RubyPort.cc revision 10917:c38f28fad4c3
1/*
2 * Copyright (c) 2012-2013 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2009 Advanced Micro Devices, Inc.
15 * Copyright (c) 2011 Mark D. Hill and David A. Wood
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42#include "cpu/testers/rubytest/RubyTester.hh"
43#include "debug/Config.hh"
44#include "debug/Drain.hh"
45#include "debug/Ruby.hh"
46#include "mem/protocol/AccessPermission.hh"
47#include "mem/ruby/slicc_interface/AbstractController.hh"
48#include "mem/ruby/system/RubyPort.hh"
49#include "mem/simple_mem.hh"
50#include "sim/full_system.hh"
51#include "sim/system.hh"
52
53RubyPort::RubyPort(const Params *p)
54    : MemObject(p), m_version(p->version), m_controller(NULL),
55      m_mandatory_q_ptr(NULL), m_usingRubyTester(p->using_ruby_tester),
56      system(p->system),
57      pioMasterPort(csprintf("%s.pio-master-port", name()), this),
58      pioSlavePort(csprintf("%s.pio-slave-port", name()), this),
59      memMasterPort(csprintf("%s.mem-master-port", name()), this),
60      memSlavePort(csprintf("%s-mem-slave-port", name()), this,
61          p->ruby_system, p->ruby_system->getAccessBackingStore(), -1),
62      gotAddrRanges(p->port_master_connection_count)
63{
64    assert(m_version != -1);
65
66    // create the slave ports based on the number of connected ports
67    for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
68        slave_ports.push_back(new MemSlavePort(csprintf("%s.slave%d", name(),
69            i), this, p->ruby_system,
70            p->ruby_system->getAccessBackingStore(), i));
71    }
72
73    // create the master ports based on the number of connected ports
74    for (size_t i = 0; i < p->port_master_connection_count; ++i) {
75        master_ports.push_back(new PioMasterPort(csprintf("%s.master%d",
76            name(), i), this));
77    }
78}
79
80void
81RubyPort::init()
82{
83    assert(m_controller != NULL);
84    m_mandatory_q_ptr = m_controller->getMandatoryQueue();
85    m_mandatory_q_ptr->setSender(this);
86}
87
88BaseMasterPort &
89RubyPort::getMasterPort(const std::string &if_name, PortID idx)
90{
91    if (if_name == "mem_master_port") {
92        return memMasterPort;
93    }
94
95    if (if_name == "pio_master_port") {
96        return pioMasterPort;
97    }
98
99    // used by the x86 CPUs to connect the interrupt PIO and interrupt slave
100    // port
101    if (if_name != "master") {
102        // pass it along to our super class
103        return MemObject::getMasterPort(if_name, idx);
104    } else {
105        if (idx >= static_cast<PortID>(master_ports.size())) {
106            panic("RubyPort::getMasterPort: unknown index %d\n", idx);
107        }
108
109        return *master_ports[idx];
110    }
111}
112
113BaseSlavePort &
114RubyPort::getSlavePort(const std::string &if_name, PortID idx)
115{
116    if (if_name == "mem_slave_port") {
117        return memSlavePort;
118    }
119
120    if (if_name == "pio_slave_port")
121        return pioSlavePort;
122
123    // used by the CPUs to connect the caches to the interconnect, and
124    // for the x86 case also the interrupt master
125    if (if_name != "slave") {
126        // pass it along to our super class
127        return MemObject::getSlavePort(if_name, idx);
128    } else {
129        if (idx >= static_cast<PortID>(slave_ports.size())) {
130            panic("RubyPort::getSlavePort: unknown index %d\n", idx);
131        }
132
133        return *slave_ports[idx];
134    }
135}
136
137RubyPort::PioMasterPort::PioMasterPort(const std::string &_name,
138                           RubyPort *_port)
139    : QueuedMasterPort(_name, _port, reqQueue, snoopRespQueue),
140      reqQueue(*_port, *this), snoopRespQueue(*_port, *this)
141{
142    DPRINTF(RubyPort, "Created master pioport on sequencer %s\n", _name);
143}
144
145RubyPort::PioSlavePort::PioSlavePort(const std::string &_name,
146                           RubyPort *_port)
147    : QueuedSlavePort(_name, _port, queue), queue(*_port, *this)
148{
149    DPRINTF(RubyPort, "Created slave pioport on sequencer %s\n", _name);
150}
151
152RubyPort::MemMasterPort::MemMasterPort(const std::string &_name,
153                           RubyPort *_port)
154    : QueuedMasterPort(_name, _port, reqQueue, snoopRespQueue),
155      reqQueue(*_port, *this), snoopRespQueue(*_port, *this)
156{
157    DPRINTF(RubyPort, "Created master memport on ruby sequencer %s\n", _name);
158}
159
160RubyPort::MemSlavePort::MemSlavePort(const std::string &_name, RubyPort *_port,
161                                     RubySystem *_system,
162                                     bool _access_backing_store, PortID id)
163    : QueuedSlavePort(_name, _port, queue, id), queue(*_port, *this),
164      ruby_system(_system), access_backing_store(_access_backing_store)
165{
166    DPRINTF(RubyPort, "Created slave memport on ruby sequencer %s\n", _name);
167}
168
169bool
170RubyPort::PioMasterPort::recvTimingResp(PacketPtr pkt)
171{
172    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
173    DPRINTF(RubyPort, "Response for address: 0x%#x\n", pkt->getAddr());
174
175    // send next cycle
176    ruby_port->pioSlavePort.schedTimingResp(
177            pkt, curTick() + g_system_ptr->clockPeriod());
178    return true;
179}
180
181bool RubyPort::MemMasterPort::recvTimingResp(PacketPtr pkt)
182{
183    // got a response from a device
184    assert(pkt->isResponse());
185
186    // First we must retrieve the request port from the sender State
187    RubyPort::SenderState *senderState =
188        safe_cast<RubyPort::SenderState *>(pkt->popSenderState());
189    MemSlavePort *port = senderState->port;
190    assert(port != NULL);
191    delete senderState;
192
193    // In FS mode, ruby memory will receive pio responses from devices
194    // and it must forward these responses back to the particular CPU.
195    DPRINTF(RubyPort,  "Pio response for address %#x, going to %s\n",
196            pkt->getAddr(), port->name());
197
198    // attempt to send the response in the next cycle
199    port->schedTimingResp(pkt, curTick() + g_system_ptr->clockPeriod());
200
201    return true;
202}
203
204bool
205RubyPort::PioSlavePort::recvTimingReq(PacketPtr pkt)
206{
207    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
208
209    for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
210        AddrRangeList l = ruby_port->master_ports[i]->getAddrRanges();
211        for (auto it = l.begin(); it != l.end(); ++it) {
212            if (it->contains(pkt->getAddr())) {
213                // generally it is not safe to assume success here as
214                // the port could be blocked
215                bool M5_VAR_USED success =
216                    ruby_port->master_ports[i]->sendTimingReq(pkt);
217                assert(success);
218                return true;
219            }
220        }
221    }
222    panic("Should never reach here!\n");
223}
224
225bool
226RubyPort::MemSlavePort::recvTimingReq(PacketPtr pkt)
227{
228    DPRINTF(RubyPort, "Timing request for address %#x on port %d\n",
229            pkt->getAddr(), id);
230    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
231
232    if (pkt->memInhibitAsserted())
233        panic("RubyPort should never see an inhibited request\n");
234
235    // Check for pio requests and directly send them to the dedicated
236    // pio port.
237    if (!isPhysMemAddress(pkt->getAddr())) {
238        assert(ruby_port->memMasterPort.isConnected());
239        DPRINTF(RubyPort, "Request address %#x assumed to be a pio address\n",
240                pkt->getAddr());
241
242        // Save the port in the sender state object to be used later to
243        // route the response
244        pkt->pushSenderState(new SenderState(this));
245
246        // send next cycle
247        ruby_port->memMasterPort.schedTimingReq(pkt,
248            curTick() + g_system_ptr->clockPeriod());
249        return true;
250    }
251
252    assert(Address(pkt->getAddr()).getOffset() + pkt->getSize() <=
253           RubySystem::getBlockSizeBytes());
254
255    // Submit the ruby request
256    RequestStatus requestStatus = ruby_port->makeRequest(pkt);
257
258    // If the request successfully issued then we should return true.
259    // Otherwise, we need to tell the port to retry at a later point
260    // and return false.
261    if (requestStatus == RequestStatus_Issued) {
262        // Save the port in the sender state object to be used later to
263        // route the response
264        pkt->pushSenderState(new SenderState(this));
265
266        DPRINTF(RubyPort, "Request %s 0x%x issued\n", pkt->cmdString(),
267                pkt->getAddr());
268        return true;
269    }
270
271    //
272    // Unless one is using the ruby tester, record the stalled M5 port for
273    // later retry when the sequencer becomes free.
274    //
275    if (!ruby_port->m_usingRubyTester) {
276        ruby_port->addToRetryList(this);
277    }
278
279    DPRINTF(RubyPort, "Request for address %#x did not issued because %s\n",
280            pkt->getAddr(), RequestStatus_to_string(requestStatus));
281
282    return false;
283}
284
285void
286RubyPort::MemSlavePort::recvFunctional(PacketPtr pkt)
287{
288    DPRINTF(RubyPort, "Functional access for address: %#x\n", pkt->getAddr());
289
290    // Check for pio requests and directly send them to the dedicated
291    // pio port.
292    if (!isPhysMemAddress(pkt->getAddr())) {
293        RubyPort *ruby_port M5_VAR_USED = static_cast<RubyPort *>(&owner);
294        assert(ruby_port->memMasterPort.isConnected());
295        DPRINTF(RubyPort, "Pio Request for address: 0x%#x\n", pkt->getAddr());
296        panic("RubyPort::PioMasterPort::recvFunctional() not implemented!\n");
297    }
298
299    assert(pkt->getAddr() + pkt->getSize() <=
300                line_address(Address(pkt->getAddr())).getAddress() +
301                RubySystem::getBlockSizeBytes());
302
303    if (access_backing_store) {
304        // The attached physmem contains the official version of data.
305        // The following command performs the real functional access.
306        // This line should be removed once Ruby supplies the official version
307        // of data.
308        ruby_system->getPhysMem()->functionalAccess(pkt);
309    } else {
310        bool accessSucceeded = false;
311        bool needsResponse = pkt->needsResponse();
312
313        // Do the functional access on ruby memory
314        if (pkt->isRead()) {
315            accessSucceeded = ruby_system->functionalRead(pkt);
316        } else if (pkt->isWrite()) {
317            accessSucceeded = ruby_system->functionalWrite(pkt);
318        } else {
319            panic("Unsupported functional command %s\n", pkt->cmdString());
320        }
321
322        // Unless the requester explicitly said otherwise, generate an error if
323        // the functional request failed
324        if (!accessSucceeded && !pkt->suppressFuncError()) {
325            fatal("Ruby functional %s failed for address %#x\n",
326                  pkt->isWrite() ? "write" : "read", pkt->getAddr());
327        }
328
329        // turn packet around to go back to requester if response expected
330        if (needsResponse) {
331            pkt->setFunctionalResponseStatus(accessSucceeded);
332        }
333
334        DPRINTF(RubyPort, "Functional access %s!\n",
335                accessSucceeded ? "successful":"failed");
336    }
337}
338
339void
340RubyPort::ruby_hit_callback(PacketPtr pkt)
341{
342    DPRINTF(RubyPort, "Hit callback for %s 0x%x\n", pkt->cmdString(),
343            pkt->getAddr());
344
345    // The packet was destined for memory and has not yet been turned
346    // into a response
347    assert(system->isMemAddr(pkt->getAddr()));
348    assert(pkt->isRequest());
349
350    // First we must retrieve the request port from the sender State
351    RubyPort::SenderState *senderState =
352        safe_cast<RubyPort::SenderState *>(pkt->popSenderState());
353    MemSlavePort *port = senderState->port;
354    assert(port != NULL);
355    delete senderState;
356
357    port->hitCallback(pkt);
358
359    //
360    // If we had to stall the MemSlavePorts, wake them up because the sequencer
361    // likely has free resources now.
362    //
363    if (!retryList.empty()) {
364        //
365        // Record the current list of ports to retry on a temporary list before
366        // calling sendRetry on those ports.  sendRetry will cause an
367        // immediate retry, which may result in the ports being put back on the
368        // list. Therefore we want to clear the retryList before calling
369        // sendRetry.
370        //
371        std::vector<MemSlavePort *> curRetryList(retryList);
372
373        retryList.clear();
374
375        for (auto i = curRetryList.begin(); i != curRetryList.end(); ++i) {
376            DPRINTF(RubyPort,
377                    "Sequencer may now be free.  SendRetry to port %s\n",
378                    (*i)->name());
379            (*i)->sendRetryReq();
380        }
381    }
382
383    testDrainComplete();
384}
385
386void
387RubyPort::testDrainComplete()
388{
389    //If we weren't able to drain before, we might be able to now.
390    if (drainState() == DrainState::Draining) {
391        unsigned int drainCount = outstandingCount();
392        DPRINTF(Drain, "Drain count: %u\n", drainCount);
393        if (drainCount == 0) {
394            DPRINTF(Drain, "RubyPort done draining, signaling drain done\n");
395            signalDrainDone();
396        }
397    }
398}
399
400DrainState
401RubyPort::drain()
402{
403    if (isDeadlockEventScheduled()) {
404        descheduleDeadlockEvent();
405    }
406
407    //
408    // If the RubyPort is not empty, then it needs to clear all outstanding
409    // requests before it should call signalDrainDone()
410    //
411    DPRINTF(Config, "outstanding count %d\n", outstandingCount());
412    if (outstandingCount() > 0) {
413        DPRINTF(Drain, "RubyPort not drained\n");
414        return DrainState::Draining;
415    } else {
416        return DrainState::Drained;
417    }
418}
419
420void
421RubyPort::MemSlavePort::hitCallback(PacketPtr pkt)
422{
423    bool needsResponse = pkt->needsResponse();
424
425    // Unless specified at configuraiton, all responses except failed SC
426    // and Flush operations access M5 physical memory.
427    bool accessPhysMem = access_backing_store;
428
429    if (pkt->isLLSC()) {
430        if (pkt->isWrite()) {
431            if (pkt->req->getExtraData() != 0) {
432                //
433                // Successful SC packets convert to normal writes
434                //
435                pkt->convertScToWrite();
436            } else {
437                //
438                // Failed SC packets don't access physical memory and thus
439                // the RubyPort itself must convert it to a response.
440                //
441                accessPhysMem = false;
442            }
443        } else {
444            //
445            // All LL packets convert to normal loads so that M5 PhysMem does
446            // not lock the blocks.
447            //
448            pkt->convertLlToRead();
449        }
450    }
451
452    // Flush requests don't access physical memory
453    if (pkt->isFlush()) {
454        accessPhysMem = false;
455    }
456
457    DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);
458
459    if (accessPhysMem) {
460        ruby_system->getPhysMem()->access(pkt);
461    } else if (needsResponse) {
462        pkt->makeResponse();
463    }
464
465    // turn packet around to go back to requester if response expected
466    if (needsResponse) {
467        DPRINTF(RubyPort, "Sending packet back over port\n");
468        // send next cycle
469        schedTimingResp(pkt, curTick() + g_system_ptr->clockPeriod());
470    } else {
471        delete pkt;
472    }
473
474    DPRINTF(RubyPort, "Hit callback done!\n");
475}
476
477AddrRangeList
478RubyPort::PioSlavePort::getAddrRanges() const
479{
480    // at the moment the assumption is that the master does not care
481    AddrRangeList ranges;
482    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
483
484    for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
485        ranges.splice(ranges.begin(),
486                ruby_port->master_ports[i]->getAddrRanges());
487    }
488    for (const auto M5_VAR_USED &r : ranges)
489        DPRINTF(RubyPort, "%s\n", r.to_string());
490    return ranges;
491}
492
493bool
494RubyPort::MemSlavePort::isPhysMemAddress(Addr addr) const
495{
496    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
497    return ruby_port->system->isMemAddr(addr);
498}
499
500void
501RubyPort::ruby_eviction_callback(const Address& address)
502{
503    DPRINTF(RubyPort, "Sending invalidations.\n");
504    // This request is deleted in the stack-allocated packet destructor
505    // when this function exits
506    // TODO: should this really be using funcMasterId?
507    RequestPtr req =
508            new Request(address.getAddress(), 0, 0, Request::funcMasterId);
509    // Use a single packet to signal all snooping ports of the invalidation.
510    // This assumes that snooping ports do NOT modify the packet/request
511    Packet pkt(req, MemCmd::InvalidateReq);
512    for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
513        // check if the connected master port is snooping
514        if ((*p)->isSnooping()) {
515            // send as a snoop request
516            (*p)->sendTimingSnoopReq(&pkt);
517        }
518    }
519}
520
521void
522RubyPort::PioMasterPort::recvRangeChange()
523{
524    RubyPort &r = static_cast<RubyPort &>(owner);
525    r.gotAddrRanges--;
526    if (r.gotAddrRanges == 0 && FullSystem) {
527        r.pioSlavePort.sendRangeChange();
528    }
529}
530