1/*****************************************************************************
2
3  Licensed to Accellera Systems Initiative Inc. (Accellera) under one or
4  more contributor license agreements.  See the NOTICE file distributed
5  with this work for additional information regarding copyright ownership.
6  Accellera licenses this file to you under the Apache License, Version 2.0
7  (the "License"); you may not use this file except in compliance with the
8  License.  You may obtain a copy of the License at
9
10    http://www.apache.org/licenses/LICENSE-2.0
11
12  Unless required by applicable law or agreed to in writing, software
13  distributed under the License is distributed on an "AS IS" BASIS,
14  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
15  implied.  See the License for the specific language governing
16  permissions and limitations under the License.
17
18 *****************************************************************************/
19
20/*****************************************************************************
21
22  sc_nbutils.h -- External and friend functions for both sc_signed and
23                  sc_unsigned classes.
24
25  Original Author: Ali Dasdan, Synopsys, Inc.
26
27 *****************************************************************************/
28
29/*****************************************************************************
30
31  MODIFICATION LOG - modifiers, enter your name, affiliation, date and
32  changes you are making here.
33
34      Name, Affiliation, Date:
35  Description of Modification:
36
37 *****************************************************************************/
38
39// $Log: sc_nbutils.h,v $
40// Revision 1.6  2011/09/08 16:12:15  acg
41//  Philipp A. Hartmann: fix issue with Sun machines wrt real math libraries.
42//
43// Revision 1.5  2011/08/26 23:00:01  acg
44//  Torsten Maehne: remove use of ieeefp.h.
45//
46// Revision 1.4  2011/08/15 16:43:24  acg
47//  Torsten Maehne: changes to remove unused argument warnings.
48//
49// Revision 1.3  2011/02/18 20:19:15  acg
50//  Andy Goodrich: updating Copyright notice.
51//
52// Revision 1.2  2010/09/06 16:35:48  acg
53//  Andy Goodrich: changed i386 to __i386__ in ifdef's.
54//
55// Revision 1.1.1.1  2006/12/15 20:20:05  acg
56// SystemC 2.3
57//
58// Revision 1.3  2006/01/13 18:49:32  acg
59// Added $Log command so that CVS check in comments are reproduced in the
60// source.
61//
62
63#ifndef __SYSTEMC_EXT_DT_INT_SC_NBUTILS_HH__
64#define __SYSTEMC_EXT_DT_INT_SC_NBUTILS_HH__
65
66#include <cmath>
67#include <ios>
68#include <limits>
69#include <ostream>
70
71#include "../../utils/sc_report_handler.hh"
72#include "../bit/messages.hh"
73#include "messages.hh"
74#include "sc_nbdefs.hh"
75
76namespace sc_dt
77{
78
79//-----------------------------------------------------------------------------
80//"sc_io_base"
81//
82// This inline function returns the type of an i/o stream's base as a SystemC
83// base designator.
84//   stream_object = reference to the i/o stream whose base is to be returned.
85//
86//"sc_io_show_base"
87//
88// This inline function returns true if the base should be shown when a SystemC
89// value is displayed via the supplied stream operator.
90//   stream_object = reference to the i/o stream to return showbase value for.
91//-----------------------------------------------------------------------------
92inline sc_numrep
93sc_io_base(::std::ostream &os, sc_numrep def_base)
94{
95    std::ios::fmtflags flags = os.flags() & std::ios::basefield;
96    if (flags & ::std::ios::dec) return SC_DEC;
97    if (flags & ::std::ios::hex) return SC_HEX;
98    if (flags & ::std::ios::oct) return SC_OCT;
99    return def_base;
100}
101
102inline bool
103sc_io_show_base(::std::ostream &os)
104{
105    return (os.flags() & ::std::ios::showbase) != 0;
106}
107
108const std::string to_string(sc_numrep);
109
110inline ::std::ostream &
111operator << (::std::ostream &os, sc_numrep numrep)
112{
113    os << to_string(numrep);
114    return os;
115}
116
117// ----------------------------------------------------------------------------
118
119// One transition of the FSM to find base and sign of a number.
120extern small_type fsm_move(
121        char c, small_type &b, small_type &s, small_type &state);
122
123// Parse a character string into its equivalent binary bits.
124extern void parse_binary_bits(
125        const char *src_p, int dst_n, sc_digit *data_p, sc_digit *ctrl_p=0);
126
127// Parse a character string into its equivalent hexadecimal bits.
128extern void parse_hex_bits(
129        const char *src_p, int dst_n, sc_digit *data_p, sc_digit *ctrl_p=0);
130
131// Find the base and sign of a number in v.
132extern const char *get_base_and_sign(
133        const char *v, small_type &base, small_type &sign);
134
135// Create a number out of v in base.
136extern small_type
137vec_from_str(int unb, int und, sc_digit *u,
138             const char *v, sc_numrep base=SC_NOBASE);
139
140
141// ----------------------------------------------------------------------------
142//  Naming convention for the vec_ functions below:
143//    vec_OP(u, v, w)  : computes w = u OP v.
144//    vec_OP_on(u, v)  : computes u = u OP v if u has more digits than v.
145//    vec_OP_on2(u, v) : computes u = u OP v if u has fewer digits than v.
146//    _large           : parameters are vectors.
147//    _small           : one of the parameters is a single digit.
148//    Xlen             : the number of digits in X.
149// ----------------------------------------------------------------------------
150
151// ----------------------------------------------------------------------------
152//  Functions for vector addition: w = u + v or u += v.
153// ----------------------------------------------------------------------------
154
155extern void vec_add(int ulen, const sc_digit *u,
156                    int vlen, const sc_digit *v, sc_digit *w);
157extern void vec_add_on(int ulen, sc_digit *u, int vlen, const sc_digit *v);
158extern void vec_add_on2(int ulen, sc_digit *u, int vlen, const sc_digit *v);
159extern void vec_add_small(int ulen, const sc_digit *u,
160                          sc_digit v, sc_digit *w);
161extern void vec_add_small_on(int ulen, sc_digit *u, sc_digit v);
162
163// ----------------------------------------------------------------------------
164//  Functions for vector subtraction: w = u - v, u -= v, or u = v - u.
165// ----------------------------------------------------------------------------
166
167extern void vec_sub(int ulen, const sc_digit *u,
168                    int vlen, const sc_digit *v, sc_digit *w);
169extern void vec_sub_on(int ulen, sc_digit *u, int vlen, const sc_digit *v);
170extern void vec_sub_on2(int ulen, sc_digit *u, int vlen, const sc_digit *v);
171extern void vec_sub_small(int ulen, const sc_digit *u,
172                          sc_digit v, sc_digit *w);
173extern void vec_sub_small_on(int ulen, sc_digit *u, sc_digit v);
174
175
176// ----------------------------------------------------------------------------
177//  Functions for vector multiplication: w = u * v or u *= v.
178// ----------------------------------------------------------------------------
179
180extern void vec_mul(int ulen, const sc_digit *u,
181                    int vlen, const sc_digit *v, sc_digit *w);
182extern void vec_mul_small(int ulen, const sc_digit *u,
183                          sc_digit v, sc_digit *w);
184extern void vec_mul_small_on(int ulen, sc_digit *u, sc_digit v);
185
186
187// ----------------------------------------------------------------------------
188//  Functions for vector division: w = u / v.
189// ----------------------------------------------------------------------------
190
191extern void vec_div_large(int ulen, const sc_digit *u,
192                          int vlen, const sc_digit *v, sc_digit *w);
193extern void vec_div_small(int ulen, const sc_digit *u,
194                          sc_digit v, sc_digit *w);
195
196
197// ----------------------------------------------------------------------------
198//  Functions for vector remainder: w = u % v or u %= v.
199// ----------------------------------------------------------------------------
200
201extern void vec_rem_large(int ulen, const sc_digit *u,
202                          int vlen, const sc_digit *v, sc_digit *w);
203extern sc_digit vec_rem_small(int ulen, const sc_digit *u, sc_digit v);
204extern sc_digit vec_rem_on_small(int ulen, sc_digit *u, sc_digit v);
205
206
207// ----------------------------------------------------------------------------
208//  Functions to convert between vectors of char and sc_digit.
209// ----------------------------------------------------------------------------
210
211extern int vec_to_char(int ulen, const sc_digit *u, int vlen, uchar *v);
212extern void vec_from_char(int ulen, const uchar *u, int vlen, sc_digit *v);
213
214
215// ----------------------------------------------------------------------------
216//  Functions to shift left or right, or to create a mirror image of vectors.
217// ----------------------------------------------------------------------------
218
219extern void vec_shift_left(int ulen, sc_digit *u, int nsl);
220extern void vec_shift_right(int vlen, sc_digit *u, int nsr, sc_digit fill=0);
221extern void vec_reverse(int unb, int und, sc_digit *ud, int l, int r=0);
222
223
224// ----------------------------------------------------------------------------
225//  Various utility functions.
226// ----------------------------------------------------------------------------
227
228// Return the low half part of d.
229inline sc_digit low_half(sc_digit d) { return (d & HALF_DIGIT_MASK); }
230
231// Return the high half part of d. The high part of the digit may have
232// more bits than BITS_PER_HALF_DIGIT due to, e.g., overflow in the
233// multiplication. Hence, in other functions that use high_half(),
234// make sure that the result contains BITS_PER_HALF_DIGIT if
235// necessary. This is done by high_half_masked().
236inline sc_digit high_half(sc_digit d) { return (d >> BITS_PER_HALF_DIGIT); }
237inline sc_digit
238high_half_masked(sc_digit d)
239{
240    return (high_half(d) & HALF_DIGIT_MASK);
241}
242
243// Concatenate the high part h and low part l. Assumes that h and l
244// are less than or equal to HALF_DIGIT_MASK;
245inline sc_digit
246concat(sc_digit h, sc_digit l)
247{
248    return ((h << BITS_PER_HALF_DIGIT) | l);
249}
250
251// Create a number with n 1's.
252inline sc_digit
253one_and_ones(int n)
254{
255    return (((sc_digit) 1 << n) - 1);
256}
257
258// Create a number with one 1 and n 0's.
259inline sc_digit one_and_zeros(int n) { return ((sc_digit) 1 << n); }
260
261
262// ----------------------------------------------------------------------------
263
264// Find the digit that bit i is in.
265inline int digit_ord(int i) { return (i / BITS_PER_DIGIT); }
266
267// Find the bit in digit_ord(i) that bit i corressponds to.
268inline int bit_ord(int i) { return (i % BITS_PER_DIGIT); }
269
270
271// ----------------------------------------------------------------------------
272//  Functions to compare, zero, complement vector(s).
273// ----------------------------------------------------------------------------
274
275// Compare u and v and return r
276//  r = 0 if u == v
277//  r < 0 if u < v
278//  r > 0 if u > v
279// - Assume that all the leading zero digits are already skipped.
280// - ulen and/or vlen can be zero.
281// - Every digit is less than or equal to DIGIT_MASK;
282inline int
283vec_cmp(int ulen, const sc_digit *u,
284        int vlen, const sc_digit *v)
285{
286
287#ifdef DEBUG_SYSTEMC
288    // sc_assert((ulen <= 0) || (u != NULL));
289    // sc_assert((vlen <= 0) || (v != NULL));
290
291    // ulen and vlen can be equal to 0 because vec_cmp can be called
292    // after vec_skip_leading_zeros.
293    sc_assert((ulen >= 0) && (u != NULL));
294    sc_assert((vlen >= 0) && (v != NULL));
295    // If ulen > 0, then the leading digit of u must be non-zero.
296    sc_assert((ulen <= 0) || (u[ulen - 1] != 0));
297    sc_assert((vlen <= 0) || (v[vlen - 1] != 0));
298#endif
299
300    if (ulen != vlen)
301        return (ulen - vlen);
302
303    // ulen == vlen >= 1
304    while ((--ulen >= 0) && (u[ulen] == v[ulen]))
305    {}
306
307    if (ulen < 0)
308        return 0;
309
310#ifdef DEBUG_SYSTEMC
311    // Test to see if the result is wrong due to the presence of
312    // overflow bits.
313    sc_assert((u[ulen] & DIGIT_MASK) != (v[ulen] & DIGIT_MASK));
314#endif
315
316    return (int)(u[ulen] - v[ulen]);
317}
318
319// Find the index of the first non-zero digit.
320// - ulen (before) = the number of digits in u.
321// - the returned value = the index of the first non-zero digit.
322// A negative value of -1 indicates that every digit in u is zero.
323inline int
324vec_find_first_nonzero(int ulen, const sc_digit *u)
325{
326
327#ifdef DEBUG_SYSTEMC
328    // sc_assert((ulen <= 0) || (u != NULL));
329    sc_assert((ulen > 0) && (u != NULL));
330#endif
331
332    while ((--ulen >= 0) && (! u[ulen]))
333    {}
334
335    return ulen;
336}
337
338// Skip all the leading zero digits.
339// - ulen (before) = the number of digits in u.
340// - the returned value = the number of non-zero digits in u.
341// - the returned value is non-negative.
342inline int
343vec_skip_leading_zeros(int ulen, const sc_digit *u)
344{
345#ifdef DEBUG_SYSTEMC
346    // sc_assert((ulen <= 0) || (u != NULL));
347    sc_assert((ulen > 0) && (u != NULL));
348#endif
349
350    return (1 + vec_find_first_nonzero(ulen, u));
351}
352
353// Compare u and v and return r
354//  r = 0 if u == v
355//  r < 0 if u < v
356//  r > 0 if u > v
357inline int
358vec_skip_and_cmp(int ulen, const sc_digit *u, int vlen, const sc_digit *v)
359{
360#ifdef DEBUG_SYSTEMC
361    sc_assert((ulen > 0) && (u != NULL));
362    sc_assert((vlen > 0) && (v != NULL));
363#endif
364
365    ulen = vec_skip_leading_zeros(ulen, u);
366    vlen = vec_skip_leading_zeros(vlen, v);
367    // ulen and/or vlen can be equal to zero here.
368    return vec_cmp(ulen, u, vlen, v);
369}
370
371// Set u[i] = 0 where i = from ... (ulen - 1).
372inline void
373vec_zero(int from, int ulen, sc_digit *u)
374{
375#ifdef DEBUG_SYSTEMC
376    sc_assert((ulen > 0) && (u != NULL));
377#endif
378    for (int i = from; i < ulen; i++)
379        u[i] = 0;
380}
381
382// Set u[i] = 0 where i = 0 .. (ulen - 1).
383inline void vec_zero(int ulen, sc_digit *u) { vec_zero(0, ulen, u); }
384
385// Copy n digits from v to u.
386inline void
387vec_copy(int n, sc_digit *u, const sc_digit *v)
388{
389#ifdef DEBUG_SYSTEMC
390    sc_assert((n > 0) && (u != NULL) && (v != NULL));
391#endif
392    for (int i = 0; i < n; ++i)
393        u[i] = v[i];
394}
395
396// Copy v to u, where ulen >= vlen, and zero the rest of the digits in u.
397inline void
398vec_copy_and_zero(int ulen, sc_digit *u, int vlen, const sc_digit *v)
399{
400
401#ifdef DEBUG_SYSTEMC
402    sc_assert((ulen > 0) && (u != NULL));
403    sc_assert((vlen > 0) && (v != NULL));
404    sc_assert(ulen >= vlen);
405#endif
406    vec_copy(vlen, u, v);
407    vec_zero(vlen, ulen, u);
408
409}
410
411// 2's-complement the digits in u.
412inline void
413vec_complement(int ulen, sc_digit *u)
414{
415
416#ifdef DEBUG_SYSTEMC
417    sc_assert((ulen > 0) && (u != NULL));
418#endif
419
420    sc_digit carry = 1;
421
422    for (int i = 0; i < ulen; ++i) {
423        carry += (~u[i] & DIGIT_MASK);
424        u[i] = carry & DIGIT_MASK;
425        carry >>= BITS_PER_DIGIT;
426    }
427}
428
429
430// ----------------------------------------------------------------------------
431//  Functions to handle built-in types or signs.
432// ----------------------------------------------------------------------------
433
434// u = v
435// - v is an unsigned long or uint64, and positive integer.
436template<class Type>
437inline void
438from_uint(int ulen, sc_digit *u, Type v)
439{
440#ifdef DEBUG_SYSTEMC
441    // sc_assert((ulen <= 0) || (u != NULL));
442    sc_assert((ulen > 0) && (u != NULL));
443    sc_assert(v >= 0);
444#endif
445
446    int i = 0;
447
448    while (v && (i < ulen)) {
449        u[i++] = static_cast<sc_digit>(v & DIGIT_MASK);
450        v >>= BITS_PER_DIGIT;
451    }
452    vec_zero(i, ulen, u);
453}
454
455#ifndef __GNUC__
456#  define SC_LIKELY_(x) !!(x)
457#else
458#  define SC_LIKELY_(x) __builtin_expect(!!(x), 1)
459#endif
460
461// Get u's sign and return its absolute value.
462// u can be long, unsigned long, int64, or uint64.
463template<class Type>
464inline small_type
465get_sign(Type &u)
466{
467    if (u > 0)
468        return SC_POS;
469
470    if (u == 0)
471        return SC_ZERO;
472
473    // no positive number representable for minimum value,
474    // leave as is to avoid Undefined Behaviour
475    if (SC_LIKELY_(u > (std::numeric_limits<Type>::min)()))
476        u = -u;
477
478    return SC_NEG;
479}
480
481#undef SC_LIKELY_
482
483
484// Return us * vs:
485// - Return SC_ZERO if either sign is SC_ZERO.
486// - Return SC_POS if us == vs
487// - Return SC_NEG if us != vs.
488inline small_type
489mul_signs(small_type us, small_type vs)
490{
491    if ((us == SC_ZERO) || (vs == SC_ZERO))
492        return SC_ZERO;
493
494    if (us == vs)
495        return SC_POS;
496
497    return SC_NEG;
498}
499
500
501// ----------------------------------------------------------------------------
502//  Functions to test for errors and print out error messages.
503// ----------------------------------------------------------------------------
504
505#ifdef SC_MAX_NBITS
506
507void test_bound_failed(int nb);
508
509inline void
510test_bound(int nb)
511{
512    if (nb > SC_MAX_NBITS) {
513        test_bound_failed(nb);
514        sc_core::sc_abort(); // can't recover from here
515    }
516}
517
518#endif
519
520template<class Type>
521inline void
522div_by_zero(Type s)
523{
524    if (s == 0) {
525        SC_REPORT_ERROR(sc_core::SC_ID_OPERATION_FAILED_,
526                        "div_by_zero<Type>(Type) : division by zero");
527        sc_core::sc_abort(); // can't recover from here
528    }
529}
530
531
532// ----------------------------------------------------------------------------
533//  Functions to check if a given vector is zero or make one.
534// ----------------------------------------------------------------------------
535
536// If u[i] is zero for every i = 0,..., ulen - 1, return SC_ZERO,
537// else return s.
538inline small_type
539check_for_zero(small_type s, int ulen, const sc_digit *u)
540{
541
542#ifdef DEBUG_SYSTEMC
543    // sc_assert(ulen >= 0);
544    sc_assert((ulen > 0) && (u != NULL));
545#endif
546
547    if (vec_find_first_nonzero(ulen, u) < 0)
548        return SC_ZERO;
549
550    return s;
551}
552
553// If u[i] is zero for every i = 0,..., ulen - 1, return true,
554// else return false.
555inline bool
556check_for_zero(int ulen, const sc_digit *u)
557{
558
559#ifdef DEBUG_SYSTEMC
560    // sc_assert(ulen >= 0);
561    sc_assert((ulen > 0) && (u != NULL));
562#endif
563
564    if (vec_find_first_nonzero(ulen, u) < 0)
565        return true;
566
567    return false;
568}
569
570inline small_type
571make_zero(int nd, sc_digit *d)
572{
573    vec_zero(nd, d);
574    return SC_ZERO;
575}
576
577
578// ----------------------------------------------------------------------------
579//  Functions for both signed and unsigned numbers to convert sign-magnitude
580//  (SM) and 2's complement (2C) representations.
581//  added = 1 => for signed.
582//  added = 0 => for unsigned.
583//  IF_SC_SIGNED can be used as 'added'.
584// ----------------------------------------------------------------------------
585
586// Trim the extra leading bits of a signed or unsigned number.
587inline void
588trim(small_type added, int nb, int nd, sc_digit *d)
589{
590#ifdef DEBUG_SYSTEMC
591    sc_assert((nb > 0) && (nd > 0) && (d != NULL));
592#endif
593    d[nd - 1] &= one_and_ones(bit_ord(nb - 1) + added);
594}
595
596// Convert an (un)signed number from sign-magnitude representation to
597// 2's complement representation and trim the extra bits.
598inline void
599convert_SM_to_2C_trimmed(small_type added,
600                         small_type s, int nb, int nd, sc_digit *d)
601{
602    if (s == SC_NEG) {
603        vec_complement(nd, d);
604        trim(added, nb, nd, d);
605    }
606}
607
608// Convert an (un)signed number from sign-magnitude representation to
609// 2's complement representation but do not trim the extra bits.
610inline void
611convert_SM_to_2C(small_type s, int nd, sc_digit *d)
612{
613    if (s == SC_NEG)
614        vec_complement(nd, d);
615}
616
617
618// ----------------------------------------------------------------------------
619//  Functions to convert between sign-magnitude (SM) and 2's complement
620//  (2C) representations of signed numbers.
621// ----------------------------------------------------------------------------
622
623// Trim the extra leading bits off a signed number.
624inline void
625trim_signed(int nb, int nd, sc_digit *d)
626{
627#ifdef DEBUG_SYSTEMC
628    sc_assert((nb > 0) && (nd > 0) && (d != NULL));
629#endif
630    d[nd - 1] &= one_and_ones(bit_ord(nb - 1) + 1);
631}
632
633// Convert a signed number from 2's complement representation to
634// sign-magnitude representation, and return its sign. nd is d's
635// actual size, without zeros eliminated.
636inline small_type
637convert_signed_2C_to_SM(int nb, int nd, sc_digit *d)
638{
639#ifdef DEBUG_SYSTEMC
640    sc_assert((nb > 0) && (nd > 0) && (d != NULL));
641#endif
642
643    small_type s;
644
645    int xnb = bit_ord(nb - 1) + 1;
646
647    // Test the sign bit.
648    if (d[nd - 1] & one_and_zeros(xnb - 1)) {
649        s = SC_NEG;
650        vec_complement(nd, d);
651    } else {
652        s = SC_POS;
653    }
654
655    // Trim the last digit.
656    d[nd - 1] &= one_and_ones(xnb);
657
658    // Check if the new number is zero.
659    if (s == SC_POS)
660        return check_for_zero(s, nd, d);
661
662    return s;
663}
664
665// Convert a signed number from sign-magnitude representation to 2's
666// complement representation, get its sign, convert back to
667// sign-magnitude representation, and return its sign. nd is d's
668// actual size, without zeros eliminated.
669inline small_type
670convert_signed_SM_to_2C_to_SM(small_type s, int nb, int nd, sc_digit *d)
671{
672    convert_SM_to_2C(s, nd, d);
673    return convert_signed_2C_to_SM(nb, nd, d);
674}
675
676// Convert a signed number from sign-magnitude representation to 2's
677// complement representation and trim the extra bits.
678inline void
679convert_signed_SM_to_2C_trimmed(small_type s, int nb, int nd, sc_digit *d)
680{
681    convert_SM_to_2C_trimmed(1, s, nb, nd, d);
682}
683
684// Convert a signed number from sign-magnitude representation to 2's
685// complement representation but do not trim the extra bits.
686inline void
687convert_signed_SM_to_2C(small_type s, int nd, sc_digit *d)
688{
689    convert_SM_to_2C(s, nd, d);
690}
691
692
693// ----------------------------------------------------------------------------
694//  Functions to convert between sign-magnitude (SM) and 2's complement
695//  (2C) representations of unsigned numbers.
696// ----------------------------------------------------------------------------
697
698// Trim the extra leading bits off an unsigned number.
699inline void
700trim_unsigned(int nb, int nd, sc_digit *d)
701{
702#ifdef DEBUG_SYSTEMC
703    sc_assert((nb > 0) && (nd > 0) && (d != NULL));
704#endif
705
706    d[nd - 1] &= one_and_ones(bit_ord(nb - 1));
707}
708
709// Convert an unsigned number from 2's complement representation to
710// sign-magnitude representation, and return its sign. nd is d's
711// actual size, without zeros eliminated.
712inline small_type
713convert_unsigned_2C_to_SM(int nb, int nd, sc_digit *d)
714{
715    trim_unsigned(nb, nd, d);
716    return check_for_zero(SC_POS, nd, d);
717}
718
719// Convert an unsigned number from sign-magnitude representation to
720// 2's complement representation, get its sign, convert back to
721// sign-magnitude representation, and return its sign. nd is d's
722// actual size, without zeros eliminated.
723inline small_type
724convert_unsigned_SM_to_2C_to_SM(small_type s, int nb, int nd, sc_digit *d)
725{
726    convert_SM_to_2C(s, nd, d);
727    return convert_unsigned_2C_to_SM(nb, nd, d);
728}
729
730// Convert an unsigned number from sign-magnitude representation to
731// 2's complement representation and trim the extra bits.
732inline void
733convert_unsigned_SM_to_2C_trimmed(small_type s, int nb, int nd, sc_digit *d)
734{
735    convert_SM_to_2C_trimmed(0, s, nb, nd, d);
736}
737
738// Convert an unsigned number from sign-magnitude representation to
739// 2's complement representation but do not trim the extra bits.
740inline void
741convert_unsigned_SM_to_2C(small_type s, int nd, sc_digit *d)
742{
743    convert_SM_to_2C(s, nd, d);
744}
745
746
747// ----------------------------------------------------------------------------
748//  Functions to copy one (un)signed number to another.
749// ----------------------------------------------------------------------------
750
751// Copy v to u.
752inline void
753copy_digits_signed(small_type &us,
754                   int unb, int und, sc_digit *ud,
755                   int vnb, int vnd, const sc_digit *vd)
756{
757    if (und <= vnd) {
758        vec_copy(und, ud, vd);
759
760        if (unb <= vnb)
761            us = convert_signed_SM_to_2C_to_SM(us, unb, und, ud);
762    } else { // und > vnd
763        vec_copy_and_zero(und, ud, vnd, vd);
764    }
765}
766
767// Copy v to u.
768inline void
769copy_digits_unsigned(small_type &us,
770                     int unb, int und, sc_digit *ud,
771                     int /* vnb */, int vnd, const sc_digit *vd)
772{
773    if (und <= vnd)
774        vec_copy(und, ud, vd);
775    else // und > vnd
776        vec_copy_and_zero(und, ud, vnd, vd);
777
778    us = convert_unsigned_SM_to_2C_to_SM(us, unb, und, ud);
779}
780
781
782// ----------------------------------------------------------------------------
783//  Faster set(i, v), without bound checking.
784// ----------------------------------------------------------------------------
785
786// A version of set(i, v) without bound checking.
787inline void
788safe_set(int i, bool v, sc_digit *d)
789{
790
791#ifdef DEBUG_SYSTEMC
792    sc_assert((i >= 0) && (d != NULL));
793#endif
794
795    int bit_num = bit_ord(i);
796    int digit_num = digit_ord(i);
797
798    if (v)
799        d[digit_num] |= one_and_zeros(bit_num);
800    else
801        d[digit_num] &= ~(one_and_zeros(bit_num));
802}
803
804
805// ----------------------------------------------------------------------------
806//  Function to check if a double number is bad (NaN or infinite).
807// ----------------------------------------------------------------------------
808
809inline bool
810is_nan(double v)
811{
812    return std::numeric_limits<double>::has_quiet_NaN && (v != v);
813}
814
815inline bool
816is_inf(double v)
817{
818    return v ==  std::numeric_limits<double>::infinity() ||
819           v == -std::numeric_limits<double>::infinity();
820}
821
822inline void
823is_bad_double(double v)
824{
825    // Windows throws exception.
826    if (is_nan(v) || is_inf(v))
827        SC_REPORT_ERROR(sc_core::SC_ID_VALUE_NOT_VALID_,
828                        "is_bad_double(double v) : "
829                        "v is not finite - NaN or Inf");
830}
831
832} // namespace sc_dt
833
834#endif // __SYSTEMC_EXT_DT_INT_SC_NBUTILS_HH__
835