RubyPort.cc revision 11284:b3926db25371
1/*
2 * Copyright (c) 2012-2013 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2009-2013 Advanced Micro Devices, Inc.
15 * Copyright (c) 2011 Mark D. Hill and David A. Wood
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42#include "cpu/testers/rubytest/RubyTester.hh"
43#include "debug/Config.hh"
44#include "debug/Drain.hh"
45#include "debug/Ruby.hh"
46#include "mem/protocol/AccessPermission.hh"
47#include "mem/ruby/slicc_interface/AbstractController.hh"
48#include "mem/ruby/system/RubyPort.hh"
49#include "mem/simple_mem.hh"
50#include "sim/full_system.hh"
51#include "sim/system.hh"
52
53RubyPort::RubyPort(const Params *p)
54    : MemObject(p), m_ruby_system(p->ruby_system), m_version(p->version),
55      m_controller(NULL), m_mandatory_q_ptr(NULL),
56      m_usingRubyTester(p->using_ruby_tester), system(p->system),
57      pioMasterPort(csprintf("%s.pio-master-port", name()), this),
58      pioSlavePort(csprintf("%s.pio-slave-port", name()), this),
59      memMasterPort(csprintf("%s.mem-master-port", name()), this),
60      memSlavePort(csprintf("%s-mem-slave-port", name()), this,
61                   p->ruby_system->getAccessBackingStore(), -1,
62                   p->no_retry_on_stall),
63      gotAddrRanges(p->port_master_connection_count)
64{
65    assert(m_version != -1);
66
67    // create the slave ports based on the number of connected ports
68    for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
69        slave_ports.push_back(new MemSlavePort(csprintf("%s.slave%d", name(),
70            i), this, p->ruby_system->getAccessBackingStore(),
71            i, p->no_retry_on_stall));
72    }
73
74    // create the master ports based on the number of connected ports
75    for (size_t i = 0; i < p->port_master_connection_count; ++i) {
76        master_ports.push_back(new PioMasterPort(csprintf("%s.master%d",
77            name(), i), this));
78    }
79}
80
81void
82RubyPort::init()
83{
84    assert(m_controller != NULL);
85    m_mandatory_q_ptr = m_controller->getMandatoryQueue();
86}
87
88BaseMasterPort &
89RubyPort::getMasterPort(const std::string &if_name, PortID idx)
90{
91    if (if_name == "mem_master_port") {
92        return memMasterPort;
93    }
94
95    if (if_name == "pio_master_port") {
96        return pioMasterPort;
97    }
98
99    // used by the x86 CPUs to connect the interrupt PIO and interrupt slave
100    // port
101    if (if_name != "master") {
102        // pass it along to our super class
103        return MemObject::getMasterPort(if_name, idx);
104    } else {
105        if (idx >= static_cast<PortID>(master_ports.size())) {
106            panic("RubyPort::getMasterPort: unknown index %d\n", idx);
107        }
108
109        return *master_ports[idx];
110    }
111}
112
113BaseSlavePort &
114RubyPort::getSlavePort(const std::string &if_name, PortID idx)
115{
116    if (if_name == "mem_slave_port") {
117        return memSlavePort;
118    }
119
120    if (if_name == "pio_slave_port")
121        return pioSlavePort;
122
123    // used by the CPUs to connect the caches to the interconnect, and
124    // for the x86 case also the interrupt master
125    if (if_name != "slave") {
126        // pass it along to our super class
127        return MemObject::getSlavePort(if_name, idx);
128    } else {
129        if (idx >= static_cast<PortID>(slave_ports.size())) {
130            panic("RubyPort::getSlavePort: unknown index %d\n", idx);
131        }
132
133        return *slave_ports[idx];
134    }
135}
136
137RubyPort::PioMasterPort::PioMasterPort(const std::string &_name,
138                           RubyPort *_port)
139    : QueuedMasterPort(_name, _port, reqQueue, snoopRespQueue),
140      reqQueue(*_port, *this), snoopRespQueue(*_port, *this)
141{
142    DPRINTF(RubyPort, "Created master pioport on sequencer %s\n", _name);
143}
144
145RubyPort::PioSlavePort::PioSlavePort(const std::string &_name,
146                           RubyPort *_port)
147    : QueuedSlavePort(_name, _port, queue), queue(*_port, *this)
148{
149    DPRINTF(RubyPort, "Created slave pioport on sequencer %s\n", _name);
150}
151
152RubyPort::MemMasterPort::MemMasterPort(const std::string &_name,
153                           RubyPort *_port)
154    : QueuedMasterPort(_name, _port, reqQueue, snoopRespQueue),
155      reqQueue(*_port, *this), snoopRespQueue(*_port, *this)
156{
157    DPRINTF(RubyPort, "Created master memport on ruby sequencer %s\n", _name);
158}
159
160RubyPort::MemSlavePort::MemSlavePort(const std::string &_name, RubyPort *_port,
161                                     bool _access_backing_store, PortID id,
162                                     bool _no_retry_on_stall)
163    : QueuedSlavePort(_name, _port, queue, id), queue(*_port, *this),
164      access_backing_store(_access_backing_store),
165      no_retry_on_stall(_no_retry_on_stall)
166{
167    DPRINTF(RubyPort, "Created slave memport on ruby sequencer %s\n", _name);
168}
169
170bool
171RubyPort::PioMasterPort::recvTimingResp(PacketPtr pkt)
172{
173    RubyPort *rp = static_cast<RubyPort *>(&owner);
174    DPRINTF(RubyPort, "Response for address: 0x%#x\n", pkt->getAddr());
175
176    // send next cycle
177    rp->pioSlavePort.schedTimingResp(
178            pkt, curTick() + rp->m_ruby_system->clockPeriod());
179    return true;
180}
181
182bool RubyPort::MemMasterPort::recvTimingResp(PacketPtr pkt)
183{
184    // got a response from a device
185    assert(pkt->isResponse());
186
187    // First we must retrieve the request port from the sender State
188    RubyPort::SenderState *senderState =
189        safe_cast<RubyPort::SenderState *>(pkt->popSenderState());
190    MemSlavePort *port = senderState->port;
191    assert(port != NULL);
192    delete senderState;
193
194    // In FS mode, ruby memory will receive pio responses from devices
195    // and it must forward these responses back to the particular CPU.
196    DPRINTF(RubyPort,  "Pio response for address %#x, going to %s\n",
197            pkt->getAddr(), port->name());
198
199    // attempt to send the response in the next cycle
200    RubyPort *rp = static_cast<RubyPort *>(&owner);
201    port->schedTimingResp(pkt, curTick() + rp->m_ruby_system->clockPeriod());
202
203    return true;
204}
205
206bool
207RubyPort::PioSlavePort::recvTimingReq(PacketPtr pkt)
208{
209    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
210
211    for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
212        AddrRangeList l = ruby_port->master_ports[i]->getAddrRanges();
213        for (auto it = l.begin(); it != l.end(); ++it) {
214            if (it->contains(pkt->getAddr())) {
215                // generally it is not safe to assume success here as
216                // the port could be blocked
217                bool M5_VAR_USED success =
218                    ruby_port->master_ports[i]->sendTimingReq(pkt);
219                assert(success);
220                return true;
221            }
222        }
223    }
224    panic("Should never reach here!\n");
225}
226
227bool
228RubyPort::MemSlavePort::recvTimingReq(PacketPtr pkt)
229{
230    DPRINTF(RubyPort, "Timing request for address %#x on port %d\n",
231            pkt->getAddr(), id);
232    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
233
234    if (pkt->cacheResponding())
235        panic("RubyPort should never see request with the "
236              "cacheResponding flag set\n");
237
238    // Check for pio requests and directly send them to the dedicated
239    // pio port.
240    if (!isPhysMemAddress(pkt->getAddr())) {
241        assert(ruby_port->memMasterPort.isConnected());
242        DPRINTF(RubyPort, "Request address %#x assumed to be a pio address\n",
243                pkt->getAddr());
244
245        // Save the port in the sender state object to be used later to
246        // route the response
247        pkt->pushSenderState(new SenderState(this));
248
249        // send next cycle
250        RubySystem *rs = ruby_port->m_ruby_system;
251        ruby_port->memMasterPort.schedTimingReq(pkt,
252            curTick() + rs->clockPeriod());
253        return true;
254    }
255
256    assert(getOffset(pkt->getAddr()) + pkt->getSize() <=
257           RubySystem::getBlockSizeBytes());
258
259    // Submit the ruby request
260    RequestStatus requestStatus = ruby_port->makeRequest(pkt);
261
262    // If the request successfully issued then we should return true.
263    // Otherwise, we need to tell the port to retry at a later point
264    // and return false.
265    if (requestStatus == RequestStatus_Issued) {
266        // Save the port in the sender state object to be used later to
267        // route the response
268        pkt->pushSenderState(new SenderState(this));
269
270        DPRINTF(RubyPort, "Request %s 0x%x issued\n", pkt->cmdString(),
271                pkt->getAddr());
272        return true;
273    }
274
275
276    DPRINTF(RubyPort, "Request for address %#x did not issued because %s\n",
277            pkt->getAddr(), RequestStatus_to_string(requestStatus));
278
279    addToRetryList();
280
281    return false;
282}
283
284void
285RubyPort::MemSlavePort::addToRetryList()
286{
287    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
288
289    //
290    // Unless the requestor do not want retries (e.g., the Ruby tester),
291    // record the stalled M5 port for later retry when the sequencer
292    // becomes free.
293    //
294    if (!no_retry_on_stall && !ruby_port->onRetryList(this)) {
295        ruby_port->addToRetryList(this);
296    }
297}
298
299void
300RubyPort::MemSlavePort::recvFunctional(PacketPtr pkt)
301{
302    DPRINTF(RubyPort, "Functional access for address: %#x\n", pkt->getAddr());
303
304    RubyPort *rp M5_VAR_USED = static_cast<RubyPort *>(&owner);
305    RubySystem *rs = rp->m_ruby_system;
306
307    // Check for pio requests and directly send them to the dedicated
308    // pio port.
309    if (!isPhysMemAddress(pkt->getAddr())) {
310        assert(rp->memMasterPort.isConnected());
311        DPRINTF(RubyPort, "Pio Request for address: 0x%#x\n", pkt->getAddr());
312        panic("RubyPort::PioMasterPort::recvFunctional() not implemented!\n");
313    }
314
315    assert(pkt->getAddr() + pkt->getSize() <=
316           makeLineAddress(pkt->getAddr()) + RubySystem::getBlockSizeBytes());
317
318    if (access_backing_store) {
319        // The attached physmem contains the official version of data.
320        // The following command performs the real functional access.
321        // This line should be removed once Ruby supplies the official version
322        // of data.
323        rs->getPhysMem()->functionalAccess(pkt);
324    } else {
325        bool accessSucceeded = false;
326        bool needsResponse = pkt->needsResponse();
327
328        // Do the functional access on ruby memory
329        if (pkt->isRead()) {
330            accessSucceeded = rs->functionalRead(pkt);
331        } else if (pkt->isWrite()) {
332            accessSucceeded = rs->functionalWrite(pkt);
333        } else {
334            panic("Unsupported functional command %s\n", pkt->cmdString());
335        }
336
337        // Unless the requester explicitly said otherwise, generate an error if
338        // the functional request failed
339        if (!accessSucceeded && !pkt->suppressFuncError()) {
340            fatal("Ruby functional %s failed for address %#x\n",
341                  pkt->isWrite() ? "write" : "read", pkt->getAddr());
342        }
343
344        // turn packet around to go back to requester if response expected
345        if (needsResponse) {
346            pkt->setFunctionalResponseStatus(accessSucceeded);
347        }
348
349        DPRINTF(RubyPort, "Functional access %s!\n",
350                accessSucceeded ? "successful":"failed");
351    }
352}
353
354void
355RubyPort::ruby_hit_callback(PacketPtr pkt)
356{
357    DPRINTF(RubyPort, "Hit callback for %s 0x%x\n", pkt->cmdString(),
358            pkt->getAddr());
359
360    // The packet was destined for memory and has not yet been turned
361    // into a response
362    assert(system->isMemAddr(pkt->getAddr()));
363    assert(pkt->isRequest());
364
365    // First we must retrieve the request port from the sender State
366    RubyPort::SenderState *senderState =
367        safe_cast<RubyPort::SenderState *>(pkt->popSenderState());
368    MemSlavePort *port = senderState->port;
369    assert(port != NULL);
370    delete senderState;
371
372    port->hitCallback(pkt);
373
374    trySendRetries();
375}
376
377void
378RubyPort::trySendRetries()
379{
380    //
381    // If we had to stall the MemSlavePorts, wake them up because the sequencer
382    // likely has free resources now.
383    //
384    if (!retryList.empty()) {
385        // Record the current list of ports to retry on a temporary list
386        // before calling sendRetryReq on those ports. sendRetryReq will cause
387        // an immediate retry, which may result in the ports being put back on
388        // the list. Therefore we want to clear the retryList before calling
389        // sendRetryReq.
390        std::vector<MemSlavePort *> curRetryList(retryList);
391
392        retryList.clear();
393
394        for (auto i = curRetryList.begin(); i != curRetryList.end(); ++i) {
395            DPRINTF(RubyPort,
396                    "Sequencer may now be free. SendRetry to port %s\n",
397                    (*i)->name());
398            (*i)->sendRetryReq();
399        }
400    }
401}
402
403void
404RubyPort::testDrainComplete()
405{
406    //If we weren't able to drain before, we might be able to now.
407    if (drainState() == DrainState::Draining) {
408        unsigned int drainCount = outstandingCount();
409        DPRINTF(Drain, "Drain count: %u\n", drainCount);
410        if (drainCount == 0) {
411            DPRINTF(Drain, "RubyPort done draining, signaling drain done\n");
412            signalDrainDone();
413        }
414    }
415}
416
417DrainState
418RubyPort::drain()
419{
420    if (isDeadlockEventScheduled()) {
421        descheduleDeadlockEvent();
422    }
423
424    //
425    // If the RubyPort is not empty, then it needs to clear all outstanding
426    // requests before it should call signalDrainDone()
427    //
428    DPRINTF(Config, "outstanding count %d\n", outstandingCount());
429    if (outstandingCount() > 0) {
430        DPRINTF(Drain, "RubyPort not drained\n");
431        return DrainState::Draining;
432    } else {
433        return DrainState::Drained;
434    }
435}
436
437void
438RubyPort::MemSlavePort::hitCallback(PacketPtr pkt)
439{
440    bool needsResponse = pkt->needsResponse();
441
442    // Unless specified at configuraiton, all responses except failed SC
443    // and Flush operations access M5 physical memory.
444    bool accessPhysMem = access_backing_store;
445
446    if (pkt->isLLSC()) {
447        if (pkt->isWrite()) {
448            if (pkt->req->getExtraData() != 0) {
449                //
450                // Successful SC packets convert to normal writes
451                //
452                pkt->convertScToWrite();
453            } else {
454                //
455                // Failed SC packets don't access physical memory and thus
456                // the RubyPort itself must convert it to a response.
457                //
458                accessPhysMem = false;
459            }
460        } else {
461            //
462            // All LL packets convert to normal loads so that M5 PhysMem does
463            // not lock the blocks.
464            //
465            pkt->convertLlToRead();
466        }
467    }
468
469    // Flush requests don't access physical memory
470    if (pkt->isFlush()) {
471        accessPhysMem = false;
472    }
473
474    DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);
475
476    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
477    RubySystem *rs = ruby_port->m_ruby_system;
478    if (accessPhysMem) {
479        rs->getPhysMem()->access(pkt);
480    } else if (needsResponse) {
481        pkt->makeResponse();
482    }
483
484    // turn packet around to go back to requester if response expected
485    if (needsResponse) {
486        DPRINTF(RubyPort, "Sending packet back over port\n");
487        // Send a response in the same cycle. There is no need to delay the
488        // response because the response latency is already incurred in the
489        // Ruby protocol.
490        schedTimingResp(pkt, curTick());
491    } else {
492        delete pkt;
493    }
494
495    DPRINTF(RubyPort, "Hit callback done!\n");
496}
497
498AddrRangeList
499RubyPort::PioSlavePort::getAddrRanges() const
500{
501    // at the moment the assumption is that the master does not care
502    AddrRangeList ranges;
503    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
504
505    for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
506        ranges.splice(ranges.begin(),
507                ruby_port->master_ports[i]->getAddrRanges());
508    }
509    for (const auto M5_VAR_USED &r : ranges)
510        DPRINTF(RubyPort, "%s\n", r.to_string());
511    return ranges;
512}
513
514bool
515RubyPort::MemSlavePort::isPhysMemAddress(Addr addr) const
516{
517    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
518    return ruby_port->system->isMemAddr(addr);
519}
520
521void
522RubyPort::ruby_eviction_callback(Addr address)
523{
524    DPRINTF(RubyPort, "Sending invalidations.\n");
525    // Allocate the invalidate request and packet on the stack, as it is
526    // assumed they will not be modified or deleted by receivers.
527    // TODO: should this really be using funcMasterId?
528    Request request(address, RubySystem::getBlockSizeBytes(), 0,
529                    Request::funcMasterId);
530    // Use a single packet to signal all snooping ports of the invalidation.
531    // This assumes that snooping ports do NOT modify the packet/request
532    Packet pkt(&request, MemCmd::InvalidateReq);
533    for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
534        // check if the connected master port is snooping
535        if ((*p)->isSnooping()) {
536            // send as a snoop request
537            (*p)->sendTimingSnoopReq(&pkt);
538        }
539    }
540}
541
542void
543RubyPort::PioMasterPort::recvRangeChange()
544{
545    RubyPort &r = static_cast<RubyPort &>(owner);
546    r.gotAddrRanges--;
547    if (r.gotAddrRanges == 0 && FullSystem) {
548        r.pioSlavePort.sendRangeChange();
549    }
550}
551