1/* 2 * Copyright (c) 2012-2013 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2009-2013 Advanced Micro Devices, Inc. 15 * Copyright (c) 2011 Mark D. Hill and David A. Wood 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 */ 41 42#include "mem/ruby/system/RubyPort.hh" 43 44#include "cpu/testers/rubytest/RubyTester.hh" 45#include "debug/Config.hh" 46#include "debug/Drain.hh" 47#include "debug/Ruby.hh" 48#include "mem/ruby/protocol/AccessPermission.hh" 49#include "mem/ruby/slicc_interface/AbstractController.hh" 50#include "mem/simple_mem.hh" 51#include "sim/full_system.hh" 52#include "sim/system.hh" 53 54RubyPort::RubyPort(const Params *p) 55 : ClockedObject(p), m_ruby_system(p->ruby_system), m_version(p->version), 56 m_controller(NULL), m_mandatory_q_ptr(NULL), 57 m_usingRubyTester(p->using_ruby_tester), system(p->system), 58 pioMasterPort(csprintf("%s.pio-master-port", name()), this), 59 pioSlavePort(csprintf("%s.pio-slave-port", name()), this), 60 memMasterPort(csprintf("%s.mem-master-port", name()), this), 61 memSlavePort(csprintf("%s-mem-slave-port", name()), this, 62 p->ruby_system->getAccessBackingStore(), -1, 63 p->no_retry_on_stall), 64 gotAddrRanges(p->port_master_connection_count), 65 m_isCPUSequencer(p->is_cpu_sequencer) 66{ 67 assert(m_version != -1); 68 69 // create the slave ports based on the number of connected ports 70 for (size_t i = 0; i < p->port_slave_connection_count; ++i) { 71 slave_ports.push_back(new MemSlavePort(csprintf("%s.slave%d", name(), 72 i), this, p->ruby_system->getAccessBackingStore(), 73 i, p->no_retry_on_stall)); 74 } 75 76 // create the master ports based on the number of connected ports 77 for (size_t i = 0; i < p->port_master_connection_count; ++i) { 78 master_ports.push_back(new PioMasterPort(csprintf("%s.master%d", 79 name(), i), this)); 80 } 81} 82 83void 84RubyPort::init() 85{ 86 assert(m_controller != NULL); 87 m_mandatory_q_ptr = m_controller->getMandatoryQueue(); 88} 89 90Port & 91RubyPort::getPort(const std::string &if_name, PortID idx) 92{ 93 if (if_name == "mem_master_port") { 94 return memMasterPort; 95 } else if (if_name == "pio_master_port") { 96 return pioMasterPort; 97 } else if (if_name == "mem_slave_port") { 98 return memSlavePort; 99 } else if (if_name == "pio_slave_port") { 100 return pioSlavePort; 101 } else if (if_name == "master") { 102 // used by the x86 CPUs to connect the interrupt PIO and interrupt 103 // slave port 104 if (idx >= static_cast<PortID>(master_ports.size())) { 105 panic("RubyPort::getPort master: unknown index %d\n", idx); 106 } 107 108 return *master_ports[idx]; 109 } else if (if_name == "slave") { 110 // used by the CPUs to connect the caches to the interconnect, and 111 // for the x86 case also the interrupt master 112 if (idx >= static_cast<PortID>(slave_ports.size())) { 113 panic("RubyPort::getPort slave: unknown index %d\n", idx); 114 } 115 116 return *slave_ports[idx]; 117 } 118 119 // pass it along to our super class 120 return ClockedObject::getPort(if_name, idx); 121} 122 123RubyPort::PioMasterPort::PioMasterPort(const std::string &_name, 124 RubyPort *_port) 125 : QueuedMasterPort(_name, _port, reqQueue, snoopRespQueue), 126 reqQueue(*_port, *this), snoopRespQueue(*_port, *this) 127{ 128 DPRINTF(RubyPort, "Created master pioport on sequencer %s\n", _name); 129} 130 131RubyPort::PioSlavePort::PioSlavePort(const std::string &_name, 132 RubyPort *_port) 133 : QueuedSlavePort(_name, _port, queue), queue(*_port, *this) 134{ 135 DPRINTF(RubyPort, "Created slave pioport on sequencer %s\n", _name); 136} 137 138RubyPort::MemMasterPort::MemMasterPort(const std::string &_name, 139 RubyPort *_port) 140 : QueuedMasterPort(_name, _port, reqQueue, snoopRespQueue), 141 reqQueue(*_port, *this), snoopRespQueue(*_port, *this) 142{ 143 DPRINTF(RubyPort, "Created master memport on ruby sequencer %s\n", _name); 144} 145 146RubyPort::MemSlavePort::MemSlavePort(const std::string &_name, RubyPort *_port, 147 bool _access_backing_store, PortID id, 148 bool _no_retry_on_stall) 149 : QueuedSlavePort(_name, _port, queue, id), queue(*_port, *this), 150 access_backing_store(_access_backing_store), 151 no_retry_on_stall(_no_retry_on_stall) 152{ 153 DPRINTF(RubyPort, "Created slave memport on ruby sequencer %s\n", _name); 154} 155 156bool 157RubyPort::PioMasterPort::recvTimingResp(PacketPtr pkt) 158{ 159 RubyPort *rp = static_cast<RubyPort *>(&owner); 160 DPRINTF(RubyPort, "Response for address: 0x%#x\n", pkt->getAddr()); 161 162 // send next cycle 163 rp->pioSlavePort.schedTimingResp( 164 pkt, curTick() + rp->m_ruby_system->clockPeriod()); 165 return true; 166} 167 168bool RubyPort::MemMasterPort::recvTimingResp(PacketPtr pkt) 169{ 170 // got a response from a device 171 assert(pkt->isResponse()); 172 173 // First we must retrieve the request port from the sender State 174 RubyPort::SenderState *senderState = 175 safe_cast<RubyPort::SenderState *>(pkt->popSenderState()); 176 MemSlavePort *port = senderState->port; 177 assert(port != NULL); 178 delete senderState; 179 180 // In FS mode, ruby memory will receive pio responses from devices 181 // and it must forward these responses back to the particular CPU. 182 DPRINTF(RubyPort, "Pio response for address %#x, going to %s\n", 183 pkt->getAddr(), port->name()); 184 185 // attempt to send the response in the next cycle 186 RubyPort *rp = static_cast<RubyPort *>(&owner); 187 port->schedTimingResp(pkt, curTick() + rp->m_ruby_system->clockPeriod()); 188 189 return true; 190} 191 192bool 193RubyPort::PioSlavePort::recvTimingReq(PacketPtr pkt) 194{ 195 RubyPort *ruby_port = static_cast<RubyPort *>(&owner); 196 197 for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) { 198 AddrRangeList l = ruby_port->master_ports[i]->getAddrRanges(); 199 for (auto it = l.begin(); it != l.end(); ++it) { 200 if (it->contains(pkt->getAddr())) { 201 // generally it is not safe to assume success here as 202 // the port could be blocked 203 bool M5_VAR_USED success = 204 ruby_port->master_ports[i]->sendTimingReq(pkt); 205 assert(success); 206 return true; 207 } 208 } 209 } 210 panic("Should never reach here!\n"); 211} 212 213Tick 214RubyPort::PioSlavePort::recvAtomic(PacketPtr pkt) 215{ 216 RubyPort *ruby_port = static_cast<RubyPort *>(&owner); 217 // Only atomic_noncaching mode supported! 218 if (!ruby_port->system->bypassCaches()) { 219 panic("Ruby supports atomic accesses only in noncaching mode\n"); 220 } 221 222 for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) { 223 AddrRangeList l = ruby_port->master_ports[i]->getAddrRanges(); 224 for (auto it = l.begin(); it != l.end(); ++it) { 225 if (it->contains(pkt->getAddr())) { 226 return ruby_port->master_ports[i]->sendAtomic(pkt); 227 } 228 } 229 } 230 panic("Could not find address in Ruby PIO address ranges!\n"); 231} 232 233bool 234RubyPort::MemSlavePort::recvTimingReq(PacketPtr pkt) 235{ 236 DPRINTF(RubyPort, "Timing request for address %#x on port %d\n", 237 pkt->getAddr(), id); 238 RubyPort *ruby_port = static_cast<RubyPort *>(&owner); 239 240 if (pkt->cacheResponding()) 241 panic("RubyPort should never see request with the " 242 "cacheResponding flag set\n"); 243 244 // ruby doesn't support cache maintenance operations at the 245 // moment, as a workaround, we respond right away 246 if (pkt->req->isCacheMaintenance()) { 247 warn_once("Cache maintenance operations are not supported in Ruby.\n"); 248 pkt->makeResponse(); 249 schedTimingResp(pkt, curTick()); 250 return true; 251 } 252 // Check for pio requests and directly send them to the dedicated 253 // pio port. 254 if (pkt->cmd != MemCmd::MemFenceReq) { 255 if (!isPhysMemAddress(pkt->getAddr())) { 256 assert(ruby_port->memMasterPort.isConnected()); 257 DPRINTF(RubyPort, "Request address %#x assumed to be a " 258 "pio address\n", pkt->getAddr()); 259 260 // Save the port in the sender state object to be used later to 261 // route the response 262 pkt->pushSenderState(new SenderState(this)); 263 264 // send next cycle 265 RubySystem *rs = ruby_port->m_ruby_system; 266 ruby_port->memMasterPort.schedTimingReq(pkt, 267 curTick() + rs->clockPeriod()); 268 return true; 269 } 270 271 assert(getOffset(pkt->getAddr()) + pkt->getSize() <= 272 RubySystem::getBlockSizeBytes()); 273 } 274 275 // Submit the ruby request 276 RequestStatus requestStatus = ruby_port->makeRequest(pkt); 277 278 // If the request successfully issued then we should return true. 279 // Otherwise, we need to tell the port to retry at a later point 280 // and return false. 281 if (requestStatus == RequestStatus_Issued) { 282 // Save the port in the sender state object to be used later to 283 // route the response 284 pkt->pushSenderState(new SenderState(this)); 285 286 DPRINTF(RubyPort, "Request %s address %#x issued\n", pkt->cmdString(), 287 pkt->getAddr()); 288 return true; 289 } 290 291 if (pkt->cmd != MemCmd::MemFenceReq) { 292 DPRINTF(RubyPort, 293 "Request %s for address %#x did not issue because %s\n", 294 pkt->cmdString(), pkt->getAddr(), 295 RequestStatus_to_string(requestStatus)); 296 } 297 298 addToRetryList(); 299 300 return false; 301} 302 303Tick 304RubyPort::MemSlavePort::recvAtomic(PacketPtr pkt) 305{ 306 RubyPort *ruby_port = static_cast<RubyPort *>(&owner); 307 // Only atomic_noncaching mode supported! 308 if (!ruby_port->system->bypassCaches()) { 309 panic("Ruby supports atomic accesses only in noncaching mode\n"); 310 } 311 312 // Check for pio requests and directly send them to the dedicated 313 // pio port. 314 if (pkt->cmd != MemCmd::MemFenceReq) { 315 if (!isPhysMemAddress(pkt->getAddr())) { 316 assert(ruby_port->memMasterPort.isConnected()); 317 DPRINTF(RubyPort, "Request address %#x assumed to be a " 318 "pio address\n", pkt->getAddr()); 319 320 // Save the port in the sender state object to be used later to 321 // route the response 322 pkt->pushSenderState(new SenderState(this)); 323 324 // send next cycle 325 Tick req_ticks = ruby_port->memMasterPort.sendAtomic(pkt); 326 return ruby_port->ticksToCycles(req_ticks); 327 } 328 329 assert(getOffset(pkt->getAddr()) + pkt->getSize() <= 330 RubySystem::getBlockSizeBytes()); 331 } 332 333 // Find appropriate directory for address 334 // This assumes that protocols have a Directory machine, 335 // which has its memPort hooked up to memory. This can 336 // fail for some custom protocols. 337 MachineID id = ruby_port->m_controller->mapAddressToMachine( 338 pkt->getAddr(), MachineType_Directory); 339 RubySystem *rs = ruby_port->m_ruby_system; 340 AbstractController *directory = 341 rs->m_abstract_controls[id.getType()][id.getNum()]; 342 return directory->recvAtomic(pkt); 343} 344 345void 346RubyPort::MemSlavePort::addToRetryList() 347{ 348 RubyPort *ruby_port = static_cast<RubyPort *>(&owner); 349 350 // 351 // Unless the requestor do not want retries (e.g., the Ruby tester), 352 // record the stalled M5 port for later retry when the sequencer 353 // becomes free. 354 // 355 if (!no_retry_on_stall && !ruby_port->onRetryList(this)) { 356 ruby_port->addToRetryList(this); 357 } 358} 359 360void 361RubyPort::MemSlavePort::recvFunctional(PacketPtr pkt) 362{ 363 DPRINTF(RubyPort, "Functional access for address: %#x\n", pkt->getAddr()); 364 365 RubyPort *rp M5_VAR_USED = static_cast<RubyPort *>(&owner); 366 RubySystem *rs = rp->m_ruby_system; 367 368 // Check for pio requests and directly send them to the dedicated 369 // pio port. 370 if (!isPhysMemAddress(pkt->getAddr())) { 371 DPRINTF(RubyPort, "Pio Request for address: 0x%#x\n", pkt->getAddr()); 372 assert(rp->pioMasterPort.isConnected()); 373 rp->pioMasterPort.sendFunctional(pkt); 374 return; 375 } 376 377 assert(pkt->getAddr() + pkt->getSize() <= 378 makeLineAddress(pkt->getAddr()) + RubySystem::getBlockSizeBytes()); 379 380 if (access_backing_store) { 381 // The attached physmem contains the official version of data. 382 // The following command performs the real functional access. 383 // This line should be removed once Ruby supplies the official version 384 // of data. 385 rs->getPhysMem()->functionalAccess(pkt); 386 } else { 387 bool accessSucceeded = false; 388 bool needsResponse = pkt->needsResponse(); 389 390 // Do the functional access on ruby memory 391 if (pkt->isRead()) { 392 accessSucceeded = rs->functionalRead(pkt); 393 } else if (pkt->isWrite()) { 394 accessSucceeded = rs->functionalWrite(pkt); 395 } else { 396 panic("Unsupported functional command %s\n", pkt->cmdString()); 397 } 398 399 // Unless the requester explicitly said otherwise, generate an error if 400 // the functional request failed 401 if (!accessSucceeded && !pkt->suppressFuncError()) { 402 fatal("Ruby functional %s failed for address %#x\n", 403 pkt->isWrite() ? "write" : "read", pkt->getAddr()); 404 } 405 406 // turn packet around to go back to requester if response expected 407 if (needsResponse) { 408 pkt->setFunctionalResponseStatus(accessSucceeded); 409 } 410 411 DPRINTF(RubyPort, "Functional access %s!\n", 412 accessSucceeded ? "successful":"failed"); 413 } 414} 415 416void 417RubyPort::ruby_hit_callback(PacketPtr pkt) 418{ 419 DPRINTF(RubyPort, "Hit callback for %s 0x%x\n", pkt->cmdString(), 420 pkt->getAddr()); 421 422 // The packet was destined for memory and has not yet been turned 423 // into a response 424 assert(system->isMemAddr(pkt->getAddr())); 425 assert(pkt->isRequest()); 426 427 // First we must retrieve the request port from the sender State 428 RubyPort::SenderState *senderState = 429 safe_cast<RubyPort::SenderState *>(pkt->popSenderState()); 430 MemSlavePort *port = senderState->port; 431 assert(port != NULL); 432 delete senderState; 433 434 port->hitCallback(pkt); 435 436 trySendRetries(); 437} 438 439void 440RubyPort::trySendRetries() 441{ 442 // 443 // If we had to stall the MemSlavePorts, wake them up because the sequencer 444 // likely has free resources now. 445 // 446 if (!retryList.empty()) { 447 // Record the current list of ports to retry on a temporary list 448 // before calling sendRetryReq on those ports. sendRetryReq will cause 449 // an immediate retry, which may result in the ports being put back on 450 // the list. Therefore we want to clear the retryList before calling 451 // sendRetryReq. 452 std::vector<MemSlavePort *> curRetryList(retryList); 453 454 retryList.clear(); 455 456 for (auto i = curRetryList.begin(); i != curRetryList.end(); ++i) { 457 DPRINTF(RubyPort, 458 "Sequencer may now be free. SendRetry to port %s\n", 459 (*i)->name()); 460 (*i)->sendRetryReq(); 461 } 462 } 463} 464 465void 466RubyPort::testDrainComplete() 467{ 468 //If we weren't able to drain before, we might be able to now. 469 if (drainState() == DrainState::Draining) { 470 unsigned int drainCount = outstandingCount(); 471 DPRINTF(Drain, "Drain count: %u\n", drainCount); 472 if (drainCount == 0) { 473 DPRINTF(Drain, "RubyPort done draining, signaling drain done\n"); 474 signalDrainDone(); 475 } 476 } 477} 478 479DrainState 480RubyPort::drain() 481{ 482 if (isDeadlockEventScheduled()) { 483 descheduleDeadlockEvent(); 484 } 485 486 // 487 // If the RubyPort is not empty, then it needs to clear all outstanding 488 // requests before it should call signalDrainDone() 489 // 490 DPRINTF(Config, "outstanding count %d\n", outstandingCount()); 491 if (outstandingCount() > 0) { 492 DPRINTF(Drain, "RubyPort not drained\n"); 493 return DrainState::Draining; 494 } else { 495 return DrainState::Drained; 496 } 497} 498 499void 500RubyPort::MemSlavePort::hitCallback(PacketPtr pkt) 501{ 502 bool needsResponse = pkt->needsResponse(); 503 504 // Unless specified at configuraiton, all responses except failed SC 505 // and Flush operations access M5 physical memory. 506 bool accessPhysMem = access_backing_store; 507 508 if (pkt->isLLSC()) { 509 if (pkt->isWrite()) { 510 if (pkt->req->getExtraData() != 0) { 511 // 512 // Successful SC packets convert to normal writes 513 // 514 pkt->convertScToWrite(); 515 } else { 516 // 517 // Failed SC packets don't access physical memory and thus 518 // the RubyPort itself must convert it to a response. 519 // 520 accessPhysMem = false; 521 } 522 } else { 523 // 524 // All LL packets convert to normal loads so that M5 PhysMem does 525 // not lock the blocks. 526 // 527 pkt->convertLlToRead(); 528 } 529 } 530 531 // Flush, acquire, release requests don't access physical memory 532 if (pkt->isFlush() || pkt->cmd == MemCmd::MemFenceReq) { 533 accessPhysMem = false; 534 } 535 536 if (pkt->req->isKernel()) { 537 accessPhysMem = false; 538 needsResponse = true; 539 } 540 541 DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse); 542 543 RubyPort *ruby_port = static_cast<RubyPort *>(&owner); 544 RubySystem *rs = ruby_port->m_ruby_system; 545 if (accessPhysMem) { 546 rs->getPhysMem()->access(pkt); 547 } else if (needsResponse) { 548 pkt->makeResponse(); 549 } 550 551 // turn packet around to go back to requester if response expected 552 if (needsResponse) { 553 DPRINTF(RubyPort, "Sending packet back over port\n"); 554 // Send a response in the same cycle. There is no need to delay the 555 // response because the response latency is already incurred in the 556 // Ruby protocol. 557 schedTimingResp(pkt, curTick()); 558 } else { 559 delete pkt; 560 } 561 562 DPRINTF(RubyPort, "Hit callback done!\n"); 563} 564 565AddrRangeList 566RubyPort::PioSlavePort::getAddrRanges() const 567{ 568 // at the moment the assumption is that the master does not care 569 AddrRangeList ranges; 570 RubyPort *ruby_port = static_cast<RubyPort *>(&owner); 571 572 for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) { 573 ranges.splice(ranges.begin(), 574 ruby_port->master_ports[i]->getAddrRanges()); 575 } 576 for (const auto M5_VAR_USED &r : ranges) 577 DPRINTF(RubyPort, "%s\n", r.to_string()); 578 return ranges; 579} 580 581bool 582RubyPort::MemSlavePort::isPhysMemAddress(Addr addr) const 583{ 584 RubyPort *ruby_port = static_cast<RubyPort *>(&owner); 585 return ruby_port->system->isMemAddr(addr); 586} 587 588void 589RubyPort::ruby_eviction_callback(Addr address) 590{ 591 DPRINTF(RubyPort, "Sending invalidations.\n"); 592 // Allocate the invalidate request and packet on the stack, as it is 593 // assumed they will not be modified or deleted by receivers. 594 // TODO: should this really be using funcMasterId? 595 auto request = std::make_shared<Request>( 596 address, RubySystem::getBlockSizeBytes(), 0, 597 Request::funcMasterId); 598 599 // Use a single packet to signal all snooping ports of the invalidation. 600 // This assumes that snooping ports do NOT modify the packet/request 601 Packet pkt(request, MemCmd::InvalidateReq); 602 for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) { 603 // check if the connected master port is snooping 604 if ((*p)->isSnooping()) { 605 // send as a snoop request 606 (*p)->sendTimingSnoopReq(&pkt); 607 } 608 } 609} 610 611void 612RubyPort::PioMasterPort::recvRangeChange() 613{ 614 RubyPort &r = static_cast<RubyPort &>(owner); 615 r.gotAddrRanges--; 616 if (r.gotAddrRanges == 0 && FullSystem) { 617 r.pioSlavePort.sendRangeChange(); 618 } 619} 620