RubyPort.cc revision 10525:77787650cbbc
1/* 2 * Copyright (c) 2012-2013 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2009 Advanced Micro Devices, Inc. 15 * Copyright (c) 2011 Mark D. Hill and David A. Wood 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 */ 41 42#include "cpu/testers/rubytest/RubyTester.hh" 43#include "debug/Config.hh" 44#include "debug/Drain.hh" 45#include "debug/Ruby.hh" 46#include "mem/protocol/AccessPermission.hh" 47#include "mem/ruby/slicc_interface/AbstractController.hh" 48#include "mem/ruby/system/RubyPort.hh" 49#include "mem/simple_mem.hh" 50#include "sim/full_system.hh" 51#include "sim/system.hh" 52 53RubyPort::RubyPort(const Params *p) 54 : MemObject(p), m_version(p->version), m_controller(NULL), 55 m_mandatory_q_ptr(NULL), m_usingRubyTester(p->using_ruby_tester), 56 system(p->system), 57 pioMasterPort(csprintf("%s.pio-master-port", name()), this), 58 pioSlavePort(csprintf("%s.pio-slave-port", name()), this), 59 memMasterPort(csprintf("%s.mem-master-port", name()), this), 60 memSlavePort(csprintf("%s-mem-slave-port", name()), this, 61 p->ruby_system, p->access_backing_store, -1), 62 gotAddrRanges(p->port_master_connection_count), drainManager(NULL) 63{ 64 assert(m_version != -1); 65 66 // create the slave ports based on the number of connected ports 67 for (size_t i = 0; i < p->port_slave_connection_count; ++i) { 68 slave_ports.push_back(new MemSlavePort(csprintf("%s.slave%d", name(), 69 i), this, p->ruby_system, p->access_backing_store, i)); 70 } 71 72 // create the master ports based on the number of connected ports 73 for (size_t i = 0; i < p->port_master_connection_count; ++i) { 74 master_ports.push_back(new PioMasterPort(csprintf("%s.master%d", 75 name(), i), this)); 76 } 77} 78 79void 80RubyPort::init() 81{ 82 assert(m_controller != NULL); 83 m_mandatory_q_ptr = m_controller->getMandatoryQueue(); 84 m_mandatory_q_ptr->setSender(this); 85} 86 87BaseMasterPort & 88RubyPort::getMasterPort(const std::string &if_name, PortID idx) 89{ 90 if (if_name == "mem_master_port") { 91 return memMasterPort; 92 } 93 94 if (if_name == "pio_master_port") { 95 return pioMasterPort; 96 } 97 98 // used by the x86 CPUs to connect the interrupt PIO and interrupt slave 99 // port 100 if (if_name != "master") { 101 // pass it along to our super class 102 return MemObject::getMasterPort(if_name, idx); 103 } else { 104 if (idx >= static_cast<PortID>(master_ports.size())) { 105 panic("RubyPort::getMasterPort: unknown index %d\n", idx); 106 } 107 108 return *master_ports[idx]; 109 } 110} 111 112BaseSlavePort & 113RubyPort::getSlavePort(const std::string &if_name, PortID idx) 114{ 115 if (if_name == "mem_slave_port") { 116 return memSlavePort; 117 } 118 119 if (if_name == "pio_slave_port") 120 return pioSlavePort; 121 122 // used by the CPUs to connect the caches to the interconnect, and 123 // for the x86 case also the interrupt master 124 if (if_name != "slave") { 125 // pass it along to our super class 126 return MemObject::getSlavePort(if_name, idx); 127 } else { 128 if (idx >= static_cast<PortID>(slave_ports.size())) { 129 panic("RubyPort::getSlavePort: unknown index %d\n", idx); 130 } 131 132 return *slave_ports[idx]; 133 } 134} 135 136RubyPort::PioMasterPort::PioMasterPort(const std::string &_name, 137 RubyPort *_port) 138 : QueuedMasterPort(_name, _port, queue), queue(*_port, *this) 139{ 140 DPRINTF(RubyPort, "Created master pioport on sequencer %s\n", _name); 141} 142 143RubyPort::PioSlavePort::PioSlavePort(const std::string &_name, 144 RubyPort *_port) 145 : QueuedSlavePort(_name, _port, queue), queue(*_port, *this) 146{ 147 DPRINTF(RubyPort, "Created slave pioport on sequencer %s\n", _name); 148} 149 150RubyPort::MemMasterPort::MemMasterPort(const std::string &_name, 151 RubyPort *_port) 152 : QueuedMasterPort(_name, _port, queue), queue(*_port, *this) 153{ 154 DPRINTF(RubyPort, "Created master memport on ruby sequencer %s\n", _name); 155} 156 157RubyPort::MemSlavePort::MemSlavePort(const std::string &_name, RubyPort *_port, 158 RubySystem *_system, 159 bool _access_backing_store, PortID id) 160 : QueuedSlavePort(_name, _port, queue, id), queue(*_port, *this), 161 ruby_system(_system), access_backing_store(_access_backing_store) 162{ 163 DPRINTF(RubyPort, "Created slave memport on ruby sequencer %s\n", _name); 164} 165 166bool 167RubyPort::PioMasterPort::recvTimingResp(PacketPtr pkt) 168{ 169 RubyPort *ruby_port = static_cast<RubyPort *>(&owner); 170 DPRINTF(RubyPort, "Response for address: 0x%#x\n", pkt->getAddr()); 171 172 // send next cycle 173 ruby_port->pioSlavePort.schedTimingResp( 174 pkt, curTick() + g_system_ptr->clockPeriod()); 175 return true; 176} 177 178bool RubyPort::MemMasterPort::recvTimingResp(PacketPtr pkt) 179{ 180 // got a response from a device 181 assert(pkt->isResponse()); 182 183 // In FS mode, ruby memory will receive pio responses from devices 184 // and it must forward these responses back to the particular CPU. 185 DPRINTF(RubyPort, "Pio response for address %#x, going to %d\n", 186 pkt->getAddr(), pkt->getDest()); 187 188 // First we must retrieve the request port from the sender State 189 RubyPort::SenderState *senderState = 190 safe_cast<RubyPort::SenderState *>(pkt->popSenderState()); 191 MemSlavePort *port = senderState->port; 192 assert(port != NULL); 193 delete senderState; 194 195 // attempt to send the response in the next cycle 196 port->schedTimingResp(pkt, curTick() + g_system_ptr->clockPeriod()); 197 198 return true; 199} 200 201bool 202RubyPort::PioSlavePort::recvTimingReq(PacketPtr pkt) 203{ 204 RubyPort *ruby_port = static_cast<RubyPort *>(&owner); 205 206 for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) { 207 AddrRangeList l = ruby_port->master_ports[i]->getAddrRanges(); 208 for (auto it = l.begin(); it != l.end(); ++it) { 209 if (it->contains(pkt->getAddr())) { 210 // generally it is not safe to assume success here as 211 // the port could be blocked 212 bool M5_VAR_USED success = 213 ruby_port->master_ports[i]->sendTimingReq(pkt); 214 assert(success); 215 return true; 216 } 217 } 218 } 219 panic("Should never reach here!\n"); 220} 221 222bool 223RubyPort::MemSlavePort::recvTimingReq(PacketPtr pkt) 224{ 225 DPRINTF(RubyPort, "Timing request for address %#x on port %d\n", 226 pkt->getAddr(), id); 227 RubyPort *ruby_port = static_cast<RubyPort *>(&owner); 228 229 if (pkt->memInhibitAsserted()) 230 panic("RubyPort should never see an inhibited request\n"); 231 232 // Check for pio requests and directly send them to the dedicated 233 // pio port. 234 if (!isPhysMemAddress(pkt->getAddr())) { 235 assert(ruby_port->memMasterPort.isConnected()); 236 DPRINTF(RubyPort, "Request address %#x assumed to be a pio address\n", 237 pkt->getAddr()); 238 239 // Save the port in the sender state object to be used later to 240 // route the response 241 pkt->pushSenderState(new SenderState(this)); 242 243 // send next cycle 244 ruby_port->memMasterPort.schedTimingReq(pkt, 245 curTick() + g_system_ptr->clockPeriod()); 246 return true; 247 } 248 249 // Save the port id to be used later to route the response 250 pkt->setSrc(id); 251 252 assert(Address(pkt->getAddr()).getOffset() + pkt->getSize() <= 253 RubySystem::getBlockSizeBytes()); 254 255 // Submit the ruby request 256 RequestStatus requestStatus = ruby_port->makeRequest(pkt); 257 258 // If the request successfully issued then we should return true. 259 // Otherwise, we need to tell the port to retry at a later point 260 // and return false. 261 if (requestStatus == RequestStatus_Issued) { 262 DPRINTF(RubyPort, "Request %s 0x%x issued\n", pkt->cmdString(), 263 pkt->getAddr()); 264 return true; 265 } 266 267 // 268 // Unless one is using the ruby tester, record the stalled M5 port for 269 // later retry when the sequencer becomes free. 270 // 271 if (!ruby_port->m_usingRubyTester) { 272 ruby_port->addToRetryList(this); 273 } 274 275 DPRINTF(RubyPort, "Request for address %#x did not issued because %s\n", 276 pkt->getAddr(), RequestStatus_to_string(requestStatus)); 277 278 return false; 279} 280 281void 282RubyPort::MemSlavePort::recvFunctional(PacketPtr pkt) 283{ 284 DPRINTF(RubyPort, "Functional access for address: %#x\n", pkt->getAddr()); 285 286 // Check for pio requests and directly send them to the dedicated 287 // pio port. 288 if (!isPhysMemAddress(pkt->getAddr())) { 289 RubyPort *ruby_port M5_VAR_USED = static_cast<RubyPort *>(&owner); 290 assert(ruby_port->memMasterPort.isConnected()); 291 DPRINTF(RubyPort, "Pio Request for address: 0x%#x\n", pkt->getAddr()); 292 panic("RubyPort::PioMasterPort::recvFunctional() not implemented!\n"); 293 } 294 295 assert(pkt->getAddr() + pkt->getSize() <= 296 line_address(Address(pkt->getAddr())).getAddress() + 297 RubySystem::getBlockSizeBytes()); 298 299 bool accessSucceeded = false; 300 bool needsResponse = pkt->needsResponse(); 301 302 // Do the functional access on ruby memory 303 if (pkt->isRead()) { 304 accessSucceeded = ruby_system->functionalRead(pkt); 305 } else if (pkt->isWrite()) { 306 accessSucceeded = ruby_system->functionalWrite(pkt); 307 } else { 308 panic("Unsupported functional command %s\n", pkt->cmdString()); 309 } 310 311 // Unless the requester explicitly said otherwise, generate an error if 312 // the functional request failed 313 if (!accessSucceeded && !pkt->suppressFuncError()) { 314 fatal("Ruby functional %s failed for address %#x\n", 315 pkt->isWrite() ? "write" : "read", pkt->getAddr()); 316 } 317 318 if (access_backing_store) { 319 // The attached physmem contains the official version of data. 320 // The following command performs the real functional access. 321 // This line should be removed once Ruby supplies the official version 322 // of data. 323 ruby_system->getPhysMem()->functionalAccess(pkt); 324 } 325 326 // turn packet around to go back to requester if response expected 327 if (needsResponse) { 328 pkt->setFunctionalResponseStatus(accessSucceeded); 329 } 330 331 DPRINTF(RubyPort, "Functional access %s!\n", 332 accessSucceeded ? "successful":"failed"); 333} 334 335void 336RubyPort::ruby_hit_callback(PacketPtr pkt) 337{ 338 DPRINTF(RubyPort, "Hit callback for %s 0x%x\n", pkt->cmdString(), 339 pkt->getAddr()); 340 341 // The packet was destined for memory and has not yet been turned 342 // into a response 343 assert(system->isMemAddr(pkt->getAddr())); 344 assert(pkt->isRequest()); 345 346 // As it has not yet been turned around, the source field tells us 347 // which port it came from. 348 assert(pkt->getSrc() < slave_ports.size()); 349 350 slave_ports[pkt->getSrc()]->hitCallback(pkt); 351 352 // 353 // If we had to stall the MemSlavePorts, wake them up because the sequencer 354 // likely has free resources now. 355 // 356 if (!retryList.empty()) { 357 // 358 // Record the current list of ports to retry on a temporary list before 359 // calling sendRetry on those ports. sendRetry will cause an 360 // immediate retry, which may result in the ports being put back on the 361 // list. Therefore we want to clear the retryList before calling 362 // sendRetry. 363 // 364 std::vector<MemSlavePort *> curRetryList(retryList); 365 366 retryList.clear(); 367 368 for (auto i = curRetryList.begin(); i != curRetryList.end(); ++i) { 369 DPRINTF(RubyPort, 370 "Sequencer may now be free. SendRetry to port %s\n", 371 (*i)->name()); 372 (*i)->sendRetry(); 373 } 374 } 375 376 testDrainComplete(); 377} 378 379void 380RubyPort::testDrainComplete() 381{ 382 //If we weren't able to drain before, we might be able to now. 383 if (drainManager != NULL) { 384 unsigned int drainCount = outstandingCount(); 385 DPRINTF(Drain, "Drain count: %u\n", drainCount); 386 if (drainCount == 0) { 387 DPRINTF(Drain, "RubyPort done draining, signaling drain done\n"); 388 drainManager->signalDrainDone(); 389 // Clear the drain manager once we're done with it. 390 drainManager = NULL; 391 } 392 } 393} 394 395unsigned int 396RubyPort::getChildDrainCount(DrainManager *dm) 397{ 398 int count = 0; 399 400 if (memMasterPort.isConnected()) { 401 count += memMasterPort.drain(dm); 402 DPRINTF(Config, "count after pio check %d\n", count); 403 } 404 405 for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) { 406 count += (*p)->drain(dm); 407 DPRINTF(Config, "count after slave port check %d\n", count); 408 } 409 410 for (std::vector<PioMasterPort *>::iterator p = master_ports.begin(); 411 p != master_ports.end(); ++p) { 412 count += (*p)->drain(dm); 413 DPRINTF(Config, "count after master port check %d\n", count); 414 } 415 416 DPRINTF(Config, "final count %d\n", count); 417 return count; 418} 419 420unsigned int 421RubyPort::drain(DrainManager *dm) 422{ 423 if (isDeadlockEventScheduled()) { 424 descheduleDeadlockEvent(); 425 } 426 427 // 428 // If the RubyPort is not empty, then it needs to clear all outstanding 429 // requests before it should call drainManager->signalDrainDone() 430 // 431 DPRINTF(Config, "outstanding count %d\n", outstandingCount()); 432 bool need_drain = outstandingCount() > 0; 433 434 // 435 // Also, get the number of child ports that will also need to clear 436 // their buffered requests before they call drainManager->signalDrainDone() 437 // 438 unsigned int child_drain_count = getChildDrainCount(dm); 439 440 // Set status 441 if (need_drain) { 442 drainManager = dm; 443 444 DPRINTF(Drain, "RubyPort not drained\n"); 445 setDrainState(Drainable::Draining); 446 return child_drain_count + 1; 447 } 448 449 drainManager = NULL; 450 setDrainState(Drainable::Drained); 451 return child_drain_count; 452} 453 454void 455RubyPort::MemSlavePort::hitCallback(PacketPtr pkt) 456{ 457 bool needsResponse = pkt->needsResponse(); 458 459 // Unless specified at configuraiton, all responses except failed SC 460 // and Flush operations access M5 physical memory. 461 bool accessPhysMem = access_backing_store; 462 463 if (pkt->isLLSC()) { 464 if (pkt->isWrite()) { 465 if (pkt->req->getExtraData() != 0) { 466 // 467 // Successful SC packets convert to normal writes 468 // 469 pkt->convertScToWrite(); 470 } else { 471 // 472 // Failed SC packets don't access physical memory and thus 473 // the RubyPort itself must convert it to a response. 474 // 475 accessPhysMem = false; 476 } 477 } else { 478 // 479 // All LL packets convert to normal loads so that M5 PhysMem does 480 // not lock the blocks. 481 // 482 pkt->convertLlToRead(); 483 } 484 } 485 486 // Flush requests don't access physical memory 487 if (pkt->isFlush()) { 488 accessPhysMem = false; 489 } 490 491 DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse); 492 493 if (accessPhysMem) { 494 ruby_system->getPhysMem()->functionalAccess(pkt); 495 } else if (needsResponse) { 496 pkt->makeResponse(); 497 } 498 499 // turn packet around to go back to requester if response expected 500 if (needsResponse) { 501 DPRINTF(RubyPort, "Sending packet back over port\n"); 502 // send next cycle 503 schedTimingResp(pkt, curTick() + g_system_ptr->clockPeriod()); 504 } else { 505 delete pkt; 506 } 507 508 DPRINTF(RubyPort, "Hit callback done!\n"); 509} 510 511AddrRangeList 512RubyPort::PioSlavePort::getAddrRanges() const 513{ 514 // at the moment the assumption is that the master does not care 515 AddrRangeList ranges; 516 RubyPort *ruby_port = static_cast<RubyPort *>(&owner); 517 518 for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) { 519 ranges.splice(ranges.begin(), 520 ruby_port->master_ports[i]->getAddrRanges()); 521 } 522 for (const auto M5_VAR_USED &r : ranges) 523 DPRINTF(RubyPort, "%s\n", r.to_string()); 524 return ranges; 525} 526 527bool 528RubyPort::MemSlavePort::isPhysMemAddress(Addr addr) const 529{ 530 RubyPort *ruby_port = static_cast<RubyPort *>(&owner); 531 return ruby_port->system->isMemAddr(addr); 532} 533 534void 535RubyPort::ruby_eviction_callback(const Address& address) 536{ 537 DPRINTF(RubyPort, "Sending invalidations.\n"); 538 // This request is deleted in the stack-allocated packet destructor 539 // when this function exits 540 // TODO: should this really be using funcMasterId? 541 RequestPtr req = 542 new Request(address.getAddress(), 0, 0, Request::funcMasterId); 543 // Use a single packet to signal all snooping ports of the invalidation. 544 // This assumes that snooping ports do NOT modify the packet/request 545 Packet pkt(req, MemCmd::InvalidationReq); 546 for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) { 547 // check if the connected master port is snooping 548 if ((*p)->isSnooping()) { 549 // send as a snoop request 550 (*p)->sendTimingSnoopReq(&pkt); 551 } 552 } 553} 554 555void 556RubyPort::PioMasterPort::recvRangeChange() 557{ 558 RubyPort &r = static_cast<RubyPort &>(owner); 559 r.gotAddrRanges--; 560 if (r.gotAddrRanges == 0 && FullSystem) { 561 r.pioSlavePort.sendRangeChange(); 562 } 563} 564