RubyPort.cc revision 9662:59a7df953d5e
1/* 2 * Copyright (c) 2012 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2009 Advanced Micro Devices, Inc. 15 * Copyright (c) 2011 Mark D. Hill and David A. Wood 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 */ 41 42#include "cpu/testers/rubytest/RubyTester.hh" 43#include "debug/Config.hh" 44#include "debug/Drain.hh" 45#include "debug/Ruby.hh" 46#include "mem/protocol/AccessPermission.hh" 47#include "mem/ruby/slicc_interface/AbstractController.hh" 48#include "mem/ruby/system/RubyPort.hh" 49#include "sim/system.hh" 50 51RubyPort::RubyPort(const Params *p) 52 : MemObject(p), m_version(p->version), m_controller(NULL), 53 m_mandatory_q_ptr(NULL), 54 pio_port(csprintf("%s-pio-port", name()), this), 55 m_usingRubyTester(p->using_ruby_tester), m_request_cnt(0), 56 drainManager(NULL), ruby_system(p->ruby_system), system(p->system), 57 waitingOnSequencer(false), access_phys_mem(p->access_phys_mem) 58{ 59 assert(m_version != -1); 60 61 // create the slave ports based on the number of connected ports 62 for (size_t i = 0; i < p->port_slave_connection_count; ++i) { 63 slave_ports.push_back(new M5Port(csprintf("%s-slave%d", name(), i), 64 this, ruby_system, access_phys_mem)); 65 } 66 67 // create the master ports based on the number of connected ports 68 for (size_t i = 0; i < p->port_master_connection_count; ++i) { 69 master_ports.push_back(new PioPort(csprintf("%s-master%d", name(), i), 70 this)); 71 } 72} 73 74void 75RubyPort::init() 76{ 77 assert(m_controller != NULL); 78 m_mandatory_q_ptr = m_controller->getMandatoryQueue(); 79 m_mandatory_q_ptr->setSender(this); 80} 81 82BaseMasterPort & 83RubyPort::getMasterPort(const std::string &if_name, PortID idx) 84{ 85 if (if_name == "pio_port") { 86 return pio_port; 87 } 88 89 // used by the x86 CPUs to connect the interrupt PIO and interrupt slave 90 // port 91 if (if_name != "master") { 92 // pass it along to our super class 93 return MemObject::getMasterPort(if_name, idx); 94 } else { 95 if (idx >= static_cast<PortID>(master_ports.size())) { 96 panic("RubyPort::getMasterPort: unknown index %d\n", idx); 97 } 98 99 return *master_ports[idx]; 100 } 101} 102 103BaseSlavePort & 104RubyPort::getSlavePort(const std::string &if_name, PortID idx) 105{ 106 // used by the CPUs to connect the caches to the interconnect, and 107 // for the x86 case also the interrupt master 108 if (if_name != "slave") { 109 // pass it along to our super class 110 return MemObject::getSlavePort(if_name, idx); 111 } else { 112 if (idx >= static_cast<PortID>(slave_ports.size())) { 113 panic("RubyPort::getSlavePort: unknown index %d\n", idx); 114 } 115 116 return *slave_ports[idx]; 117 } 118} 119 120RubyPort::PioPort::PioPort(const std::string &_name, 121 RubyPort *_port) 122 : QueuedMasterPort(_name, _port, queue), queue(*_port, *this) 123{ 124 DPRINTF(RubyPort, "creating master port on ruby sequencer %s\n", _name); 125} 126 127RubyPort::M5Port::M5Port(const std::string &_name, RubyPort *_port, 128 RubySystem *_system, bool _access_phys_mem) 129 : QueuedSlavePort(_name, _port, queue), queue(*_port, *this), 130 ruby_port(_port), ruby_system(_system), 131 _onRetryList(false), access_phys_mem(_access_phys_mem) 132{ 133 DPRINTF(RubyPort, "creating slave port on ruby sequencer %s\n", _name); 134} 135 136Tick 137RubyPort::M5Port::recvAtomic(PacketPtr pkt) 138{ 139 panic("RubyPort::M5Port::recvAtomic() not implemented!\n"); 140 return 0; 141} 142 143 144bool 145RubyPort::PioPort::recvTimingResp(PacketPtr pkt) 146{ 147 // In FS mode, ruby memory will receive pio responses from devices 148 // and it must forward these responses back to the particular CPU. 149 DPRINTF(RubyPort, "Pio response for address %#x\n", pkt->getAddr()); 150 151 // First we must retrieve the request port from the sender State 152 RubyPort::SenderState *senderState = 153 safe_cast<RubyPort::SenderState *>(pkt->popSenderState()); 154 M5Port *port = senderState->port; 155 assert(port != NULL); 156 delete senderState; 157 158 port->sendTimingResp(pkt); 159 160 return true; 161} 162 163bool 164RubyPort::M5Port::recvTimingReq(PacketPtr pkt) 165{ 166 DPRINTF(RubyPort, 167 "Timing access caught for address %#x\n", pkt->getAddr()); 168 169 //dsm: based on SimpleTimingPort::recvTimingReq(pkt); 170 171 if (pkt->memInhibitAsserted()) 172 panic("RubyPort should never see an inhibited request\n"); 173 174 // Save the port in the sender state object to be used later to 175 // route the response 176 pkt->pushSenderState(new SenderState(this)); 177 178 // Check for pio requests and directly send them to the dedicated 179 // pio port. 180 if (!isPhysMemAddress(pkt->getAddr())) { 181 assert(ruby_port->pio_port.isConnected()); 182 DPRINTF(RubyPort, 183 "Request for address 0x%#x is assumed to be a pio request\n", 184 pkt->getAddr()); 185 186 // send next cycle 187 ruby_port->pio_port.schedTimingReq(pkt, 188 curTick() + g_system_ptr->clockPeriod()); 189 return true; 190 } 191 192 assert(Address(pkt->getAddr()).getOffset() + pkt->getSize() <= 193 RubySystem::getBlockSizeBytes()); 194 195 // Submit the ruby request 196 RequestStatus requestStatus = ruby_port->makeRequest(pkt); 197 198 // If the request successfully issued then we should return true. 199 // Otherwise, we need to delete the senderStatus we just created and return 200 // false. 201 if (requestStatus == RequestStatus_Issued) { 202 DPRINTF(RubyPort, "Request %#x issued\n", pkt->getAddr()); 203 return true; 204 } 205 206 // 207 // Unless one is using the ruby tester, record the stalled M5 port for 208 // later retry when the sequencer becomes free. 209 // 210 if (!ruby_port->m_usingRubyTester) { 211 ruby_port->addToRetryList(this); 212 } 213 214 DPRINTF(RubyPort, 215 "Request for address %#x did not issue because %s\n", 216 pkt->getAddr(), RequestStatus_to_string(requestStatus)); 217 218 SenderState* senderState = safe_cast<SenderState*>(pkt->senderState); 219 pkt->senderState = senderState->predecessor; 220 delete senderState; 221 return false; 222} 223 224void 225RubyPort::M5Port::recvFunctional(PacketPtr pkt) 226{ 227 DPRINTF(RubyPort, "Functional access caught for address %#x\n", 228 pkt->getAddr()); 229 230 // Check for pio requests and directly send them to the dedicated 231 // pio port. 232 if (!isPhysMemAddress(pkt->getAddr())) { 233 assert(ruby_port->pio_port.isConnected()); 234 DPRINTF(RubyPort, "Request for address 0x%#x is a pio request\n", 235 pkt->getAddr()); 236 panic("RubyPort::PioPort::recvFunctional() not implemented!\n"); 237 } 238 239 assert(pkt->getAddr() + pkt->getSize() <= 240 line_address(Address(pkt->getAddr())).getAddress() + 241 RubySystem::getBlockSizeBytes()); 242 243 bool accessSucceeded = false; 244 bool needsResponse = pkt->needsResponse(); 245 246 // Do the functional access on ruby memory 247 if (pkt->isRead()) { 248 accessSucceeded = ruby_system->functionalRead(pkt); 249 } else if (pkt->isWrite()) { 250 accessSucceeded = ruby_system->functionalWrite(pkt); 251 } else { 252 panic("RubyPort: unsupported functional command %s\n", 253 pkt->cmdString()); 254 } 255 256 // Unless the requester explicitly said otherwise, generate an error if 257 // the functional request failed 258 if (!accessSucceeded && !pkt->suppressFuncError()) { 259 fatal("Ruby functional %s failed for address %#x\n", 260 pkt->isWrite() ? "write" : "read", pkt->getAddr()); 261 } 262 263 if (access_phys_mem) { 264 // The attached physmem contains the official version of data. 265 // The following command performs the real functional access. 266 // This line should be removed once Ruby supplies the official version 267 // of data. 268 ruby_port->system->getPhysMem().functionalAccess(pkt); 269 } 270 271 // turn packet around to go back to requester if response expected 272 if (needsResponse) { 273 pkt->setFunctionalResponseStatus(accessSucceeded); 274 275 // @todo There should not be a reverse call since the response is 276 // communicated through the packet pointer 277 // DPRINTF(RubyPort, "Sending packet back over port\n"); 278 // sendFunctional(pkt); 279 } 280 DPRINTF(RubyPort, "Functional access %s!\n", 281 accessSucceeded ? "successful":"failed"); 282} 283 284void 285RubyPort::ruby_hit_callback(PacketPtr pkt) 286{ 287 // Retrieve the request port from the sender State 288 RubyPort::SenderState *senderState = 289 safe_cast<RubyPort::SenderState *>(pkt->senderState); 290 M5Port *port = senderState->port; 291 assert(port != NULL); 292 293 // pop the sender state from the packet 294 pkt->senderState = senderState->predecessor; 295 delete senderState; 296 297 port->hitCallback(pkt); 298 299 // 300 // If we had to stall the M5Ports, wake them up because the sequencer 301 // likely has free resources now. 302 // 303 if (waitingOnSequencer) { 304 // 305 // Record the current list of ports to retry on a temporary list before 306 // calling sendRetry on those ports. sendRetry will cause an 307 // immediate retry, which may result in the ports being put back on the 308 // list. Therefore we want to clear the retryList before calling 309 // sendRetry. 310 // 311 std::list<M5Port*> curRetryList(retryList); 312 313 retryList.clear(); 314 waitingOnSequencer = false; 315 316 for (std::list<M5Port*>::iterator i = curRetryList.begin(); 317 i != curRetryList.end(); ++i) { 318 DPRINTF(RubyPort, 319 "Sequencer may now be free. SendRetry to port %s\n", 320 (*i)->name()); 321 (*i)->onRetryList(false); 322 (*i)->sendRetry(); 323 } 324 } 325 326 testDrainComplete(); 327} 328 329void 330RubyPort::testDrainComplete() 331{ 332 //If we weren't able to drain before, we might be able to now. 333 if (drainManager != NULL) { 334 unsigned int drainCount = outstandingCount(); 335 DPRINTF(Drain, "Drain count: %u\n", drainCount); 336 if (drainCount == 0) { 337 DPRINTF(Drain, "RubyPort done draining, signaling drain done\n"); 338 drainManager->signalDrainDone(); 339 // Clear the drain manager once we're done with it. 340 drainManager = NULL; 341 } 342 } 343} 344 345unsigned int 346RubyPort::getChildDrainCount(DrainManager *dm) 347{ 348 int count = 0; 349 350 if (pio_port.isConnected()) { 351 count += pio_port.drain(dm); 352 DPRINTF(Config, "count after pio check %d\n", count); 353 } 354 355 for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) { 356 count += (*p)->drain(dm); 357 DPRINTF(Config, "count after slave port check %d\n", count); 358 } 359 360 for (std::vector<PioPort*>::iterator p = master_ports.begin(); 361 p != master_ports.end(); ++p) { 362 count += (*p)->drain(dm); 363 DPRINTF(Config, "count after master port check %d\n", count); 364 } 365 366 DPRINTF(Config, "final count %d\n", count); 367 368 return count; 369} 370 371unsigned int 372RubyPort::drain(DrainManager *dm) 373{ 374 if (isDeadlockEventScheduled()) { 375 descheduleDeadlockEvent(); 376 } 377 378 // 379 // If the RubyPort is not empty, then it needs to clear all outstanding 380 // requests before it should call drainManager->signalDrainDone() 381 // 382 DPRINTF(Config, "outstanding count %d\n", outstandingCount()); 383 bool need_drain = outstandingCount() > 0; 384 385 // 386 // Also, get the number of child ports that will also need to clear 387 // their buffered requests before they call drainManager->signalDrainDone() 388 // 389 unsigned int child_drain_count = getChildDrainCount(dm); 390 391 // Set status 392 if (need_drain) { 393 drainManager = dm; 394 395 DPRINTF(Drain, "RubyPort not drained\n"); 396 setDrainState(Drainable::Draining); 397 return child_drain_count + 1; 398 } 399 400 drainManager = NULL; 401 setDrainState(Drainable::Drained); 402 return child_drain_count; 403} 404 405void 406RubyPort::M5Port::hitCallback(PacketPtr pkt) 407{ 408 bool needsResponse = pkt->needsResponse(); 409 410 // 411 // Unless specified at configuraiton, all responses except failed SC 412 // and Flush operations access M5 physical memory. 413 // 414 bool accessPhysMem = access_phys_mem; 415 416 if (pkt->isLLSC()) { 417 if (pkt->isWrite()) { 418 if (pkt->req->getExtraData() != 0) { 419 // 420 // Successful SC packets convert to normal writes 421 // 422 pkt->convertScToWrite(); 423 } else { 424 // 425 // Failed SC packets don't access physical memory and thus 426 // the RubyPort itself must convert it to a response. 427 // 428 accessPhysMem = false; 429 } 430 } else { 431 // 432 // All LL packets convert to normal loads so that M5 PhysMem does 433 // not lock the blocks. 434 // 435 pkt->convertLlToRead(); 436 } 437 } 438 439 // 440 // Flush requests don't access physical memory 441 // 442 if (pkt->isFlush()) { 443 accessPhysMem = false; 444 } 445 446 DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse); 447 448 if (accessPhysMem) { 449 ruby_port->system->getPhysMem().access(pkt); 450 } else if (needsResponse) { 451 pkt->makeResponse(); 452 } 453 454 // turn packet around to go back to requester if response expected 455 if (needsResponse) { 456 DPRINTF(RubyPort, "Sending packet back over port\n"); 457 // send next cycle 458 schedTimingResp(pkt, curTick() + g_system_ptr->clockPeriod()); 459 } else { 460 delete pkt; 461 } 462 DPRINTF(RubyPort, "Hit callback done!\n"); 463} 464 465AddrRangeList 466RubyPort::M5Port::getAddrRanges() const 467{ 468 // at the moment the assumption is that the master does not care 469 AddrRangeList ranges; 470 return ranges; 471} 472 473bool 474RubyPort::M5Port::isPhysMemAddress(Addr addr) 475{ 476 return ruby_port->system->isMemAddr(addr); 477} 478 479unsigned 480RubyPort::M5Port::deviceBlockSize() const 481{ 482 return (unsigned) RubySystem::getBlockSizeBytes(); 483} 484 485void 486RubyPort::ruby_eviction_callback(const Address& address) 487{ 488 DPRINTF(RubyPort, "Sending invalidations.\n"); 489 // This request is deleted in the stack-allocated packet destructor 490 // when this function exits 491 // TODO: should this really be using funcMasterId? 492 RequestPtr req = 493 new Request(address.getAddress(), 0, 0, Request::funcMasterId); 494 // Use a single packet to signal all snooping ports of the invalidation. 495 // This assumes that snooping ports do NOT modify the packet/request 496 Packet pkt(req, MemCmd::InvalidationReq); 497 for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) { 498 // check if the connected master port is snooping 499 if ((*p)->isSnooping()) { 500 // send as a snoop request 501 (*p)->sendTimingSnoopReq(&pkt); 502 } 503 } 504} 505