RubyPort.cc revision 9090:e4e22240398f
1/*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2009 Advanced Micro Devices, Inc.
15 * Copyright (c) 2011 Mark D. Hill and David A. Wood
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42#include "cpu/testers/rubytest/RubyTester.hh"
43#include "debug/Config.hh"
44#include "debug/Ruby.hh"
45#include "mem/protocol/AccessPermission.hh"
46#include "mem/ruby/slicc_interface/AbstractController.hh"
47#include "mem/ruby/system/RubyPort.hh"
48#include "sim/system.hh"
49
50RubyPort::RubyPort(const Params *p)
51    : MemObject(p), m_version(p->version), m_controller(NULL),
52      m_mandatory_q_ptr(NULL),
53      pio_port(csprintf("%s-pio-port", name()), this),
54      m_usingRubyTester(p->using_ruby_tester), m_request_cnt(0),
55      drainEvent(NULL), ruby_system(p->ruby_system), system(p->system),
56      waitingOnSequencer(false), access_phys_mem(p->access_phys_mem)
57{
58    assert(m_version != -1);
59
60    // create the slave ports based on the number of connected ports
61    for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
62        slave_ports.push_back(new M5Port(csprintf("%s-slave%d", name(), i),
63                                         this, ruby_system, access_phys_mem));
64    }
65
66    // create the master ports based on the number of connected ports
67    for (size_t i = 0; i < p->port_master_connection_count; ++i) {
68        master_ports.push_back(new PioPort(csprintf("%s-master%d", name(), i),
69                                           this));
70    }
71}
72
73void
74RubyPort::init()
75{
76    assert(m_controller != NULL);
77    m_mandatory_q_ptr = m_controller->getMandatoryQueue();
78}
79
80MasterPort &
81RubyPort::getMasterPort(const std::string &if_name, int idx)
82{
83    if (if_name == "pio_port") {
84        return pio_port;
85    }
86
87    // used by the x86 CPUs to connect the interrupt PIO and interrupt slave
88    // port
89    if (if_name != "master") {
90        // pass it along to our super class
91        return MemObject::getMasterPort(if_name, idx);
92    } else {
93        if (idx >= static_cast<int>(master_ports.size())) {
94            panic("RubyPort::getMasterPort: unknown index %d\n", idx);
95        }
96
97        return *master_ports[idx];
98    }
99}
100
101SlavePort &
102RubyPort::getSlavePort(const std::string &if_name, int idx)
103{
104    // used by the CPUs to connect the caches to the interconnect, and
105    // for the x86 case also the interrupt master
106    if (if_name != "slave") {
107        // pass it along to our super class
108        return MemObject::getSlavePort(if_name, idx);
109    } else {
110        if (idx >= static_cast<int>(slave_ports.size())) {
111            panic("RubyPort::getSlavePort: unknown index %d\n", idx);
112        }
113
114        return *slave_ports[idx];
115    }
116}
117
118RubyPort::PioPort::PioPort(const std::string &_name,
119                           RubyPort *_port)
120    : QueuedMasterPort(_name, _port, queue), queue(*_port, *this),
121      ruby_port(_port)
122{
123    DPRINTF(RubyPort, "creating master port on ruby sequencer %s\n", _name);
124}
125
126RubyPort::M5Port::M5Port(const std::string &_name, RubyPort *_port,
127                         RubySystem *_system, bool _access_phys_mem)
128    : QueuedSlavePort(_name, _port, queue), queue(*_port, *this),
129      ruby_port(_port), ruby_system(_system),
130      _onRetryList(false), access_phys_mem(_access_phys_mem)
131{
132    DPRINTF(RubyPort, "creating slave port on ruby sequencer %s\n", _name);
133}
134
135Tick
136RubyPort::M5Port::recvAtomic(PacketPtr pkt)
137{
138    panic("RubyPort::M5Port::recvAtomic() not implemented!\n");
139    return 0;
140}
141
142
143bool
144RubyPort::PioPort::recvTimingResp(PacketPtr pkt)
145{
146    // In FS mode, ruby memory will receive pio responses from devices
147    // and it must forward these responses back to the particular CPU.
148    DPRINTF(RubyPort,  "Pio response for address %#x\n", pkt->getAddr());
149
150    // First we must retrieve the request port from the sender State
151    RubyPort::SenderState *senderState =
152      safe_cast<RubyPort::SenderState *>(pkt->senderState);
153    M5Port *port = senderState->port;
154    assert(port != NULL);
155
156    // pop the sender state from the packet
157    pkt->senderState = senderState->saved;
158    delete senderState;
159
160    port->sendTimingResp(pkt);
161
162    return true;
163}
164
165bool
166RubyPort::M5Port::recvTimingReq(PacketPtr pkt)
167{
168    DPRINTF(RubyPort,
169            "Timing access caught for address %#x\n", pkt->getAddr());
170
171    //dsm: based on SimpleTimingPort::recvTimingReq(pkt);
172
173    // The received packets should only be M5 requests, which should never
174    // get nacked.  There used to be code to hanldle nacks here, but
175    // I'm pretty sure it didn't work correctly with the drain code,
176    // so that would need to be fixed if we ever added it back.
177
178    if (pkt->memInhibitAsserted()) {
179        warn("memInhibitAsserted???");
180        // snooper will supply based on copy of packet
181        // still target's responsibility to delete packet
182        delete pkt;
183        return true;
184    }
185
186    // Save the port in the sender state object to be used later to
187    // route the response
188    pkt->senderState = new SenderState(this, pkt->senderState);
189
190    // Check for pio requests and directly send them to the dedicated
191    // pio port.
192    if (!isPhysMemAddress(pkt->getAddr())) {
193        assert(ruby_port->pio_port.isConnected());
194        DPRINTF(RubyPort,
195                "Request for address 0x%#x is assumed to be a pio request\n",
196                pkt->getAddr());
197
198        return ruby_port->pio_port.sendNextCycle(pkt);
199    }
200
201    assert(Address(pkt->getAddr()).getOffset() + pkt->getSize() <=
202           RubySystem::getBlockSizeBytes());
203
204    // Submit the ruby request
205    RequestStatus requestStatus = ruby_port->makeRequest(pkt);
206
207    // If the request successfully issued then we should return true.
208    // Otherwise, we need to delete the senderStatus we just created and return
209    // false.
210    if (requestStatus == RequestStatus_Issued) {
211        DPRINTF(RubyPort, "Request %#x issued\n", pkt->getAddr());
212        return true;
213    }
214
215    //
216    // Unless one is using the ruby tester, record the stalled M5 port for
217    // later retry when the sequencer becomes free.
218    //
219    if (!ruby_port->m_usingRubyTester) {
220        ruby_port->addToRetryList(this);
221    }
222
223    DPRINTF(RubyPort,
224            "Request for address %#x did not issue because %s\n",
225            pkt->getAddr(), RequestStatus_to_string(requestStatus));
226
227    SenderState* senderState = safe_cast<SenderState*>(pkt->senderState);
228    pkt->senderState = senderState->saved;
229    delete senderState;
230    return false;
231}
232
233bool
234RubyPort::M5Port::doFunctionalRead(PacketPtr pkt)
235{
236    Address address(pkt->getAddr());
237    Address line_address(address);
238    line_address.makeLineAddress();
239
240    AccessPermission access_perm = AccessPermission_NotPresent;
241    int num_controllers = ruby_system->m_abs_cntrl_vec.size();
242
243    DPRINTF(RubyPort, "Functional Read request for %s\n",address);
244
245    unsigned int num_ro = 0;
246    unsigned int num_rw = 0;
247    unsigned int num_busy = 0;
248    unsigned int num_backing_store = 0;
249    unsigned int num_invalid = 0;
250
251    // In this loop we count the number of controllers that have the given
252    // address in read only, read write and busy states.
253    for (int i = 0; i < num_controllers; ++i) {
254        access_perm = ruby_system->m_abs_cntrl_vec[i]->
255                                            getAccessPermission(line_address);
256        if (access_perm == AccessPermission_Read_Only)
257            num_ro++;
258        else if (access_perm == AccessPermission_Read_Write)
259            num_rw++;
260        else if (access_perm == AccessPermission_Busy)
261            num_busy++;
262        else if (access_perm == AccessPermission_Backing_Store)
263            // See RubySlicc_Exports.sm for details, but Backing_Store is meant
264            // to represent blocks in memory *for Broadcast/Snooping protocols*,
265            // where memory has no idea whether it has an exclusive copy of data
266            // or not.
267            num_backing_store++;
268        else if (access_perm == AccessPermission_Invalid ||
269                 access_perm == AccessPermission_NotPresent)
270            num_invalid++;
271    }
272    assert(num_rw <= 1);
273
274    uint8* data = pkt->getPtr<uint8_t>(true);
275    unsigned int size_in_bytes = pkt->getSize();
276    unsigned startByte = address.getAddress() - line_address.getAddress();
277
278    // This if case is meant to capture what happens in a Broadcast/Snoop
279    // protocol where the block does not exist in the cache hierarchy. You
280    // only want to read from the Backing_Store memory if there is no copy in
281    // the cache hierarchy, otherwise you want to try to read the RO or RW
282    // copies existing in the cache hierarchy (covered by the else statement).
283    // The reason is because the Backing_Store memory could easily be stale, if
284    // there are copies floating around the cache hierarchy, so you want to read
285    // it only if it's not in the cache hierarchy at all.
286    if (num_invalid == (num_controllers - 1) &&
287            num_backing_store == 1)
288    {
289        DPRINTF(RubyPort, "only copy in Backing_Store memory, read from it\n");
290        for (int i = 0; i < num_controllers; ++i) {
291            access_perm = ruby_system->m_abs_cntrl_vec[i]
292                                              ->getAccessPermission(line_address);
293            if (access_perm == AccessPermission_Backing_Store) {
294                DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
295                                                 ->getDataBlock(line_address);
296
297                DPRINTF(RubyPort, "reading from %s block %s\n",
298                        ruby_system->m_abs_cntrl_vec[i]->name(), block);
299                for (unsigned i = 0; i < size_in_bytes; ++i) {
300                    data[i] = block.getByte(i + startByte);
301                }
302                return true;
303            }
304        }
305    } else {
306        // In Broadcast/Snoop protocols, this covers if you know the block
307        // exists somewhere in the caching hierarchy, then you want to read any
308        // valid RO or RW block.  In directory protocols, same thing, you want
309        // to read any valid readable copy of the block.
310        DPRINTF(RubyPort, "num_busy = %d, num_ro = %d, num_rw = %d\n",
311                num_busy, num_ro, num_rw);
312        // In this loop, we try to figure which controller has a read only or
313        // a read write copy of the given address. Any valid copy would suffice
314        // for a functional read.
315        for(int i = 0;i < num_controllers;++i) {
316            access_perm = ruby_system->m_abs_cntrl_vec[i]
317                                              ->getAccessPermission(line_address);
318            if(access_perm == AccessPermission_Read_Only ||
319               access_perm == AccessPermission_Read_Write)
320            {
321                DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
322                                                     ->getDataBlock(line_address);
323
324                DPRINTF(RubyPort, "reading from %s block %s\n",
325                        ruby_system->m_abs_cntrl_vec[i]->name(), block);
326                for (unsigned i = 0; i < size_in_bytes; ++i) {
327                    data[i] = block.getByte(i + startByte);
328                }
329                return true;
330            }
331        }
332    }
333    return false;
334}
335
336bool
337RubyPort::M5Port::doFunctionalWrite(PacketPtr pkt)
338{
339    Address addr(pkt->getAddr());
340    Address line_addr = line_address(addr);
341    AccessPermission access_perm = AccessPermission_NotPresent;
342    int num_controllers = ruby_system->m_abs_cntrl_vec.size();
343
344    DPRINTF(RubyPort, "Functional Write request for %s\n",addr);
345
346    unsigned int num_ro = 0;
347    unsigned int num_rw = 0;
348    unsigned int num_busy = 0;
349    unsigned int num_backing_store = 0;
350    unsigned int num_invalid = 0;
351
352    // In this loop we count the number of controllers that have the given
353    // address in read only, read write and busy states.
354    for(int i = 0;i < num_controllers;++i) {
355        access_perm = ruby_system->m_abs_cntrl_vec[i]->
356                                            getAccessPermission(line_addr);
357        if (access_perm == AccessPermission_Read_Only)
358            num_ro++;
359        else if (access_perm == AccessPermission_Read_Write)
360            num_rw++;
361        else if (access_perm == AccessPermission_Busy)
362            num_busy++;
363        else if (access_perm == AccessPermission_Backing_Store)
364            // See RubySlicc_Exports.sm for details, but Backing_Store is meant
365            // to represent blocks in memory *for Broadcast/Snooping protocols*,
366            // where memory has no idea whether it has an exclusive copy of data
367            // or not.
368            num_backing_store++;
369        else if (access_perm == AccessPermission_Invalid ||
370                 access_perm == AccessPermission_NotPresent)
371            num_invalid++;
372    }
373
374    // If the number of read write copies is more than 1, then there is bug in
375    // coherence protocol. Otherwise, if all copies are in stable states, i.e.
376    // num_busy == 0, we update all the copies. If there is at least one copy
377    // in busy state, then we check if there is read write copy. If yes, then
378    // also we let the access go through. Or, if there is no copy in the cache
379    // hierarchy at all, we still want to do the write to the memory
380    // (Backing_Store) instead of failing.
381
382    DPRINTF(RubyPort, "num_busy = %d, num_ro = %d, num_rw = %d\n",
383            num_busy, num_ro, num_rw);
384    assert(num_rw <= 1);
385
386    uint8* data = pkt->getPtr<uint8_t>(true);
387    unsigned int size_in_bytes = pkt->getSize();
388    unsigned startByte = addr.getAddress() - line_addr.getAddress();
389
390    if ((num_busy == 0 && num_ro > 0) || num_rw == 1 ||
391            (num_invalid == (num_controllers - 1) && num_backing_store == 1))
392    {
393        for(int i = 0; i < num_controllers;++i) {
394            access_perm = ruby_system->m_abs_cntrl_vec[i]->
395                                                getAccessPermission(line_addr);
396            if(access_perm == AccessPermission_Read_Only ||
397               access_perm == AccessPermission_Read_Write||
398               access_perm == AccessPermission_Maybe_Stale ||
399               access_perm == AccessPermission_Backing_Store)
400            {
401                DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
402                                                      ->getDataBlock(line_addr);
403
404                DPRINTF(RubyPort, "%s\n",block);
405                for (unsigned i = 0; i < size_in_bytes; ++i) {
406                  block.setByte(i + startByte, data[i]);
407                }
408                DPRINTF(RubyPort, "%s\n",block);
409            }
410        }
411        return true;
412    }
413    return false;
414}
415
416void
417RubyPort::M5Port::recvFunctional(PacketPtr pkt)
418{
419    DPRINTF(RubyPort, "Functional access caught for address %#x\n",
420                                                           pkt->getAddr());
421
422    // Check for pio requests and directly send them to the dedicated
423    // pio port.
424    if (!isPhysMemAddress(pkt->getAddr())) {
425        assert(ruby_port->pio_port.isConnected());
426        DPRINTF(RubyPort, "Request for address 0x%#x is a pio request\n",
427                                                           pkt->getAddr());
428        panic("RubyPort::PioPort::recvFunctional() not implemented!\n");
429    }
430
431    assert(pkt->getAddr() + pkt->getSize() <=
432                line_address(Address(pkt->getAddr())).getAddress() +
433                RubySystem::getBlockSizeBytes());
434
435    bool accessSucceeded = false;
436    bool needsResponse = pkt->needsResponse();
437
438    // Do the functional access on ruby memory
439    if (pkt->isRead()) {
440        accessSucceeded = doFunctionalRead(pkt);
441    } else if (pkt->isWrite()) {
442        accessSucceeded = doFunctionalWrite(pkt);
443    } else {
444        panic("RubyPort: unsupported functional command %s\n",
445              pkt->cmdString());
446    }
447
448    // Unless the requester explicitly said otherwise, generate an error if
449    // the functional request failed
450    if (!accessSucceeded && !pkt->suppressFuncError()) {
451        fatal("Ruby functional %s failed for address %#x\n",
452              pkt->isWrite() ? "write" : "read", pkt->getAddr());
453    }
454
455    if (access_phys_mem) {
456        // The attached physmem contains the official version of data.
457        // The following command performs the real functional access.
458        // This line should be removed once Ruby supplies the official version
459        // of data.
460        ruby_port->system->getPhysMem().functionalAccess(pkt);
461    }
462
463    // turn packet around to go back to requester if response expected
464    if (needsResponse) {
465        pkt->setFunctionalResponseStatus(accessSucceeded);
466
467        // @todo There should not be a reverse call since the response is
468        // communicated through the packet pointer
469        // DPRINTF(RubyPort, "Sending packet back over port\n");
470        // sendFunctional(pkt);
471    }
472    DPRINTF(RubyPort, "Functional access %s!\n",
473            accessSucceeded ? "successful":"failed");
474}
475
476void
477RubyPort::ruby_hit_callback(PacketPtr pkt)
478{
479    // Retrieve the request port from the sender State
480    RubyPort::SenderState *senderState =
481        safe_cast<RubyPort::SenderState *>(pkt->senderState);
482    M5Port *port = senderState->port;
483    assert(port != NULL);
484
485    // pop the sender state from the packet
486    pkt->senderState = senderState->saved;
487    delete senderState;
488
489    port->hitCallback(pkt);
490
491    //
492    // If we had to stall the M5Ports, wake them up because the sequencer
493    // likely has free resources now.
494    //
495    if (waitingOnSequencer) {
496        //
497        // Record the current list of ports to retry on a temporary list before
498        // calling sendRetry on those ports.  sendRetry will cause an
499        // immediate retry, which may result in the ports being put back on the
500        // list. Therefore we want to clear the retryList before calling
501        // sendRetry.
502        //
503        std::list<M5Port*> curRetryList(retryList);
504
505        retryList.clear();
506        waitingOnSequencer = false;
507
508        for (std::list<M5Port*>::iterator i = curRetryList.begin();
509             i != curRetryList.end(); ++i) {
510            DPRINTF(RubyPort,
511                    "Sequencer may now be free.  SendRetry to port %s\n",
512                    (*i)->name());
513            (*i)->onRetryList(false);
514            (*i)->sendRetry();
515        }
516    }
517
518    testDrainComplete();
519}
520
521void
522RubyPort::testDrainComplete()
523{
524    //If we weren't able to drain before, we might be able to now.
525    if (drainEvent != NULL) {
526        unsigned int drainCount = getDrainCount(drainEvent);
527        DPRINTF(Config, "Drain count: %u\n", drainCount);
528        if (drainCount == 0) {
529            drainEvent->process();
530            // Clear the drain event once we're done with it.
531            drainEvent = NULL;
532        }
533    }
534}
535
536unsigned int
537RubyPort::getDrainCount(Event *de)
538{
539    int count = 0;
540    //
541    // If the sequencer is not empty, then requests need to drain.
542    // The outstandingCount is the number of requests outstanding and thus the
543    // number of times M5's timing port will process the drain event.
544    //
545    count += outstandingCount();
546
547    DPRINTF(Config, "outstanding count %d\n", outstandingCount());
548
549    // To simplify the draining process, the sequencer's deadlock detection
550    // event should have been descheduled.
551    assert(isDeadlockEventScheduled() == false);
552
553    if (pio_port.isConnected()) {
554        count += pio_port.drain(de);
555        DPRINTF(Config, "count after pio check %d\n", count);
556    }
557
558    for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
559        count += (*p)->drain(de);
560        DPRINTF(Config, "count after slave port check %d\n", count);
561    }
562
563    for (std::vector<PioPort*>::iterator p = master_ports.begin();
564         p != master_ports.end(); ++p) {
565        count += (*p)->drain(de);
566        DPRINTF(Config, "count after master port check %d\n", count);
567    }
568
569    DPRINTF(Config, "final count %d\n", count);
570
571    return count;
572}
573
574unsigned int
575RubyPort::drain(Event *de)
576{
577    if (isDeadlockEventScheduled()) {
578        descheduleDeadlockEvent();
579    }
580
581    int count = getDrainCount(de);
582
583    // Set status
584    if (count != 0) {
585        drainEvent = de;
586
587        changeState(SimObject::Draining);
588        return count;
589    }
590
591    changeState(SimObject::Drained);
592    return 0;
593}
594
595void
596RubyPort::M5Port::hitCallback(PacketPtr pkt)
597{
598    bool needsResponse = pkt->needsResponse();
599
600    //
601    // Unless specified at configuraiton, all responses except failed SC
602    // and Flush operations access M5 physical memory.
603    //
604    bool accessPhysMem = access_phys_mem;
605
606    if (pkt->isLLSC()) {
607        if (pkt->isWrite()) {
608            if (pkt->req->getExtraData() != 0) {
609                //
610                // Successful SC packets convert to normal writes
611                //
612                pkt->convertScToWrite();
613            } else {
614                //
615                // Failed SC packets don't access physical memory and thus
616                // the RubyPort itself must convert it to a response.
617                //
618                accessPhysMem = false;
619            }
620        } else {
621            //
622            // All LL packets convert to normal loads so that M5 PhysMem does
623            // not lock the blocks.
624            //
625            pkt->convertLlToRead();
626        }
627    }
628
629    //
630    // Flush requests don't access physical memory
631    //
632    if (pkt->isFlush()) {
633        accessPhysMem = false;
634    }
635
636    DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);
637
638    if (accessPhysMem) {
639        ruby_port->system->getPhysMem().access(pkt);
640    } else if (needsResponse) {
641        pkt->makeResponse();
642    }
643
644    // turn packet around to go back to requester if response expected
645    if (needsResponse) {
646        DPRINTF(RubyPort, "Sending packet back over port\n");
647        sendNextCycle(pkt);
648    } else {
649        delete pkt;
650    }
651    DPRINTF(RubyPort, "Hit callback done!\n");
652}
653
654bool
655RubyPort::M5Port::sendNextCycle(PacketPtr pkt, bool send_as_snoop)
656{
657    //minimum latency, must be > 0
658    queue.schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()),
659                          send_as_snoop);
660    return true;
661}
662
663bool
664RubyPort::PioPort::sendNextCycle(PacketPtr pkt)
665{
666    //minimum latency, must be > 0
667    queue.schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()));
668    return true;
669}
670
671AddrRangeList
672RubyPort::M5Port::getAddrRanges() const
673{
674    // at the moment the assumption is that the master does not care
675    AddrRangeList ranges;
676    return ranges;
677}
678
679bool
680RubyPort::M5Port::isPhysMemAddress(Addr addr)
681{
682    return ruby_port->system->isMemAddr(addr);
683}
684
685unsigned
686RubyPort::M5Port::deviceBlockSize() const
687{
688    return (unsigned) RubySystem::getBlockSizeBytes();
689}
690
691void
692RubyPort::ruby_eviction_callback(const Address& address)
693{
694    DPRINTF(RubyPort, "Sending invalidations.\n");
695    // should this really be using funcMasterId?
696    Request req(address.getAddress(), 0, 0, Request::funcMasterId);
697    for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
698        // check if the connected master port is snooping
699        if ((*p)->isSnooping()) {
700            Packet *pkt = new Packet(&req, MemCmd::InvalidationReq);
701            // send as a snoop request
702            (*p)->sendTimingSnoopReq(pkt);
703        }
704    }
705}
706