RubyPort.cc revision 9090:e4e22240398f
1/* 2 * Copyright (c) 2012 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2009 Advanced Micro Devices, Inc. 15 * Copyright (c) 2011 Mark D. Hill and David A. Wood 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 */ 41 42#include "cpu/testers/rubytest/RubyTester.hh" 43#include "debug/Config.hh" 44#include "debug/Ruby.hh" 45#include "mem/protocol/AccessPermission.hh" 46#include "mem/ruby/slicc_interface/AbstractController.hh" 47#include "mem/ruby/system/RubyPort.hh" 48#include "sim/system.hh" 49 50RubyPort::RubyPort(const Params *p) 51 : MemObject(p), m_version(p->version), m_controller(NULL), 52 m_mandatory_q_ptr(NULL), 53 pio_port(csprintf("%s-pio-port", name()), this), 54 m_usingRubyTester(p->using_ruby_tester), m_request_cnt(0), 55 drainEvent(NULL), ruby_system(p->ruby_system), system(p->system), 56 waitingOnSequencer(false), access_phys_mem(p->access_phys_mem) 57{ 58 assert(m_version != -1); 59 60 // create the slave ports based on the number of connected ports 61 for (size_t i = 0; i < p->port_slave_connection_count; ++i) { 62 slave_ports.push_back(new M5Port(csprintf("%s-slave%d", name(), i), 63 this, ruby_system, access_phys_mem)); 64 } 65 66 // create the master ports based on the number of connected ports 67 for (size_t i = 0; i < p->port_master_connection_count; ++i) { 68 master_ports.push_back(new PioPort(csprintf("%s-master%d", name(), i), 69 this)); 70 } 71} 72 73void 74RubyPort::init() 75{ 76 assert(m_controller != NULL); 77 m_mandatory_q_ptr = m_controller->getMandatoryQueue(); 78} 79 80MasterPort & 81RubyPort::getMasterPort(const std::string &if_name, int idx) 82{ 83 if (if_name == "pio_port") { 84 return pio_port; 85 } 86 87 // used by the x86 CPUs to connect the interrupt PIO and interrupt slave 88 // port 89 if (if_name != "master") { 90 // pass it along to our super class 91 return MemObject::getMasterPort(if_name, idx); 92 } else { 93 if (idx >= static_cast<int>(master_ports.size())) { 94 panic("RubyPort::getMasterPort: unknown index %d\n", idx); 95 } 96 97 return *master_ports[idx]; 98 } 99} 100 101SlavePort & 102RubyPort::getSlavePort(const std::string &if_name, int idx) 103{ 104 // used by the CPUs to connect the caches to the interconnect, and 105 // for the x86 case also the interrupt master 106 if (if_name != "slave") { 107 // pass it along to our super class 108 return MemObject::getSlavePort(if_name, idx); 109 } else { 110 if (idx >= static_cast<int>(slave_ports.size())) { 111 panic("RubyPort::getSlavePort: unknown index %d\n", idx); 112 } 113 114 return *slave_ports[idx]; 115 } 116} 117 118RubyPort::PioPort::PioPort(const std::string &_name, 119 RubyPort *_port) 120 : QueuedMasterPort(_name, _port, queue), queue(*_port, *this), 121 ruby_port(_port) 122{ 123 DPRINTF(RubyPort, "creating master port on ruby sequencer %s\n", _name); 124} 125 126RubyPort::M5Port::M5Port(const std::string &_name, RubyPort *_port, 127 RubySystem *_system, bool _access_phys_mem) 128 : QueuedSlavePort(_name, _port, queue), queue(*_port, *this), 129 ruby_port(_port), ruby_system(_system), 130 _onRetryList(false), access_phys_mem(_access_phys_mem) 131{ 132 DPRINTF(RubyPort, "creating slave port on ruby sequencer %s\n", _name); 133} 134 135Tick 136RubyPort::M5Port::recvAtomic(PacketPtr pkt) 137{ 138 panic("RubyPort::M5Port::recvAtomic() not implemented!\n"); 139 return 0; 140} 141 142 143bool 144RubyPort::PioPort::recvTimingResp(PacketPtr pkt) 145{ 146 // In FS mode, ruby memory will receive pio responses from devices 147 // and it must forward these responses back to the particular CPU. 148 DPRINTF(RubyPort, "Pio response for address %#x\n", pkt->getAddr()); 149 150 // First we must retrieve the request port from the sender State 151 RubyPort::SenderState *senderState = 152 safe_cast<RubyPort::SenderState *>(pkt->senderState); 153 M5Port *port = senderState->port; 154 assert(port != NULL); 155 156 // pop the sender state from the packet 157 pkt->senderState = senderState->saved; 158 delete senderState; 159 160 port->sendTimingResp(pkt); 161 162 return true; 163} 164 165bool 166RubyPort::M5Port::recvTimingReq(PacketPtr pkt) 167{ 168 DPRINTF(RubyPort, 169 "Timing access caught for address %#x\n", pkt->getAddr()); 170 171 //dsm: based on SimpleTimingPort::recvTimingReq(pkt); 172 173 // The received packets should only be M5 requests, which should never 174 // get nacked. There used to be code to hanldle nacks here, but 175 // I'm pretty sure it didn't work correctly with the drain code, 176 // so that would need to be fixed if we ever added it back. 177 178 if (pkt->memInhibitAsserted()) { 179 warn("memInhibitAsserted???"); 180 // snooper will supply based on copy of packet 181 // still target's responsibility to delete packet 182 delete pkt; 183 return true; 184 } 185 186 // Save the port in the sender state object to be used later to 187 // route the response 188 pkt->senderState = new SenderState(this, pkt->senderState); 189 190 // Check for pio requests and directly send them to the dedicated 191 // pio port. 192 if (!isPhysMemAddress(pkt->getAddr())) { 193 assert(ruby_port->pio_port.isConnected()); 194 DPRINTF(RubyPort, 195 "Request for address 0x%#x is assumed to be a pio request\n", 196 pkt->getAddr()); 197 198 return ruby_port->pio_port.sendNextCycle(pkt); 199 } 200 201 assert(Address(pkt->getAddr()).getOffset() + pkt->getSize() <= 202 RubySystem::getBlockSizeBytes()); 203 204 // Submit the ruby request 205 RequestStatus requestStatus = ruby_port->makeRequest(pkt); 206 207 // If the request successfully issued then we should return true. 208 // Otherwise, we need to delete the senderStatus we just created and return 209 // false. 210 if (requestStatus == RequestStatus_Issued) { 211 DPRINTF(RubyPort, "Request %#x issued\n", pkt->getAddr()); 212 return true; 213 } 214 215 // 216 // Unless one is using the ruby tester, record the stalled M5 port for 217 // later retry when the sequencer becomes free. 218 // 219 if (!ruby_port->m_usingRubyTester) { 220 ruby_port->addToRetryList(this); 221 } 222 223 DPRINTF(RubyPort, 224 "Request for address %#x did not issue because %s\n", 225 pkt->getAddr(), RequestStatus_to_string(requestStatus)); 226 227 SenderState* senderState = safe_cast<SenderState*>(pkt->senderState); 228 pkt->senderState = senderState->saved; 229 delete senderState; 230 return false; 231} 232 233bool 234RubyPort::M5Port::doFunctionalRead(PacketPtr pkt) 235{ 236 Address address(pkt->getAddr()); 237 Address line_address(address); 238 line_address.makeLineAddress(); 239 240 AccessPermission access_perm = AccessPermission_NotPresent; 241 int num_controllers = ruby_system->m_abs_cntrl_vec.size(); 242 243 DPRINTF(RubyPort, "Functional Read request for %s\n",address); 244 245 unsigned int num_ro = 0; 246 unsigned int num_rw = 0; 247 unsigned int num_busy = 0; 248 unsigned int num_backing_store = 0; 249 unsigned int num_invalid = 0; 250 251 // In this loop we count the number of controllers that have the given 252 // address in read only, read write and busy states. 253 for (int i = 0; i < num_controllers; ++i) { 254 access_perm = ruby_system->m_abs_cntrl_vec[i]-> 255 getAccessPermission(line_address); 256 if (access_perm == AccessPermission_Read_Only) 257 num_ro++; 258 else if (access_perm == AccessPermission_Read_Write) 259 num_rw++; 260 else if (access_perm == AccessPermission_Busy) 261 num_busy++; 262 else if (access_perm == AccessPermission_Backing_Store) 263 // See RubySlicc_Exports.sm for details, but Backing_Store is meant 264 // to represent blocks in memory *for Broadcast/Snooping protocols*, 265 // where memory has no idea whether it has an exclusive copy of data 266 // or not. 267 num_backing_store++; 268 else if (access_perm == AccessPermission_Invalid || 269 access_perm == AccessPermission_NotPresent) 270 num_invalid++; 271 } 272 assert(num_rw <= 1); 273 274 uint8* data = pkt->getPtr<uint8_t>(true); 275 unsigned int size_in_bytes = pkt->getSize(); 276 unsigned startByte = address.getAddress() - line_address.getAddress(); 277 278 // This if case is meant to capture what happens in a Broadcast/Snoop 279 // protocol where the block does not exist in the cache hierarchy. You 280 // only want to read from the Backing_Store memory if there is no copy in 281 // the cache hierarchy, otherwise you want to try to read the RO or RW 282 // copies existing in the cache hierarchy (covered by the else statement). 283 // The reason is because the Backing_Store memory could easily be stale, if 284 // there are copies floating around the cache hierarchy, so you want to read 285 // it only if it's not in the cache hierarchy at all. 286 if (num_invalid == (num_controllers - 1) && 287 num_backing_store == 1) 288 { 289 DPRINTF(RubyPort, "only copy in Backing_Store memory, read from it\n"); 290 for (int i = 0; i < num_controllers; ++i) { 291 access_perm = ruby_system->m_abs_cntrl_vec[i] 292 ->getAccessPermission(line_address); 293 if (access_perm == AccessPermission_Backing_Store) { 294 DataBlock& block = ruby_system->m_abs_cntrl_vec[i] 295 ->getDataBlock(line_address); 296 297 DPRINTF(RubyPort, "reading from %s block %s\n", 298 ruby_system->m_abs_cntrl_vec[i]->name(), block); 299 for (unsigned i = 0; i < size_in_bytes; ++i) { 300 data[i] = block.getByte(i + startByte); 301 } 302 return true; 303 } 304 } 305 } else { 306 // In Broadcast/Snoop protocols, this covers if you know the block 307 // exists somewhere in the caching hierarchy, then you want to read any 308 // valid RO or RW block. In directory protocols, same thing, you want 309 // to read any valid readable copy of the block. 310 DPRINTF(RubyPort, "num_busy = %d, num_ro = %d, num_rw = %d\n", 311 num_busy, num_ro, num_rw); 312 // In this loop, we try to figure which controller has a read only or 313 // a read write copy of the given address. Any valid copy would suffice 314 // for a functional read. 315 for(int i = 0;i < num_controllers;++i) { 316 access_perm = ruby_system->m_abs_cntrl_vec[i] 317 ->getAccessPermission(line_address); 318 if(access_perm == AccessPermission_Read_Only || 319 access_perm == AccessPermission_Read_Write) 320 { 321 DataBlock& block = ruby_system->m_abs_cntrl_vec[i] 322 ->getDataBlock(line_address); 323 324 DPRINTF(RubyPort, "reading from %s block %s\n", 325 ruby_system->m_abs_cntrl_vec[i]->name(), block); 326 for (unsigned i = 0; i < size_in_bytes; ++i) { 327 data[i] = block.getByte(i + startByte); 328 } 329 return true; 330 } 331 } 332 } 333 return false; 334} 335 336bool 337RubyPort::M5Port::doFunctionalWrite(PacketPtr pkt) 338{ 339 Address addr(pkt->getAddr()); 340 Address line_addr = line_address(addr); 341 AccessPermission access_perm = AccessPermission_NotPresent; 342 int num_controllers = ruby_system->m_abs_cntrl_vec.size(); 343 344 DPRINTF(RubyPort, "Functional Write request for %s\n",addr); 345 346 unsigned int num_ro = 0; 347 unsigned int num_rw = 0; 348 unsigned int num_busy = 0; 349 unsigned int num_backing_store = 0; 350 unsigned int num_invalid = 0; 351 352 // In this loop we count the number of controllers that have the given 353 // address in read only, read write and busy states. 354 for(int i = 0;i < num_controllers;++i) { 355 access_perm = ruby_system->m_abs_cntrl_vec[i]-> 356 getAccessPermission(line_addr); 357 if (access_perm == AccessPermission_Read_Only) 358 num_ro++; 359 else if (access_perm == AccessPermission_Read_Write) 360 num_rw++; 361 else if (access_perm == AccessPermission_Busy) 362 num_busy++; 363 else if (access_perm == AccessPermission_Backing_Store) 364 // See RubySlicc_Exports.sm for details, but Backing_Store is meant 365 // to represent blocks in memory *for Broadcast/Snooping protocols*, 366 // where memory has no idea whether it has an exclusive copy of data 367 // or not. 368 num_backing_store++; 369 else if (access_perm == AccessPermission_Invalid || 370 access_perm == AccessPermission_NotPresent) 371 num_invalid++; 372 } 373 374 // If the number of read write copies is more than 1, then there is bug in 375 // coherence protocol. Otherwise, if all copies are in stable states, i.e. 376 // num_busy == 0, we update all the copies. If there is at least one copy 377 // in busy state, then we check if there is read write copy. If yes, then 378 // also we let the access go through. Or, if there is no copy in the cache 379 // hierarchy at all, we still want to do the write to the memory 380 // (Backing_Store) instead of failing. 381 382 DPRINTF(RubyPort, "num_busy = %d, num_ro = %d, num_rw = %d\n", 383 num_busy, num_ro, num_rw); 384 assert(num_rw <= 1); 385 386 uint8* data = pkt->getPtr<uint8_t>(true); 387 unsigned int size_in_bytes = pkt->getSize(); 388 unsigned startByte = addr.getAddress() - line_addr.getAddress(); 389 390 if ((num_busy == 0 && num_ro > 0) || num_rw == 1 || 391 (num_invalid == (num_controllers - 1) && num_backing_store == 1)) 392 { 393 for(int i = 0; i < num_controllers;++i) { 394 access_perm = ruby_system->m_abs_cntrl_vec[i]-> 395 getAccessPermission(line_addr); 396 if(access_perm == AccessPermission_Read_Only || 397 access_perm == AccessPermission_Read_Write|| 398 access_perm == AccessPermission_Maybe_Stale || 399 access_perm == AccessPermission_Backing_Store) 400 { 401 DataBlock& block = ruby_system->m_abs_cntrl_vec[i] 402 ->getDataBlock(line_addr); 403 404 DPRINTF(RubyPort, "%s\n",block); 405 for (unsigned i = 0; i < size_in_bytes; ++i) { 406 block.setByte(i + startByte, data[i]); 407 } 408 DPRINTF(RubyPort, "%s\n",block); 409 } 410 } 411 return true; 412 } 413 return false; 414} 415 416void 417RubyPort::M5Port::recvFunctional(PacketPtr pkt) 418{ 419 DPRINTF(RubyPort, "Functional access caught for address %#x\n", 420 pkt->getAddr()); 421 422 // Check for pio requests and directly send them to the dedicated 423 // pio port. 424 if (!isPhysMemAddress(pkt->getAddr())) { 425 assert(ruby_port->pio_port.isConnected()); 426 DPRINTF(RubyPort, "Request for address 0x%#x is a pio request\n", 427 pkt->getAddr()); 428 panic("RubyPort::PioPort::recvFunctional() not implemented!\n"); 429 } 430 431 assert(pkt->getAddr() + pkt->getSize() <= 432 line_address(Address(pkt->getAddr())).getAddress() + 433 RubySystem::getBlockSizeBytes()); 434 435 bool accessSucceeded = false; 436 bool needsResponse = pkt->needsResponse(); 437 438 // Do the functional access on ruby memory 439 if (pkt->isRead()) { 440 accessSucceeded = doFunctionalRead(pkt); 441 } else if (pkt->isWrite()) { 442 accessSucceeded = doFunctionalWrite(pkt); 443 } else { 444 panic("RubyPort: unsupported functional command %s\n", 445 pkt->cmdString()); 446 } 447 448 // Unless the requester explicitly said otherwise, generate an error if 449 // the functional request failed 450 if (!accessSucceeded && !pkt->suppressFuncError()) { 451 fatal("Ruby functional %s failed for address %#x\n", 452 pkt->isWrite() ? "write" : "read", pkt->getAddr()); 453 } 454 455 if (access_phys_mem) { 456 // The attached physmem contains the official version of data. 457 // The following command performs the real functional access. 458 // This line should be removed once Ruby supplies the official version 459 // of data. 460 ruby_port->system->getPhysMem().functionalAccess(pkt); 461 } 462 463 // turn packet around to go back to requester if response expected 464 if (needsResponse) { 465 pkt->setFunctionalResponseStatus(accessSucceeded); 466 467 // @todo There should not be a reverse call since the response is 468 // communicated through the packet pointer 469 // DPRINTF(RubyPort, "Sending packet back over port\n"); 470 // sendFunctional(pkt); 471 } 472 DPRINTF(RubyPort, "Functional access %s!\n", 473 accessSucceeded ? "successful":"failed"); 474} 475 476void 477RubyPort::ruby_hit_callback(PacketPtr pkt) 478{ 479 // Retrieve the request port from the sender State 480 RubyPort::SenderState *senderState = 481 safe_cast<RubyPort::SenderState *>(pkt->senderState); 482 M5Port *port = senderState->port; 483 assert(port != NULL); 484 485 // pop the sender state from the packet 486 pkt->senderState = senderState->saved; 487 delete senderState; 488 489 port->hitCallback(pkt); 490 491 // 492 // If we had to stall the M5Ports, wake them up because the sequencer 493 // likely has free resources now. 494 // 495 if (waitingOnSequencer) { 496 // 497 // Record the current list of ports to retry on a temporary list before 498 // calling sendRetry on those ports. sendRetry will cause an 499 // immediate retry, which may result in the ports being put back on the 500 // list. Therefore we want to clear the retryList before calling 501 // sendRetry. 502 // 503 std::list<M5Port*> curRetryList(retryList); 504 505 retryList.clear(); 506 waitingOnSequencer = false; 507 508 for (std::list<M5Port*>::iterator i = curRetryList.begin(); 509 i != curRetryList.end(); ++i) { 510 DPRINTF(RubyPort, 511 "Sequencer may now be free. SendRetry to port %s\n", 512 (*i)->name()); 513 (*i)->onRetryList(false); 514 (*i)->sendRetry(); 515 } 516 } 517 518 testDrainComplete(); 519} 520 521void 522RubyPort::testDrainComplete() 523{ 524 //If we weren't able to drain before, we might be able to now. 525 if (drainEvent != NULL) { 526 unsigned int drainCount = getDrainCount(drainEvent); 527 DPRINTF(Config, "Drain count: %u\n", drainCount); 528 if (drainCount == 0) { 529 drainEvent->process(); 530 // Clear the drain event once we're done with it. 531 drainEvent = NULL; 532 } 533 } 534} 535 536unsigned int 537RubyPort::getDrainCount(Event *de) 538{ 539 int count = 0; 540 // 541 // If the sequencer is not empty, then requests need to drain. 542 // The outstandingCount is the number of requests outstanding and thus the 543 // number of times M5's timing port will process the drain event. 544 // 545 count += outstandingCount(); 546 547 DPRINTF(Config, "outstanding count %d\n", outstandingCount()); 548 549 // To simplify the draining process, the sequencer's deadlock detection 550 // event should have been descheduled. 551 assert(isDeadlockEventScheduled() == false); 552 553 if (pio_port.isConnected()) { 554 count += pio_port.drain(de); 555 DPRINTF(Config, "count after pio check %d\n", count); 556 } 557 558 for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) { 559 count += (*p)->drain(de); 560 DPRINTF(Config, "count after slave port check %d\n", count); 561 } 562 563 for (std::vector<PioPort*>::iterator p = master_ports.begin(); 564 p != master_ports.end(); ++p) { 565 count += (*p)->drain(de); 566 DPRINTF(Config, "count after master port check %d\n", count); 567 } 568 569 DPRINTF(Config, "final count %d\n", count); 570 571 return count; 572} 573 574unsigned int 575RubyPort::drain(Event *de) 576{ 577 if (isDeadlockEventScheduled()) { 578 descheduleDeadlockEvent(); 579 } 580 581 int count = getDrainCount(de); 582 583 // Set status 584 if (count != 0) { 585 drainEvent = de; 586 587 changeState(SimObject::Draining); 588 return count; 589 } 590 591 changeState(SimObject::Drained); 592 return 0; 593} 594 595void 596RubyPort::M5Port::hitCallback(PacketPtr pkt) 597{ 598 bool needsResponse = pkt->needsResponse(); 599 600 // 601 // Unless specified at configuraiton, all responses except failed SC 602 // and Flush operations access M5 physical memory. 603 // 604 bool accessPhysMem = access_phys_mem; 605 606 if (pkt->isLLSC()) { 607 if (pkt->isWrite()) { 608 if (pkt->req->getExtraData() != 0) { 609 // 610 // Successful SC packets convert to normal writes 611 // 612 pkt->convertScToWrite(); 613 } else { 614 // 615 // Failed SC packets don't access physical memory and thus 616 // the RubyPort itself must convert it to a response. 617 // 618 accessPhysMem = false; 619 } 620 } else { 621 // 622 // All LL packets convert to normal loads so that M5 PhysMem does 623 // not lock the blocks. 624 // 625 pkt->convertLlToRead(); 626 } 627 } 628 629 // 630 // Flush requests don't access physical memory 631 // 632 if (pkt->isFlush()) { 633 accessPhysMem = false; 634 } 635 636 DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse); 637 638 if (accessPhysMem) { 639 ruby_port->system->getPhysMem().access(pkt); 640 } else if (needsResponse) { 641 pkt->makeResponse(); 642 } 643 644 // turn packet around to go back to requester if response expected 645 if (needsResponse) { 646 DPRINTF(RubyPort, "Sending packet back over port\n"); 647 sendNextCycle(pkt); 648 } else { 649 delete pkt; 650 } 651 DPRINTF(RubyPort, "Hit callback done!\n"); 652} 653 654bool 655RubyPort::M5Port::sendNextCycle(PacketPtr pkt, bool send_as_snoop) 656{ 657 //minimum latency, must be > 0 658 queue.schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()), 659 send_as_snoop); 660 return true; 661} 662 663bool 664RubyPort::PioPort::sendNextCycle(PacketPtr pkt) 665{ 666 //minimum latency, must be > 0 667 queue.schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock())); 668 return true; 669} 670 671AddrRangeList 672RubyPort::M5Port::getAddrRanges() const 673{ 674 // at the moment the assumption is that the master does not care 675 AddrRangeList ranges; 676 return ranges; 677} 678 679bool 680RubyPort::M5Port::isPhysMemAddress(Addr addr) 681{ 682 return ruby_port->system->isMemAddr(addr); 683} 684 685unsigned 686RubyPort::M5Port::deviceBlockSize() const 687{ 688 return (unsigned) RubySystem::getBlockSizeBytes(); 689} 690 691void 692RubyPort::ruby_eviction_callback(const Address& address) 693{ 694 DPRINTF(RubyPort, "Sending invalidations.\n"); 695 // should this really be using funcMasterId? 696 Request req(address.getAddress(), 0, 0, Request::funcMasterId); 697 for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) { 698 // check if the connected master port is snooping 699 if ((*p)->isSnooping()) { 700 Packet *pkt = new Packet(&req, MemCmd::InvalidationReq); 701 // send as a snoop request 702 (*p)->sendTimingSnoopReq(pkt); 703 } 704 } 705} 706