RubyPort.cc revision 9633:3bf3100e9fa1
1/* 2 * Copyright (c) 2012 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2009 Advanced Micro Devices, Inc. 15 * Copyright (c) 2011 Mark D. Hill and David A. Wood 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 */ 41 42#include "cpu/testers/rubytest/RubyTester.hh" 43#include "debug/Config.hh" 44#include "debug/Drain.hh" 45#include "debug/Ruby.hh" 46#include "mem/protocol/AccessPermission.hh" 47#include "mem/ruby/slicc_interface/AbstractController.hh" 48#include "mem/ruby/system/RubyPort.hh" 49#include "sim/system.hh" 50 51RubyPort::RubyPort(const Params *p) 52 : MemObject(p), m_version(p->version), m_controller(NULL), 53 m_mandatory_q_ptr(NULL), 54 pio_port(csprintf("%s-pio-port", name()), this), 55 m_usingRubyTester(p->using_ruby_tester), m_request_cnt(0), 56 drainManager(NULL), ruby_system(p->ruby_system), system(p->system), 57 waitingOnSequencer(false), access_phys_mem(p->access_phys_mem) 58{ 59 assert(m_version != -1); 60 61 // create the slave ports based on the number of connected ports 62 for (size_t i = 0; i < p->port_slave_connection_count; ++i) { 63 slave_ports.push_back(new M5Port(csprintf("%s-slave%d", name(), i), 64 this, ruby_system, access_phys_mem)); 65 } 66 67 // create the master ports based on the number of connected ports 68 for (size_t i = 0; i < p->port_master_connection_count; ++i) { 69 master_ports.push_back(new PioPort(csprintf("%s-master%d", name(), i), 70 this)); 71 } 72} 73 74void 75RubyPort::init() 76{ 77 assert(m_controller != NULL); 78 m_mandatory_q_ptr = m_controller->getMandatoryQueue(); 79 m_mandatory_q_ptr->setSender(this); 80} 81 82BaseMasterPort & 83RubyPort::getMasterPort(const std::string &if_name, PortID idx) 84{ 85 if (if_name == "pio_port") { 86 return pio_port; 87 } 88 89 // used by the x86 CPUs to connect the interrupt PIO and interrupt slave 90 // port 91 if (if_name != "master") { 92 // pass it along to our super class 93 return MemObject::getMasterPort(if_name, idx); 94 } else { 95 if (idx >= static_cast<PortID>(master_ports.size())) { 96 panic("RubyPort::getMasterPort: unknown index %d\n", idx); 97 } 98 99 return *master_ports[idx]; 100 } 101} 102 103BaseSlavePort & 104RubyPort::getSlavePort(const std::string &if_name, PortID idx) 105{ 106 // used by the CPUs to connect the caches to the interconnect, and 107 // for the x86 case also the interrupt master 108 if (if_name != "slave") { 109 // pass it along to our super class 110 return MemObject::getSlavePort(if_name, idx); 111 } else { 112 if (idx >= static_cast<PortID>(slave_ports.size())) { 113 panic("RubyPort::getSlavePort: unknown index %d\n", idx); 114 } 115 116 return *slave_ports[idx]; 117 } 118} 119 120RubyPort::PioPort::PioPort(const std::string &_name, 121 RubyPort *_port) 122 : QueuedMasterPort(_name, _port, queue), queue(*_port, *this) 123{ 124 DPRINTF(RubyPort, "creating master port on ruby sequencer %s\n", _name); 125} 126 127RubyPort::M5Port::M5Port(const std::string &_name, RubyPort *_port, 128 RubySystem *_system, bool _access_phys_mem) 129 : QueuedSlavePort(_name, _port, queue), queue(*_port, *this), 130 ruby_port(_port), ruby_system(_system), 131 _onRetryList(false), access_phys_mem(_access_phys_mem) 132{ 133 DPRINTF(RubyPort, "creating slave port on ruby sequencer %s\n", _name); 134} 135 136Tick 137RubyPort::M5Port::recvAtomic(PacketPtr pkt) 138{ 139 panic("RubyPort::M5Port::recvAtomic() not implemented!\n"); 140 return 0; 141} 142 143 144bool 145RubyPort::PioPort::recvTimingResp(PacketPtr pkt) 146{ 147 // In FS mode, ruby memory will receive pio responses from devices 148 // and it must forward these responses back to the particular CPU. 149 DPRINTF(RubyPort, "Pio response for address %#x\n", pkt->getAddr()); 150 151 // First we must retrieve the request port from the sender State 152 RubyPort::SenderState *senderState = 153 safe_cast<RubyPort::SenderState *>(pkt->popSenderState()); 154 M5Port *port = senderState->port; 155 assert(port != NULL); 156 delete senderState; 157 158 port->sendTimingResp(pkt); 159 160 return true; 161} 162 163bool 164RubyPort::M5Port::recvTimingReq(PacketPtr pkt) 165{ 166 DPRINTF(RubyPort, 167 "Timing access caught for address %#x\n", pkt->getAddr()); 168 169 //dsm: based on SimpleTimingPort::recvTimingReq(pkt); 170 171 // The received packets should only be M5 requests, which should never 172 // get nacked. There used to be code to hanldle nacks here, but 173 // I'm pretty sure it didn't work correctly with the drain code, 174 // so that would need to be fixed if we ever added it back. 175 176 if (pkt->memInhibitAsserted()) { 177 warn("memInhibitAsserted???"); 178 // snooper will supply based on copy of packet 179 // still target's responsibility to delete packet 180 delete pkt; 181 return true; 182 } 183 184 // Save the port in the sender state object to be used later to 185 // route the response 186 pkt->pushSenderState(new SenderState(this)); 187 188 // Check for pio requests and directly send them to the dedicated 189 // pio port. 190 if (!isPhysMemAddress(pkt->getAddr())) { 191 assert(ruby_port->pio_port.isConnected()); 192 DPRINTF(RubyPort, 193 "Request for address 0x%#x is assumed to be a pio request\n", 194 pkt->getAddr()); 195 196 // send next cycle 197 ruby_port->pio_port.schedTimingReq(pkt, 198 curTick() + g_system_ptr->clockPeriod()); 199 return true; 200 } 201 202 assert(Address(pkt->getAddr()).getOffset() + pkt->getSize() <= 203 RubySystem::getBlockSizeBytes()); 204 205 // Submit the ruby request 206 RequestStatus requestStatus = ruby_port->makeRequest(pkt); 207 208 // If the request successfully issued then we should return true. 209 // Otherwise, we need to delete the senderStatus we just created and return 210 // false. 211 if (requestStatus == RequestStatus_Issued) { 212 DPRINTF(RubyPort, "Request %#x issued\n", pkt->getAddr()); 213 return true; 214 } 215 216 // 217 // Unless one is using the ruby tester, record the stalled M5 port for 218 // later retry when the sequencer becomes free. 219 // 220 if (!ruby_port->m_usingRubyTester) { 221 ruby_port->addToRetryList(this); 222 } 223 224 DPRINTF(RubyPort, 225 "Request for address %#x did not issue because %s\n", 226 pkt->getAddr(), RequestStatus_to_string(requestStatus)); 227 228 SenderState* senderState = safe_cast<SenderState*>(pkt->senderState); 229 pkt->senderState = senderState->predecessor; 230 delete senderState; 231 return false; 232} 233 234void 235RubyPort::M5Port::recvFunctional(PacketPtr pkt) 236{ 237 DPRINTF(RubyPort, "Functional access caught for address %#x\n", 238 pkt->getAddr()); 239 240 // Check for pio requests and directly send them to the dedicated 241 // pio port. 242 if (!isPhysMemAddress(pkt->getAddr())) { 243 assert(ruby_port->pio_port.isConnected()); 244 DPRINTF(RubyPort, "Request for address 0x%#x is a pio request\n", 245 pkt->getAddr()); 246 panic("RubyPort::PioPort::recvFunctional() not implemented!\n"); 247 } 248 249 assert(pkt->getAddr() + pkt->getSize() <= 250 line_address(Address(pkt->getAddr())).getAddress() + 251 RubySystem::getBlockSizeBytes()); 252 253 bool accessSucceeded = false; 254 bool needsResponse = pkt->needsResponse(); 255 256 // Do the functional access on ruby memory 257 if (pkt->isRead()) { 258 accessSucceeded = ruby_system->functionalRead(pkt); 259 } else if (pkt->isWrite()) { 260 accessSucceeded = ruby_system->functionalWrite(pkt); 261 } else { 262 panic("RubyPort: unsupported functional command %s\n", 263 pkt->cmdString()); 264 } 265 266 // Unless the requester explicitly said otherwise, generate an error if 267 // the functional request failed 268 if (!accessSucceeded && !pkt->suppressFuncError()) { 269 fatal("Ruby functional %s failed for address %#x\n", 270 pkt->isWrite() ? "write" : "read", pkt->getAddr()); 271 } 272 273 if (access_phys_mem) { 274 // The attached physmem contains the official version of data. 275 // The following command performs the real functional access. 276 // This line should be removed once Ruby supplies the official version 277 // of data. 278 ruby_port->system->getPhysMem().functionalAccess(pkt); 279 } 280 281 // turn packet around to go back to requester if response expected 282 if (needsResponse) { 283 pkt->setFunctionalResponseStatus(accessSucceeded); 284 285 // @todo There should not be a reverse call since the response is 286 // communicated through the packet pointer 287 // DPRINTF(RubyPort, "Sending packet back over port\n"); 288 // sendFunctional(pkt); 289 } 290 DPRINTF(RubyPort, "Functional access %s!\n", 291 accessSucceeded ? "successful":"failed"); 292} 293 294void 295RubyPort::ruby_hit_callback(PacketPtr pkt) 296{ 297 // Retrieve the request port from the sender State 298 RubyPort::SenderState *senderState = 299 safe_cast<RubyPort::SenderState *>(pkt->senderState); 300 M5Port *port = senderState->port; 301 assert(port != NULL); 302 303 // pop the sender state from the packet 304 pkt->senderState = senderState->predecessor; 305 delete senderState; 306 307 port->hitCallback(pkt); 308 309 // 310 // If we had to stall the M5Ports, wake them up because the sequencer 311 // likely has free resources now. 312 // 313 if (waitingOnSequencer) { 314 // 315 // Record the current list of ports to retry on a temporary list before 316 // calling sendRetry on those ports. sendRetry will cause an 317 // immediate retry, which may result in the ports being put back on the 318 // list. Therefore we want to clear the retryList before calling 319 // sendRetry. 320 // 321 std::list<M5Port*> curRetryList(retryList); 322 323 retryList.clear(); 324 waitingOnSequencer = false; 325 326 for (std::list<M5Port*>::iterator i = curRetryList.begin(); 327 i != curRetryList.end(); ++i) { 328 DPRINTF(RubyPort, 329 "Sequencer may now be free. SendRetry to port %s\n", 330 (*i)->name()); 331 (*i)->onRetryList(false); 332 (*i)->sendRetry(); 333 } 334 } 335 336 testDrainComplete(); 337} 338 339void 340RubyPort::testDrainComplete() 341{ 342 //If we weren't able to drain before, we might be able to now. 343 if (drainManager != NULL) { 344 unsigned int drainCount = outstandingCount(); 345 DPRINTF(Drain, "Drain count: %u\n", drainCount); 346 if (drainCount == 0) { 347 DPRINTF(Drain, "RubyPort done draining, signaling drain done\n"); 348 drainManager->signalDrainDone(); 349 // Clear the drain manager once we're done with it. 350 drainManager = NULL; 351 } 352 } 353} 354 355unsigned int 356RubyPort::getChildDrainCount(DrainManager *dm) 357{ 358 int count = 0; 359 360 if (pio_port.isConnected()) { 361 count += pio_port.drain(dm); 362 DPRINTF(Config, "count after pio check %d\n", count); 363 } 364 365 for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) { 366 count += (*p)->drain(dm); 367 DPRINTF(Config, "count after slave port check %d\n", count); 368 } 369 370 for (std::vector<PioPort*>::iterator p = master_ports.begin(); 371 p != master_ports.end(); ++p) { 372 count += (*p)->drain(dm); 373 DPRINTF(Config, "count after master port check %d\n", count); 374 } 375 376 DPRINTF(Config, "final count %d\n", count); 377 378 return count; 379} 380 381unsigned int 382RubyPort::drain(DrainManager *dm) 383{ 384 if (isDeadlockEventScheduled()) { 385 descheduleDeadlockEvent(); 386 } 387 388 // 389 // If the RubyPort is not empty, then it needs to clear all outstanding 390 // requests before it should call drainManager->signalDrainDone() 391 // 392 DPRINTF(Config, "outstanding count %d\n", outstandingCount()); 393 bool need_drain = outstandingCount() > 0; 394 395 // 396 // Also, get the number of child ports that will also need to clear 397 // their buffered requests before they call drainManager->signalDrainDone() 398 // 399 unsigned int child_drain_count = getChildDrainCount(dm); 400 401 // Set status 402 if (need_drain) { 403 drainManager = dm; 404 405 DPRINTF(Drain, "RubyPort not drained\n"); 406 setDrainState(Drainable::Draining); 407 return child_drain_count + 1; 408 } 409 410 drainManager = NULL; 411 setDrainState(Drainable::Drained); 412 return child_drain_count; 413} 414 415void 416RubyPort::M5Port::hitCallback(PacketPtr pkt) 417{ 418 bool needsResponse = pkt->needsResponse(); 419 420 // 421 // Unless specified at configuraiton, all responses except failed SC 422 // and Flush operations access M5 physical memory. 423 // 424 bool accessPhysMem = access_phys_mem; 425 426 if (pkt->isLLSC()) { 427 if (pkt->isWrite()) { 428 if (pkt->req->getExtraData() != 0) { 429 // 430 // Successful SC packets convert to normal writes 431 // 432 pkt->convertScToWrite(); 433 } else { 434 // 435 // Failed SC packets don't access physical memory and thus 436 // the RubyPort itself must convert it to a response. 437 // 438 accessPhysMem = false; 439 } 440 } else { 441 // 442 // All LL packets convert to normal loads so that M5 PhysMem does 443 // not lock the blocks. 444 // 445 pkt->convertLlToRead(); 446 } 447 } 448 449 // 450 // Flush requests don't access physical memory 451 // 452 if (pkt->isFlush()) { 453 accessPhysMem = false; 454 } 455 456 DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse); 457 458 if (accessPhysMem) { 459 ruby_port->system->getPhysMem().access(pkt); 460 } else if (needsResponse) { 461 pkt->makeResponse(); 462 } 463 464 // turn packet around to go back to requester if response expected 465 if (needsResponse) { 466 DPRINTF(RubyPort, "Sending packet back over port\n"); 467 // send next cycle 468 schedTimingResp(pkt, curTick() + g_system_ptr->clockPeriod()); 469 } else { 470 delete pkt; 471 } 472 DPRINTF(RubyPort, "Hit callback done!\n"); 473} 474 475AddrRangeList 476RubyPort::M5Port::getAddrRanges() const 477{ 478 // at the moment the assumption is that the master does not care 479 AddrRangeList ranges; 480 return ranges; 481} 482 483bool 484RubyPort::M5Port::isPhysMemAddress(Addr addr) 485{ 486 return ruby_port->system->isMemAddr(addr); 487} 488 489unsigned 490RubyPort::M5Port::deviceBlockSize() const 491{ 492 return (unsigned) RubySystem::getBlockSizeBytes(); 493} 494 495void 496RubyPort::ruby_eviction_callback(const Address& address) 497{ 498 DPRINTF(RubyPort, "Sending invalidations.\n"); 499 // This request is deleted in the stack-allocated packet destructor 500 // when this function exits 501 // TODO: should this really be using funcMasterId? 502 RequestPtr req = 503 new Request(address.getAddress(), 0, 0, Request::funcMasterId); 504 // Use a single packet to signal all snooping ports of the invalidation. 505 // This assumes that snooping ports do NOT modify the packet/request 506 Packet pkt(req, MemCmd::InvalidationReq); 507 for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) { 508 // check if the connected master port is snooping 509 if ((*p)->isSnooping()) { 510 // send as a snoop request 511 (*p)->sendTimingSnoopReq(&pkt); 512 } 513 } 514} 515