RubyPort.cc revision 7910:8a92b39be50e
1/*
2 * Copyright (c) 2009 Advanced Micro Devices, Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include "config/the_isa.hh"
30#if THE_ISA == X86_ISA
31#include "arch/x86/insts/microldstop.hh"
32#endif // X86_ISA
33#include "cpu/testers/rubytest/RubyTester.hh"
34#include "mem/physical.hh"
35#include "mem/ruby/slicc_interface/AbstractController.hh"
36#include "mem/ruby/system/RubyPort.hh"
37
38RubyPort::RubyPort(const Params *p)
39    : MemObject(p)
40{
41    m_version = p->version;
42    assert(m_version != -1);
43
44    physmem = p->physmem;
45
46    m_controller = NULL;
47    m_mandatory_q_ptr = NULL;
48
49    m_request_cnt = 0;
50    pio_port = NULL;
51    physMemPort = NULL;
52
53    m_usingRubyTester = p->using_ruby_tester;
54}
55
56void
57RubyPort::init()
58{
59    assert(m_controller != NULL);
60    m_mandatory_q_ptr = m_controller->getMandatoryQueue();
61}
62
63Port *
64RubyPort::getPort(const std::string &if_name, int idx)
65{
66    if (if_name == "port") {
67        return new M5Port(csprintf("%s-port%d", name(), idx), this);
68    }
69
70    if (if_name == "pio_port") {
71        // ensure there is only one pio port
72        assert(pio_port == NULL);
73
74        pio_port = new PioPort(csprintf("%s-pio-port%d", name(), idx), this);
75
76        return pio_port;
77    }
78
79    if (if_name == "physMemPort") {
80        // RubyPort should only have one port to physical memory
81        assert (physMemPort == NULL);
82
83        physMemPort = new M5Port(csprintf("%s-physMemPort", name()), this);
84
85        return physMemPort;
86    }
87
88    if (if_name == "functional") {
89        // Calls for the functional port only want to access
90        // functional memory.  Therefore, directly pass these calls
91        // ports to physmem.
92        assert(physmem != NULL);
93        return physmem->getPort(if_name, idx);
94    }
95
96    return NULL;
97}
98
99RubyPort::PioPort::PioPort(const std::string &_name,
100                           RubyPort *_port)
101    : SimpleTimingPort(_name, _port)
102{
103    DPRINTF(Ruby, "creating port to ruby sequencer to cpu %s\n", _name);
104    ruby_port = _port;
105}
106
107RubyPort::M5Port::M5Port(const std::string &_name,
108                         RubyPort *_port)
109    : SimpleTimingPort(_name, _port)
110{
111    DPRINTF(Ruby, "creating port from ruby sequcner to cpu %s\n", _name);
112    ruby_port = _port;
113    _onRetryList = false;
114}
115
116Tick
117RubyPort::PioPort::recvAtomic(PacketPtr pkt)
118{
119    panic("RubyPort::PioPort::recvAtomic() not implemented!\n");
120    return 0;
121}
122
123Tick
124RubyPort::M5Port::recvAtomic(PacketPtr pkt)
125{
126    panic("RubyPort::M5Port::recvAtomic() not implemented!\n");
127    return 0;
128}
129
130
131bool
132RubyPort::PioPort::recvTiming(PacketPtr pkt)
133{
134    // In FS mode, ruby memory will receive pio responses from devices
135    // and it must forward these responses back to the particular CPU.
136    DPRINTF(MemoryAccess,  "Pio response for address %#x\n", pkt->getAddr());
137
138    assert(pkt->isResponse());
139
140    // First we must retrieve the request port from the sender State
141    RubyPort::SenderState *senderState =
142      safe_cast<RubyPort::SenderState *>(pkt->senderState);
143    M5Port *port = senderState->port;
144    assert(port != NULL);
145
146    // pop the sender state from the packet
147    pkt->senderState = senderState->saved;
148    delete senderState;
149
150    port->sendTiming(pkt);
151
152    return true;
153}
154
155bool
156RubyPort::M5Port::recvTiming(PacketPtr pkt)
157{
158    DPRINTF(MemoryAccess,
159            "Timing access caught for address %#x\n", pkt->getAddr());
160
161    //dsm: based on SimpleTimingPort::recvTiming(pkt);
162
163    // The received packets should only be M5 requests, which should never
164    // get nacked.  There used to be code to hanldle nacks here, but
165    // I'm pretty sure it didn't work correctly with the drain code,
166    // so that would need to be fixed if we ever added it back.
167    assert(pkt->isRequest());
168
169    if (pkt->memInhibitAsserted()) {
170        warn("memInhibitAsserted???");
171        // snooper will supply based on copy of packet
172        // still target's responsibility to delete packet
173        delete pkt;
174        return true;
175    }
176
177    // Save the port in the sender state object to be used later to
178    // route the response
179    pkt->senderState = new SenderState(this, pkt->senderState);
180
181    // Check for pio requests and directly send them to the dedicated
182    // pio port.
183    if (!isPhysMemAddress(pkt->getAddr())) {
184        assert(ruby_port->pio_port != NULL);
185        DPRINTF(MemoryAccess,
186                "Request for address 0x%#x is assumed to be a pio request\n",
187                pkt->getAddr());
188
189        return ruby_port->pio_port->sendTiming(pkt);
190    }
191
192    // For DMA and CPU requests, translate them to ruby requests before
193    // sending them to our assigned ruby port.
194    RubyRequestType type = RubyRequestType_NULL;
195
196    // If valid, copy the pc to the ruby request
197    Addr pc = 0;
198    if (pkt->req->hasPC()) {
199        pc = pkt->req->getPC();
200    }
201
202    if (pkt->isLLSC()) {
203        if (pkt->isWrite()) {
204            DPRINTF(MemoryAccess, "Issuing SC\n");
205            type = RubyRequestType_Store_Conditional;
206        } else {
207            DPRINTF(MemoryAccess, "Issuing LL\n");
208            assert(pkt->isRead());
209            type = RubyRequestType_Load_Linked;
210        }
211    } else if (pkt->req->isLocked()) {
212        if (pkt->isWrite()) {
213            DPRINTF(MemoryAccess, "Issuing Locked RMW Write\n");
214            type = RubyRequestType_Locked_RMW_Write;
215        } else {
216            DPRINTF(MemoryAccess, "Issuing Locked RMW Read\n");
217            assert(pkt->isRead());
218            type = RubyRequestType_Locked_RMW_Read;
219        }
220    } else {
221        if (pkt->isRead()) {
222            if (pkt->req->isInstFetch()) {
223                type = RubyRequestType_IFETCH;
224            } else {
225#if THE_ISA == X86_ISA
226                uint32_t flags = pkt->req->getFlags();
227                bool storeCheck = flags &
228                        (TheISA::StoreCheck << TheISA::FlagShift);
229#else
230                bool storeCheck = false;
231#endif // X86_ISA
232                if (storeCheck) {
233                    type = RubyRequestType_RMW_Read;
234                } else {
235                    type = RubyRequestType_LD;
236                }
237            }
238        } else if (pkt->isWrite()) {
239            //
240            // Note: M5 packets do not differentiate ST from RMW_Write
241            //
242            type = RubyRequestType_ST;
243        } else {
244            panic("Unsupported ruby packet type\n");
245        }
246    }
247
248    RubyRequest ruby_request(pkt->getAddr(), pkt->getPtr<uint8_t>(),
249                             pkt->getSize(), pc, type,
250                             RubyAccessMode_Supervisor, pkt);
251
252    assert(Address(ruby_request.paddr).getOffset() + ruby_request.len <=
253        RubySystem::getBlockSizeBytes());
254
255    // Submit the ruby request
256    RequestStatus requestStatus = ruby_port->makeRequest(ruby_request);
257
258    // If the request successfully issued then we should return true.
259    // Otherwise, we need to delete the senderStatus we just created and return
260    // false.
261    if (requestStatus == RequestStatus_Issued) {
262        DPRINTF(MemoryAccess, "Request %x issued\n", pkt->getAddr());
263        return true;
264    }
265
266    //
267    // Unless one is using the ruby tester, record the stalled M5 port for
268    // later retry when the sequencer becomes free.
269    //
270    if (!ruby_port->m_usingRubyTester) {
271        ruby_port->addToRetryList(this);
272    }
273
274    DPRINTF(MemoryAccess,
275            "Request for address %#x did not issue because %s\n",
276            pkt->getAddr(), RequestStatus_to_string(requestStatus));
277
278    SenderState* senderState = safe_cast<SenderState*>(pkt->senderState);
279    pkt->senderState = senderState->saved;
280    delete senderState;
281    return false;
282}
283
284void
285RubyPort::ruby_hit_callback(PacketPtr pkt)
286{
287    // Retrieve the request port from the sender State
288    RubyPort::SenderState *senderState =
289        safe_cast<RubyPort::SenderState *>(pkt->senderState);
290    M5Port *port = senderState->port;
291    assert(port != NULL);
292
293    // pop the sender state from the packet
294    pkt->senderState = senderState->saved;
295    delete senderState;
296
297    port->hitCallback(pkt);
298
299    //
300    // If we had to stall the M5Ports, wake them up because the sequencer
301    // likely has free resources now.
302    //
303    if (waitingOnSequencer) {
304        for (std::list<M5Port*>::iterator i = retryList.begin();
305             i != retryList.end(); ++i) {
306            (*i)->sendRetry();
307            (*i)->onRetryList(false);
308            DPRINTF(MemoryAccess,
309                    "Sequencer may now be free.  SendRetry to port %s\n",
310                    (*i)->name());
311        }
312        retryList.clear();
313        waitingOnSequencer = false;
314    }
315}
316
317void
318RubyPort::M5Port::hitCallback(PacketPtr pkt)
319{
320    bool needsResponse = pkt->needsResponse();
321
322    //
323    // All responses except failed SC operations access M5 physical memory
324    //
325    bool accessPhysMem = true;
326
327    if (pkt->isLLSC()) {
328        if (pkt->isWrite()) {
329            if (pkt->req->getExtraData() != 0) {
330                //
331                // Successful SC packets convert to normal writes
332                //
333                pkt->convertScToWrite();
334            } else {
335                //
336                // Failed SC packets don't access physical memory and thus
337                // the RubyPort itself must convert it to a response.
338                //
339                accessPhysMem = false;
340                pkt->makeAtomicResponse();
341            }
342        } else {
343            //
344            // All LL packets convert to normal loads so that M5 PhysMem does
345            // not lock the blocks.
346            //
347            pkt->convertLlToRead();
348        }
349    }
350    DPRINTF(MemoryAccess, "Hit callback needs response %d\n", needsResponse);
351
352    if (accessPhysMem) {
353        ruby_port->physMemPort->sendAtomic(pkt);
354    }
355
356    // turn packet around to go back to requester if response expected
357    if (needsResponse) {
358        // sendAtomic() should already have turned packet into
359        // atomic response
360        assert(pkt->isResponse());
361        DPRINTF(MemoryAccess, "Sending packet back over port\n");
362        sendTiming(pkt);
363    } else {
364        delete pkt;
365    }
366    DPRINTF(MemoryAccess, "Hit callback done!\n");
367}
368
369bool
370RubyPort::M5Port::sendTiming(PacketPtr pkt)
371{
372    //minimum latency, must be > 0
373    schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()));
374    return true;
375}
376
377bool
378RubyPort::PioPort::sendTiming(PacketPtr pkt)
379{
380    //minimum latency, must be > 0
381    schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()));
382    return true;
383}
384
385bool
386RubyPort::M5Port::isPhysMemAddress(Addr addr)
387{
388    AddrRangeList physMemAddrList;
389    bool snoop = false;
390    ruby_port->physMemPort->getPeerAddressRanges(physMemAddrList, snoop);
391    for (AddrRangeIter iter = physMemAddrList.begin();
392         iter != physMemAddrList.end();
393         iter++) {
394        if (addr >= iter->start && addr <= iter->end) {
395            DPRINTF(MemoryAccess, "Request found in %#llx - %#llx range\n",
396                    iter->start, iter->end);
397            return true;
398        }
399    }
400    return false;
401}
402
403unsigned
404RubyPort::M5Port::deviceBlockSize() const
405{
406    return (unsigned) RubySystem::getBlockSizeBytes();
407}
408