RubyPort.cc revision 10525:77787650cbbc
1/*
2 * Copyright (c) 2012-2013 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2009 Advanced Micro Devices, Inc.
15 * Copyright (c) 2011 Mark D. Hill and David A. Wood
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42#include "cpu/testers/rubytest/RubyTester.hh"
43#include "debug/Config.hh"
44#include "debug/Drain.hh"
45#include "debug/Ruby.hh"
46#include "mem/protocol/AccessPermission.hh"
47#include "mem/ruby/slicc_interface/AbstractController.hh"
48#include "mem/ruby/system/RubyPort.hh"
49#include "mem/simple_mem.hh"
50#include "sim/full_system.hh"
51#include "sim/system.hh"
52
53RubyPort::RubyPort(const Params *p)
54    : MemObject(p), m_version(p->version), m_controller(NULL),
55      m_mandatory_q_ptr(NULL), m_usingRubyTester(p->using_ruby_tester),
56      system(p->system),
57      pioMasterPort(csprintf("%s.pio-master-port", name()), this),
58      pioSlavePort(csprintf("%s.pio-slave-port", name()), this),
59      memMasterPort(csprintf("%s.mem-master-port", name()), this),
60      memSlavePort(csprintf("%s-mem-slave-port", name()), this,
61          p->ruby_system, p->access_backing_store, -1),
62      gotAddrRanges(p->port_master_connection_count), drainManager(NULL)
63{
64    assert(m_version != -1);
65
66    // create the slave ports based on the number of connected ports
67    for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
68        slave_ports.push_back(new MemSlavePort(csprintf("%s.slave%d", name(),
69            i), this, p->ruby_system, p->access_backing_store, i));
70    }
71
72    // create the master ports based on the number of connected ports
73    for (size_t i = 0; i < p->port_master_connection_count; ++i) {
74        master_ports.push_back(new PioMasterPort(csprintf("%s.master%d",
75            name(), i), this));
76    }
77}
78
79void
80RubyPort::init()
81{
82    assert(m_controller != NULL);
83    m_mandatory_q_ptr = m_controller->getMandatoryQueue();
84    m_mandatory_q_ptr->setSender(this);
85}
86
87BaseMasterPort &
88RubyPort::getMasterPort(const std::string &if_name, PortID idx)
89{
90    if (if_name == "mem_master_port") {
91        return memMasterPort;
92    }
93
94    if (if_name == "pio_master_port") {
95        return pioMasterPort;
96    }
97
98    // used by the x86 CPUs to connect the interrupt PIO and interrupt slave
99    // port
100    if (if_name != "master") {
101        // pass it along to our super class
102        return MemObject::getMasterPort(if_name, idx);
103    } else {
104        if (idx >= static_cast<PortID>(master_ports.size())) {
105            panic("RubyPort::getMasterPort: unknown index %d\n", idx);
106        }
107
108        return *master_ports[idx];
109    }
110}
111
112BaseSlavePort &
113RubyPort::getSlavePort(const std::string &if_name, PortID idx)
114{
115    if (if_name == "mem_slave_port") {
116        return memSlavePort;
117    }
118
119    if (if_name == "pio_slave_port")
120        return pioSlavePort;
121
122    // used by the CPUs to connect the caches to the interconnect, and
123    // for the x86 case also the interrupt master
124    if (if_name != "slave") {
125        // pass it along to our super class
126        return MemObject::getSlavePort(if_name, idx);
127    } else {
128        if (idx >= static_cast<PortID>(slave_ports.size())) {
129            panic("RubyPort::getSlavePort: unknown index %d\n", idx);
130        }
131
132        return *slave_ports[idx];
133    }
134}
135
136RubyPort::PioMasterPort::PioMasterPort(const std::string &_name,
137                           RubyPort *_port)
138    : QueuedMasterPort(_name, _port, queue), queue(*_port, *this)
139{
140    DPRINTF(RubyPort, "Created master pioport on sequencer %s\n", _name);
141}
142
143RubyPort::PioSlavePort::PioSlavePort(const std::string &_name,
144                           RubyPort *_port)
145    : QueuedSlavePort(_name, _port, queue), queue(*_port, *this)
146{
147    DPRINTF(RubyPort, "Created slave pioport on sequencer %s\n", _name);
148}
149
150RubyPort::MemMasterPort::MemMasterPort(const std::string &_name,
151                           RubyPort *_port)
152    : QueuedMasterPort(_name, _port, queue), queue(*_port, *this)
153{
154    DPRINTF(RubyPort, "Created master memport on ruby sequencer %s\n", _name);
155}
156
157RubyPort::MemSlavePort::MemSlavePort(const std::string &_name, RubyPort *_port,
158                                     RubySystem *_system,
159                                     bool _access_backing_store, PortID id)
160    : QueuedSlavePort(_name, _port, queue, id), queue(*_port, *this),
161      ruby_system(_system), access_backing_store(_access_backing_store)
162{
163    DPRINTF(RubyPort, "Created slave memport on ruby sequencer %s\n", _name);
164}
165
166bool
167RubyPort::PioMasterPort::recvTimingResp(PacketPtr pkt)
168{
169    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
170    DPRINTF(RubyPort, "Response for address: 0x%#x\n", pkt->getAddr());
171
172    // send next cycle
173    ruby_port->pioSlavePort.schedTimingResp(
174            pkt, curTick() + g_system_ptr->clockPeriod());
175    return true;
176}
177
178bool RubyPort::MemMasterPort::recvTimingResp(PacketPtr pkt)
179{
180    // got a response from a device
181    assert(pkt->isResponse());
182
183    // In FS mode, ruby memory will receive pio responses from devices
184    // and it must forward these responses back to the particular CPU.
185    DPRINTF(RubyPort,  "Pio response for address %#x, going to %d\n",
186            pkt->getAddr(), pkt->getDest());
187
188    // First we must retrieve the request port from the sender State
189    RubyPort::SenderState *senderState =
190        safe_cast<RubyPort::SenderState *>(pkt->popSenderState());
191    MemSlavePort *port = senderState->port;
192    assert(port != NULL);
193    delete senderState;
194
195    // attempt to send the response in the next cycle
196    port->schedTimingResp(pkt, curTick() + g_system_ptr->clockPeriod());
197
198    return true;
199}
200
201bool
202RubyPort::PioSlavePort::recvTimingReq(PacketPtr pkt)
203{
204    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
205
206    for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
207        AddrRangeList l = ruby_port->master_ports[i]->getAddrRanges();
208        for (auto it = l.begin(); it != l.end(); ++it) {
209            if (it->contains(pkt->getAddr())) {
210                // generally it is not safe to assume success here as
211                // the port could be blocked
212                bool M5_VAR_USED success =
213                    ruby_port->master_ports[i]->sendTimingReq(pkt);
214                assert(success);
215                return true;
216            }
217        }
218    }
219    panic("Should never reach here!\n");
220}
221
222bool
223RubyPort::MemSlavePort::recvTimingReq(PacketPtr pkt)
224{
225    DPRINTF(RubyPort, "Timing request for address %#x on port %d\n",
226            pkt->getAddr(), id);
227    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
228
229    if (pkt->memInhibitAsserted())
230        panic("RubyPort should never see an inhibited request\n");
231
232    // Check for pio requests and directly send them to the dedicated
233    // pio port.
234    if (!isPhysMemAddress(pkt->getAddr())) {
235        assert(ruby_port->memMasterPort.isConnected());
236        DPRINTF(RubyPort, "Request address %#x assumed to be a pio address\n",
237                pkt->getAddr());
238
239        // Save the port in the sender state object to be used later to
240        // route the response
241        pkt->pushSenderState(new SenderState(this));
242
243        // send next cycle
244        ruby_port->memMasterPort.schedTimingReq(pkt,
245            curTick() + g_system_ptr->clockPeriod());
246        return true;
247    }
248
249    // Save the port id to be used later to route the response
250    pkt->setSrc(id);
251
252    assert(Address(pkt->getAddr()).getOffset() + pkt->getSize() <=
253           RubySystem::getBlockSizeBytes());
254
255    // Submit the ruby request
256    RequestStatus requestStatus = ruby_port->makeRequest(pkt);
257
258    // If the request successfully issued then we should return true.
259    // Otherwise, we need to tell the port to retry at a later point
260    // and return false.
261    if (requestStatus == RequestStatus_Issued) {
262        DPRINTF(RubyPort, "Request %s 0x%x issued\n", pkt->cmdString(),
263                pkt->getAddr());
264        return true;
265    }
266
267    //
268    // Unless one is using the ruby tester, record the stalled M5 port for
269    // later retry when the sequencer becomes free.
270    //
271    if (!ruby_port->m_usingRubyTester) {
272        ruby_port->addToRetryList(this);
273    }
274
275    DPRINTF(RubyPort, "Request for address %#x did not issued because %s\n",
276            pkt->getAddr(), RequestStatus_to_string(requestStatus));
277
278    return false;
279}
280
281void
282RubyPort::MemSlavePort::recvFunctional(PacketPtr pkt)
283{
284    DPRINTF(RubyPort, "Functional access for address: %#x\n", pkt->getAddr());
285
286    // Check for pio requests and directly send them to the dedicated
287    // pio port.
288    if (!isPhysMemAddress(pkt->getAddr())) {
289        RubyPort *ruby_port M5_VAR_USED = static_cast<RubyPort *>(&owner);
290        assert(ruby_port->memMasterPort.isConnected());
291        DPRINTF(RubyPort, "Pio Request for address: 0x%#x\n", pkt->getAddr());
292        panic("RubyPort::PioMasterPort::recvFunctional() not implemented!\n");
293    }
294
295    assert(pkt->getAddr() + pkt->getSize() <=
296                line_address(Address(pkt->getAddr())).getAddress() +
297                RubySystem::getBlockSizeBytes());
298
299    bool accessSucceeded = false;
300    bool needsResponse = pkt->needsResponse();
301
302    // Do the functional access on ruby memory
303    if (pkt->isRead()) {
304        accessSucceeded = ruby_system->functionalRead(pkt);
305    } else if (pkt->isWrite()) {
306        accessSucceeded = ruby_system->functionalWrite(pkt);
307    } else {
308        panic("Unsupported functional command %s\n", pkt->cmdString());
309    }
310
311    // Unless the requester explicitly said otherwise, generate an error if
312    // the functional request failed
313    if (!accessSucceeded && !pkt->suppressFuncError()) {
314        fatal("Ruby functional %s failed for address %#x\n",
315              pkt->isWrite() ? "write" : "read", pkt->getAddr());
316    }
317
318    if (access_backing_store) {
319        // The attached physmem contains the official version of data.
320        // The following command performs the real functional access.
321        // This line should be removed once Ruby supplies the official version
322        // of data.
323        ruby_system->getPhysMem()->functionalAccess(pkt);
324    }
325
326    // turn packet around to go back to requester if response expected
327    if (needsResponse) {
328        pkt->setFunctionalResponseStatus(accessSucceeded);
329    }
330
331    DPRINTF(RubyPort, "Functional access %s!\n",
332            accessSucceeded ? "successful":"failed");
333}
334
335void
336RubyPort::ruby_hit_callback(PacketPtr pkt)
337{
338    DPRINTF(RubyPort, "Hit callback for %s 0x%x\n", pkt->cmdString(),
339            pkt->getAddr());
340
341    // The packet was destined for memory and has not yet been turned
342    // into a response
343    assert(system->isMemAddr(pkt->getAddr()));
344    assert(pkt->isRequest());
345
346    // As it has not yet been turned around, the source field tells us
347    // which port it came from.
348    assert(pkt->getSrc() < slave_ports.size());
349
350    slave_ports[pkt->getSrc()]->hitCallback(pkt);
351
352    //
353    // If we had to stall the MemSlavePorts, wake them up because the sequencer
354    // likely has free resources now.
355    //
356    if (!retryList.empty()) {
357        //
358        // Record the current list of ports to retry on a temporary list before
359        // calling sendRetry on those ports.  sendRetry will cause an
360        // immediate retry, which may result in the ports being put back on the
361        // list. Therefore we want to clear the retryList before calling
362        // sendRetry.
363        //
364        std::vector<MemSlavePort *> curRetryList(retryList);
365
366        retryList.clear();
367
368        for (auto i = curRetryList.begin(); i != curRetryList.end(); ++i) {
369            DPRINTF(RubyPort,
370                    "Sequencer may now be free.  SendRetry to port %s\n",
371                    (*i)->name());
372            (*i)->sendRetry();
373        }
374    }
375
376    testDrainComplete();
377}
378
379void
380RubyPort::testDrainComplete()
381{
382    //If we weren't able to drain before, we might be able to now.
383    if (drainManager != NULL) {
384        unsigned int drainCount = outstandingCount();
385        DPRINTF(Drain, "Drain count: %u\n", drainCount);
386        if (drainCount == 0) {
387            DPRINTF(Drain, "RubyPort done draining, signaling drain done\n");
388            drainManager->signalDrainDone();
389            // Clear the drain manager once we're done with it.
390            drainManager = NULL;
391        }
392    }
393}
394
395unsigned int
396RubyPort::getChildDrainCount(DrainManager *dm)
397{
398    int count = 0;
399
400    if (memMasterPort.isConnected()) {
401        count += memMasterPort.drain(dm);
402        DPRINTF(Config, "count after pio check %d\n", count);
403    }
404
405    for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
406        count += (*p)->drain(dm);
407        DPRINTF(Config, "count after slave port check %d\n", count);
408    }
409
410    for (std::vector<PioMasterPort *>::iterator p = master_ports.begin();
411         p != master_ports.end(); ++p) {
412        count += (*p)->drain(dm);
413        DPRINTF(Config, "count after master port check %d\n", count);
414    }
415
416    DPRINTF(Config, "final count %d\n", count);
417    return count;
418}
419
420unsigned int
421RubyPort::drain(DrainManager *dm)
422{
423    if (isDeadlockEventScheduled()) {
424        descheduleDeadlockEvent();
425    }
426
427    //
428    // If the RubyPort is not empty, then it needs to clear all outstanding
429    // requests before it should call drainManager->signalDrainDone()
430    //
431    DPRINTF(Config, "outstanding count %d\n", outstandingCount());
432    bool need_drain = outstandingCount() > 0;
433
434    //
435    // Also, get the number of child ports that will also need to clear
436    // their buffered requests before they call drainManager->signalDrainDone()
437    //
438    unsigned int child_drain_count = getChildDrainCount(dm);
439
440    // Set status
441    if (need_drain) {
442        drainManager = dm;
443
444        DPRINTF(Drain, "RubyPort not drained\n");
445        setDrainState(Drainable::Draining);
446        return child_drain_count + 1;
447    }
448
449    drainManager = NULL;
450    setDrainState(Drainable::Drained);
451    return child_drain_count;
452}
453
454void
455RubyPort::MemSlavePort::hitCallback(PacketPtr pkt)
456{
457    bool needsResponse = pkt->needsResponse();
458
459    // Unless specified at configuraiton, all responses except failed SC
460    // and Flush operations access M5 physical memory.
461    bool accessPhysMem = access_backing_store;
462
463    if (pkt->isLLSC()) {
464        if (pkt->isWrite()) {
465            if (pkt->req->getExtraData() != 0) {
466                //
467                // Successful SC packets convert to normal writes
468                //
469                pkt->convertScToWrite();
470            } else {
471                //
472                // Failed SC packets don't access physical memory and thus
473                // the RubyPort itself must convert it to a response.
474                //
475                accessPhysMem = false;
476            }
477        } else {
478            //
479            // All LL packets convert to normal loads so that M5 PhysMem does
480            // not lock the blocks.
481            //
482            pkt->convertLlToRead();
483        }
484    }
485
486    // Flush requests don't access physical memory
487    if (pkt->isFlush()) {
488        accessPhysMem = false;
489    }
490
491    DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);
492
493    if (accessPhysMem) {
494        ruby_system->getPhysMem()->functionalAccess(pkt);
495    } else if (needsResponse) {
496        pkt->makeResponse();
497    }
498
499    // turn packet around to go back to requester if response expected
500    if (needsResponse) {
501        DPRINTF(RubyPort, "Sending packet back over port\n");
502        // send next cycle
503        schedTimingResp(pkt, curTick() + g_system_ptr->clockPeriod());
504    } else {
505        delete pkt;
506    }
507
508    DPRINTF(RubyPort, "Hit callback done!\n");
509}
510
511AddrRangeList
512RubyPort::PioSlavePort::getAddrRanges() const
513{
514    // at the moment the assumption is that the master does not care
515    AddrRangeList ranges;
516    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
517
518    for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
519        ranges.splice(ranges.begin(),
520                ruby_port->master_ports[i]->getAddrRanges());
521    }
522    for (const auto M5_VAR_USED &r : ranges)
523        DPRINTF(RubyPort, "%s\n", r.to_string());
524    return ranges;
525}
526
527bool
528RubyPort::MemSlavePort::isPhysMemAddress(Addr addr) const
529{
530    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
531    return ruby_port->system->isMemAddr(addr);
532}
533
534void
535RubyPort::ruby_eviction_callback(const Address& address)
536{
537    DPRINTF(RubyPort, "Sending invalidations.\n");
538    // This request is deleted in the stack-allocated packet destructor
539    // when this function exits
540    // TODO: should this really be using funcMasterId?
541    RequestPtr req =
542            new Request(address.getAddress(), 0, 0, Request::funcMasterId);
543    // Use a single packet to signal all snooping ports of the invalidation.
544    // This assumes that snooping ports do NOT modify the packet/request
545    Packet pkt(req, MemCmd::InvalidationReq);
546    for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
547        // check if the connected master port is snooping
548        if ((*p)->isSnooping()) {
549            // send as a snoop request
550            (*p)->sendTimingSnoopReq(&pkt);
551        }
552    }
553}
554
555void
556RubyPort::PioMasterPort::recvRangeChange()
557{
558    RubyPort &r = static_cast<RubyPort &>(owner);
559    r.gotAddrRanges--;
560    if (r.gotAddrRanges == 0 && FullSystem) {
561        r.pioSlavePort.sendRangeChange();
562    }
563}
564