "[Error] " + getInstanceName() +
82            " -> Output width must be >= deserialization ratio!");
83        ASSERT(floor((double) out_bits / deserialization_ratio) == in_bits,
84            "[Error] " + getInstanceName() + " -> Output width must be a multiple of the serialization ratio!");
85
86        getGenProperties()->set("DeserializationRatio", deserialization_ratio);
87        getGenProperties()->set("InBits", in_bits);
88
89        // Create ports
90        createInputPort("In", makeNetIndex(0, in_bits-1));
91        createInputPort("LinkCK");
92        createOutputPort("Out", makeNetIndex(0, out_bits-1));
93
94        //Create energy, power, and area results
95        createElectricalResults();
96        // Create ring heating power cost
97        addNddPowerResult(new AtomicResult("RingTuning"));
98        // Create process bits event
99        createElectricalEventResult("ProcessBits");
100        getEventInfo("ProcessBits")->setTransitionInfo("LinkCK", TransitionInfo(0.0, (double) deserialization_ratio / 2.0, 0.0));
101        // Set conditions during idle state
102        getEventInfo("Idle")->setStaticTransitionInfos();
103        getEventInfo("Idle")->setTransitionInfo("LinkCK", TransitionInfo(0.0, (double) deserialization_ratio / 2.0, 0.0));
104
105        // Create deserializer
106        const String& deserializer_name = "Deserializer";
107        DemuxTreeDeserializer* deserializer = new DemuxTreeDeserializer(deserializer_name, getTechModel());
108        deserializer->setParameter("OutBits", out_bits);
109        deserializer->setParameter("InDataRate", link_data_rate);
110        deserializer->setParameter("OutDataRate", core_data_rate);
111        deserializer->setParameter("BitDuplicate", bit_duplicate);
112        deserializer->construct();
113
114        addSubInstances(deserializer, 1.0);
115        addElectricalSubResults(deserializer, 1.0);
116        getEventResult("ProcessBits")->addSubResult(deserializer->getEventResult("Deserialize"), deserializer_name, 1.0);
117
118        if ((tuning_method == "ThermalWithBitReshuffle") || (tuning_method == "ElectricalAssistWithBitReshuffle"))
119        {
120            // If a bit reshuffling backend is present, create the reshuffling backend
121            unsigned int reorder_degree = getBitReorderDegree();
122
123            // Create intermediate nets
124            createNet("ReorderIn", makeNetIndex(0, in_bits+reorder_degree-1));
125            assign("ReorderIn", makeNetIndex(0, in_bits-1), "In");
126            assign("ReorderIn", makeNetIndex(in_bits, in_bits+reorder_degree-1), "ReorderIn", makeNetIndex(0, reorder_degree-1));
127            createNet("DeserializerIn", makeNetIndex(0, in_bits-1));
128            createNet("BarrelShiftIn", makeNetIndex(0, out_bits-1));
129
130            // Create bit reorder muxes
131            const String& reorder_mux_name = "ReorderMux";
132            Multiplexer* reorder_mux = new Multiplexer(reorder_mux_name, getTechModel());
133            reorder_mux->setParameter("NumberBits", in_bits);
134            reorder_mux->setParameter("NumberInputs", reorder_degree);
135            reorder_mux->setParameter("BitDuplicate", bit_duplicate);
136            reorder_mux->construct();
137
138            // Create barrelshifter
139            unsigned int shift_index_min = (unsigned int)ceil(log2(deserialization_ratio));
140            unsigned int shift_index_max = std::max(shift_index_min, (unsigned int) ceil(log2(out_bits)) - 1);
141
142            // Remember some things
143            getGenProperties()->set("ReorderDegree", reorder_degree);
144            getGenProperties()->set("ShiftIndexMin", shift_index_min);
145            getGenProperties()->set("ShiftIndexMax", shift_index_max);
146
147            const String& barrel_shift_name = "BarrelShifter";
148            BarrelShifter* barrel_shift = new BarrelShifter(barrel_shift_name, getTechModel());
149            barrel_shift->setParameter("NumberBits", out_bits);
150            barrel_shift->setParameter("ShiftIndexMax", shift_index_max);
151            barrel_shift->setParameter("ShiftIndexMin", shift_index_min);
152            barrel_shift->setParameter("BitDuplicate", bit_duplicate);
153            barrel_shift->construct();
154
155            // Connect serializer
156            portConnect(deserializer, "In", "DeserializerIn");
157            portConnect(deserializer, "Out", "BarrelShiftIn");
158            portConnect(deserializer, "InCK", "LinkCK");
159
160            // Connect barrelshifter
161            // TODO: Connect barrelshift shifts!
162            portConnect(barrel_shift, "In", "BarrelShiftIn");
163            portConnect(barrel_shift, "Out", "Out");
164
165            // Connect bit reorder muxes
166            // TODO: Connect re-order multiplex select signals!
167            for (unsigned int i = 0; i < reorder_degree; i++)
168                portConnect(reorder_mux, "In" + (String) i, "ReorderIn", makeNetIndex(i, i+in_bits-1));
169            portConnect(reorder_mux, "Out", "DeserializerIn");
170
171            addSubInstances(barrel_shift, 1.0);
172            addSubInstances(reorder_mux, 1.0);
173            addElectricalSubResults(barrel_shift, 1.0);
174            addElectricalSubResults(reorder_mux, 1.0);
175            getEventResult("ProcessBits")->addSubResult(barrel_shift->getEventResult("BarrelShift"), barrel_shift_name, 1.0);
176            getEventResult("ProcessBits")->addSubResult(reorder_mux->getEventResult("Mux"), reorder_mux_name, 1.0);
177        }
178        else if ((tuning_method == "FullThermal") || (tuning_method == "AthermalWithTrim"))
179        {
180            // If no bit reshuffling backend is present, then just connect deserializer up
181            portConnect(deserializer, "In", "In");
182            portConnect(deserializer, "Out", "Out");
183            portConnect(deserializer, "InCK", "LinkCK");
184        }
185        else
186        {
187            ASSERT(false, "[Error] " + getInstanceName() + " -> Unknown ring tuning method '" + tuning_method + "'!");
188        }
189
190        return;
191    }
192
193    void OpticalLinkBackendRx::updateModel()
194    {
195        // Update everyone
196        Model::updateModel();
197        // Update ring tuning power
198        getNddPowerResult("RingTuning")->setValue(getRingTuningPower());
199        return;
200    }
201
202    void OpticalLinkBackendRx::propagateTransitionInfo()
203    {
204        // Get parameters
205        const String& tuning_method = getParameter("RingTuningMethod");;
206
207        // Get properties
208
209        // Update the deserializer
210        if ((tuning_method == "ThermalWithBitReshuffle") || (tuning_method == "ElectricalAssistWithBitReshuffle"))
211        {
212            // Get generated properties
213            unsigned int reorder_degree = getGenProperties()->get("ReorderDegree");
214            unsigned int shift_index_min = getGenProperties()->get("ShiftIndexMin");
215            unsigned int shift_index_max = getGenProperties()->get("ShiftIndexMax");
216
217            // Reorder mux shift select bits
218            unsigned int reorder_sel_bits = (unsigned int)ceil(log2(reorder_degree));
219
220            // Create bit reorder muxes
221            const String& reorder_mux_name = "ReorderMux";
222            ElectricalModel* reorder_mux = (ElectricalModel*) getSubInstance(reorder_mux_name);
223            for (unsigned int i = 0; i < reorder_degree; ++i)
224                propagatePortTransitionInfo(reorder_mux, "In" + (String) i, "In");
225            // Set select transitions to be 0, since these are statically configured
226            for (unsigned int i = 0; i < reorder_sel_bits; ++i)
227                reorder_mux->getInputPort("Sel" + (String) i)->setTransitionInfo(TransitionInfo(0.5, 0.0, 0.5));
228            reorder_mux->use();
229
230            // Update the deserializer
231            ElectricalModel* deserializer = (ElectricalModel*) getSubInstance("Deserializer");
232            propagatePortTransitionInfo(deserializer, "In", reorder_mux, "Out");
233            propagatePortTransitionInfo(deserializer, "InCK", "LinkCK");
234            deserializer->use();
235
236            // Update barrel shifter
237            const String& barrel_shift_name = "BarrelShifter";
238            ElectricalModel* barrel_shift = (ElectricalModel*) getSubInstance(barrel_shift_name);
239            propagatePortTransitionInfo(barrel_shift, "In", deserializer, "Out");
240            // Set shift transitions to be very low (since it is affected by slow temperature time constants)
241            for (unsigned int i = shift_index_min; i <= shift_index_max; ++i)
242                barrel_shift->getInputPort("Shift" + (String) i)->setTransitionInfo(TransitionInfo(0.499, 0.001, 0.499));
243            barrel_shift->use();
244
245            // Set output transition info
246            propagatePortTransitionInfo("Out", barrel_shift, "Out");
247        }
248        else if ((tuning_method == "FullThermal") || (tuning_method == "AthermalWithTrim"))
249        {
250            // Update the deserializer
251            ElectricalModel* deserializer = (ElectricalModel*) getSubInstance("Deserializer");
252            propagatePortTransitionInfo(deserializer, "In", "In");
253            propagatePortTransitionInfo(deserializer, "InCK", "LinkCK");
254            deserializer->use();
255
256            // Set output transition info
257            propagatePortTransitionInfo("Out", deserializer, "Out");
258        }
259        else
260        {
261            ASSERT(false, "[Error] " + getInstanceName() + " -> Unknown ring tuning method '" + tuning_method + "'!");
262        }
263
264        return;
265    }
266
267    double OpticalLinkBackendRx::getRingTuningPower()
268    {
269        // Get properties
270        const String& tuning_method = getParameter("RingTuningMethod");;
271        unsigned int number_rings = getGenProperties()->get("InBits");
272
273        // Get tech model parameters
274        double R = getTechModel()->get("Ring->Radius");
275        double n_g = getTechModel()->get("Ring->GroupIndex");
276        double heating_efficiency = getTechModel()->get("Ring->HeatingEfficiency");
277        // This can actually be derived if we know thermo-optic coefficient (delta n / delta T)
278        double tuning_efficiency = getTechModel()->get("Ring->TuningEfficiency");
279        double sigma_r_local = getTechModel()->get("Ring->LocalVariationSigma");
280        double sigma_r_systematic = getTechModel()->get("Ring->SystematicVariationSigma");
281        double T_max = getTechModel()->get("Ring->TemperatureMax");
282        double T_min = getTechModel()->get("Ring->TemperatureMin");
283        double T = getTechModel()->get("Temperature");
284
285        // Get constants
286        double c = Constants::c;
287        double pi = Constants::pi;
288
289        double tuning_power = 0.0;
290
291        if (tuning_method == "ThermalWithBitReshuffle")
292        {
293            // When an electrical backend is present, rings only have to tune to the nearest channel
294            // This can be approximated as each ring tuning to something exactly 1 channel away
295
296            // Setup calculations
297            double L = 2 * pi * R;                  // Optical length
298            double FSR = c / (n_g * L);             // Free spectral range
299            double freq_sep = FSR / number_rings;   // Channel separation
300
301            // Calculate tuning power
302            tuning_power = number_rings * freq_sep / (tuning_efficiency * heating_efficiency);
303        }
304        else if (tuning_method == "ElectricalAssistWithBitReshuffle")
305        {
306            // Electrical assistance allows for a fraction of the tuning range to be
307            // covered electrically. This is most pronounced when the tuning range is small,
308            // such is the case when bit reshuffling is applied
309
310            // Get electrically tunable range
311            double max_assist = getTechModel()->get("Ring->MaxElectricallyTunableFreq");
312
313            // Setup calculations
314            double L = 2 * pi * R;                  // Optical length
315            double FSR = c / (n_g * L);             // Free spectral range
316            double freq_sep = FSR / number_rings;   // Channel separation
317            double heating_range = std::max(0.0, freq_sep - max_assist);  // The distance needed to bridge using heaters
318
319            // Calculate tuning power, which is really only the power spent on heating since
320            // distance tuned electrically is pretty much free
321            tuning_power = number_rings * heating_range / (tuning_efficiency * heating_efficiency);
322        }
323        else if (tuning_method == "FullThermal")
324        {
325            // If there is no bit reshuffling backend, each ring must tune to an
326            // absolute channel frequency. Since we can only heat rings (and not cool),
327            // we can only red-shift (decrease frequency). Thus, a fabrication bias
328            // must be applied such that under any process and temperature corner, the
329            // ring resonance remains above channel resonance
330            // I'll use 3 sigmas of sigma_r_local and sigma_r_systematic, and bias against
331            // the full temperature range
332            double fabrication_bias_freq = 3.0 * sqrt(pow(sigma_r_local, 2) + pow(sigma_r_systematic, 2)) +
333                (T_max - T_min) * tuning_efficiency;
334
335            // The local/systematic variations are 0 on average. Thus, the tuning distance can be calculated as
336            double tuning_distance = fabrication_bias_freq - (T - T_min) * tuning_efficiency;
337
338            // Tuning power needed is just the number of rings * tuning distance / (tuning and heating efficiencies)
339            tuning_power = number_rings * tuning_distance / (tuning_efficiency * heating_efficiency);
340        }
341        else if (tuning_method == "AthermalWithTrim")
342        {
343            // Athermal!
344            tuning_power = 0;
345        }
346        else
347        {
348            ASSERT(false, "[Error] " + getInstanceName() + " -> Unknown ring tuning method '" + tuning_method + "'!");
349        }
350
351        return tuning_power;
352    }
353
354    unsigned int OpticalLinkBackendRx::getBitReorderDegree()
355    {
356        // Get properties
357        unsigned int number_rings = getGenProperties()->get("InBits");
358
359        // Get tech model parameters
360        double R = getTechModel()->get("Ring->Radius");
361        double n_g = getTechModel()->get("Ring->GroupIndex");
362        // This can actually be derived if we know thermo-optic coefficient (delta n / delta T)
363        double sigma_r_local = getTechModel()->get("Ring->LocalVariationSigma");
364
365        // Get constants
366        double c = Constants::c;
367        double pi = Constants::pi;
368
369        // Calculates the degree of bit re-order multiplexing needed for bit-reshuffling backend
370        // Bit reshuffling tuning is largely unaffected by sigma_r_systematic. However, sigma_r_local
371        // Can potentially throw each ring to a channel several channels away. This just calculates
372        // the degree of bit reorder muxing needed to realign bits in the correct order
373
374        // Setup calculations
375        double L = 2 * pi * R;                  // Optical length
376        double FSR = c / (n_g * L);             // Free spectral range
377        double freq_sep = FSR / number_rings;   // Channel separation
378        // Using 4 sigmas as the worst re-ordering case (must double to get both sides)
379        unsigned int worst_case_channels = (unsigned int)ceil(2.0 * 4.0 * sigma_r_local / freq_sep);
380
381        return worst_case_channels;
382    }
383
384} // namespace DSENT
385
386