RubyPort.cc revision 10481:59fb5779ec6e
1/*
2 * Copyright (c) 2012-2013 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2009 Advanced Micro Devices, Inc.
15 * Copyright (c) 2011 Mark D. Hill and David A. Wood
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42#include "cpu/testers/rubytest/RubyTester.hh"
43#include "debug/Config.hh"
44#include "debug/Drain.hh"
45#include "debug/Ruby.hh"
46#include "mem/protocol/AccessPermission.hh"
47#include "mem/ruby/slicc_interface/AbstractController.hh"
48#include "mem/ruby/system/RubyPort.hh"
49#include "sim/full_system.hh"
50#include "sim/system.hh"
51
52RubyPort::RubyPort(const Params *p)
53    : MemObject(p), m_version(p->version), m_controller(NULL),
54      m_mandatory_q_ptr(NULL), m_usingRubyTester(p->using_ruby_tester),
55      system(p->system),
56      pioMasterPort(csprintf("%s.pio-master-port", name()), this),
57      pioSlavePort(csprintf("%s.pio-slave-port", name()), this),
58      memMasterPort(csprintf("%s.mem-master-port", name()), this),
59      memSlavePort(csprintf("%s-mem-slave-port", name()), this,
60          p->ruby_system, p->access_phys_mem, -1),
61      gotAddrRanges(p->port_master_connection_count), drainManager(NULL),
62      access_phys_mem(p->access_phys_mem)
63{
64    assert(m_version != -1);
65
66    // create the slave ports based on the number of connected ports
67    for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
68        slave_ports.push_back(new MemSlavePort(csprintf("%s.slave%d", name(),
69            i), this, p->ruby_system, access_phys_mem, i));
70    }
71
72    // create the master ports based on the number of connected ports
73    for (size_t i = 0; i < p->port_master_connection_count; ++i) {
74        master_ports.push_back(new PioMasterPort(csprintf("%s.master%d",
75            name(), i), this));
76    }
77}
78
79void
80RubyPort::init()
81{
82    assert(m_controller != NULL);
83    m_mandatory_q_ptr = m_controller->getMandatoryQueue();
84    m_mandatory_q_ptr->setSender(this);
85}
86
87BaseMasterPort &
88RubyPort::getMasterPort(const std::string &if_name, PortID idx)
89{
90    if (if_name == "mem_master_port") {
91        return memMasterPort;
92    }
93
94    if (if_name == "pio_master_port") {
95        return pioMasterPort;
96    }
97
98    // used by the x86 CPUs to connect the interrupt PIO and interrupt slave
99    // port
100    if (if_name != "master") {
101        // pass it along to our super class
102        return MemObject::getMasterPort(if_name, idx);
103    } else {
104        if (idx >= static_cast<PortID>(master_ports.size())) {
105            panic("RubyPort::getMasterPort: unknown index %d\n", idx);
106        }
107
108        return *master_ports[idx];
109    }
110}
111
112BaseSlavePort &
113RubyPort::getSlavePort(const std::string &if_name, PortID idx)
114{
115    if (if_name == "mem_slave_port") {
116        return memSlavePort;
117    }
118
119    if (if_name == "pio_slave_port")
120        return pioSlavePort;
121
122    // used by the CPUs to connect the caches to the interconnect, and
123    // for the x86 case also the interrupt master
124    if (if_name != "slave") {
125        // pass it along to our super class
126        return MemObject::getSlavePort(if_name, idx);
127    } else {
128        if (idx >= static_cast<PortID>(slave_ports.size())) {
129            panic("RubyPort::getSlavePort: unknown index %d\n", idx);
130        }
131
132        return *slave_ports[idx];
133    }
134}
135
136RubyPort::PioMasterPort::PioMasterPort(const std::string &_name,
137                           RubyPort *_port)
138    : QueuedMasterPort(_name, _port, queue), queue(*_port, *this)
139{
140    DPRINTF(RubyPort, "Created master pioport on sequencer %s\n", _name);
141}
142
143RubyPort::PioSlavePort::PioSlavePort(const std::string &_name,
144                           RubyPort *_port)
145    : QueuedSlavePort(_name, _port, queue), queue(*_port, *this)
146{
147    DPRINTF(RubyPort, "Created slave pioport on sequencer %s\n", _name);
148}
149
150RubyPort::MemMasterPort::MemMasterPort(const std::string &_name,
151                           RubyPort *_port)
152    : QueuedMasterPort(_name, _port, queue), queue(*_port, *this)
153{
154    DPRINTF(RubyPort, "Created master memport on ruby sequencer %s\n", _name);
155}
156
157RubyPort::MemSlavePort::MemSlavePort(const std::string &_name, RubyPort *_port,
158                         RubySystem *_system, bool _access_phys_mem, PortID id)
159    : QueuedSlavePort(_name, _port, queue, id), queue(*_port, *this),
160      ruby_system(_system), access_phys_mem(_access_phys_mem)
161{
162    DPRINTF(RubyPort, "Created slave memport on ruby sequencer %s\n", _name);
163}
164
165bool
166RubyPort::PioMasterPort::recvTimingResp(PacketPtr pkt)
167{
168    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
169    DPRINTF(RubyPort, "Response for address: 0x%#x\n", pkt->getAddr());
170
171    // send next cycle
172    ruby_port->pioSlavePort.schedTimingResp(
173            pkt, curTick() + g_system_ptr->clockPeriod());
174    return true;
175}
176
177bool RubyPort::MemMasterPort::recvTimingResp(PacketPtr pkt)
178{
179    // got a response from a device
180    assert(pkt->isResponse());
181
182    // In FS mode, ruby memory will receive pio responses from devices
183    // and it must forward these responses back to the particular CPU.
184    DPRINTF(RubyPort,  "Pio response for address %#x, going to %d\n",
185            pkt->getAddr(), pkt->getDest());
186
187    // First we must retrieve the request port from the sender State
188    RubyPort::SenderState *senderState =
189        safe_cast<RubyPort::SenderState *>(pkt->popSenderState());
190    MemSlavePort *port = senderState->port;
191    assert(port != NULL);
192    delete senderState;
193
194    // attempt to send the response in the next cycle
195    port->schedTimingResp(pkt, curTick() + g_system_ptr->clockPeriod());
196
197    return true;
198}
199
200bool
201RubyPort::PioSlavePort::recvTimingReq(PacketPtr pkt)
202{
203    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
204
205    for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
206        AddrRangeList l = ruby_port->master_ports[i]->getAddrRanges();
207        for (auto it = l.begin(); it != l.end(); ++it) {
208            if (it->contains(pkt->getAddr())) {
209                // generally it is not safe to assume success here as
210                // the port could be blocked
211                bool M5_VAR_USED success =
212                    ruby_port->master_ports[i]->sendTimingReq(pkt);
213                assert(success);
214                return true;
215            }
216        }
217    }
218    panic("Should never reach here!\n");
219}
220
221bool
222RubyPort::MemSlavePort::recvTimingReq(PacketPtr pkt)
223{
224    DPRINTF(RubyPort, "Timing request for address %#x on port %d\n",
225            pkt->getAddr(), id);
226    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
227
228    if (pkt->memInhibitAsserted())
229        panic("RubyPort should never see an inhibited request\n");
230
231    // Check for pio requests and directly send them to the dedicated
232    // pio port.
233    if (!isPhysMemAddress(pkt->getAddr())) {
234        assert(ruby_port->memMasterPort.isConnected());
235        DPRINTF(RubyPort, "Request address %#x assumed to be a pio address\n",
236                pkt->getAddr());
237
238        // Save the port in the sender state object to be used later to
239        // route the response
240        pkt->pushSenderState(new SenderState(this));
241
242        // send next cycle
243        ruby_port->memMasterPort.schedTimingReq(pkt,
244            curTick() + g_system_ptr->clockPeriod());
245        return true;
246    }
247
248    // Save the port id to be used later to route the response
249    pkt->setSrc(id);
250
251    assert(Address(pkt->getAddr()).getOffset() + pkt->getSize() <=
252           RubySystem::getBlockSizeBytes());
253
254    // Submit the ruby request
255    RequestStatus requestStatus = ruby_port->makeRequest(pkt);
256
257    // If the request successfully issued then we should return true.
258    // Otherwise, we need to tell the port to retry at a later point
259    // and return false.
260    if (requestStatus == RequestStatus_Issued) {
261        DPRINTF(RubyPort, "Request %s 0x%x issued\n", pkt->cmdString(),
262                pkt->getAddr());
263        return true;
264    }
265
266    //
267    // Unless one is using the ruby tester, record the stalled M5 port for
268    // later retry when the sequencer becomes free.
269    //
270    if (!ruby_port->m_usingRubyTester) {
271        ruby_port->addToRetryList(this);
272    }
273
274    DPRINTF(RubyPort, "Request for address %#x did not issued because %s\n",
275            pkt->getAddr(), RequestStatus_to_string(requestStatus));
276
277    return false;
278}
279
280void
281RubyPort::MemSlavePort::recvFunctional(PacketPtr pkt)
282{
283    DPRINTF(RubyPort, "Functional access for address: %#x\n", pkt->getAddr());
284    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
285
286    // Check for pio requests and directly send them to the dedicated
287    // pio port.
288    if (!isPhysMemAddress(pkt->getAddr())) {
289        assert(ruby_port->memMasterPort.isConnected());
290        DPRINTF(RubyPort, "Pio Request for address: 0x%#x\n", pkt->getAddr());
291        panic("RubyPort::PioMasterPort::recvFunctional() not implemented!\n");
292    }
293
294    assert(pkt->getAddr() + pkt->getSize() <=
295                line_address(Address(pkt->getAddr())).getAddress() +
296                RubySystem::getBlockSizeBytes());
297
298    bool accessSucceeded = false;
299    bool needsResponse = pkt->needsResponse();
300
301    // Do the functional access on ruby memory
302    if (pkt->isRead()) {
303        accessSucceeded = ruby_system->functionalRead(pkt);
304    } else if (pkt->isWrite()) {
305        accessSucceeded = ruby_system->functionalWrite(pkt);
306    } else {
307        panic("Unsupported functional command %s\n", pkt->cmdString());
308    }
309
310    // Unless the requester explicitly said otherwise, generate an error if
311    // the functional request failed
312    if (!accessSucceeded && !pkt->suppressFuncError()) {
313        fatal("Ruby functional %s failed for address %#x\n",
314              pkt->isWrite() ? "write" : "read", pkt->getAddr());
315    }
316
317    if (access_phys_mem) {
318        // The attached physmem contains the official version of data.
319        // The following command performs the real functional access.
320        // This line should be removed once Ruby supplies the official version
321        // of data.
322        ruby_port->system->getPhysMem().functionalAccess(pkt);
323    }
324
325    // turn packet around to go back to requester if response expected
326    if (needsResponse) {
327        pkt->setFunctionalResponseStatus(accessSucceeded);
328
329        // @todo There should not be a reverse call since the response is
330        // communicated through the packet pointer
331        // DPRINTF(RubyPort, "Sending packet back over port\n");
332        // sendFunctional(pkt);
333    }
334    DPRINTF(RubyPort, "Functional access %s!\n",
335            accessSucceeded ? "successful":"failed");
336}
337
338void
339RubyPort::ruby_hit_callback(PacketPtr pkt)
340{
341    DPRINTF(RubyPort, "Hit callback for %s 0x%x\n", pkt->cmdString(),
342            pkt->getAddr());
343
344    // The packet was destined for memory and has not yet been turned
345    // into a response
346    assert(system->isMemAddr(pkt->getAddr()));
347    assert(pkt->isRequest());
348
349    // As it has not yet been turned around, the source field tells us
350    // which port it came from.
351    assert(pkt->getSrc() < slave_ports.size());
352
353    slave_ports[pkt->getSrc()]->hitCallback(pkt);
354
355    //
356    // If we had to stall the MemSlavePorts, wake them up because the sequencer
357    // likely has free resources now.
358    //
359    if (!retryList.empty()) {
360        //
361        // Record the current list of ports to retry on a temporary list before
362        // calling sendRetry on those ports.  sendRetry will cause an
363        // immediate retry, which may result in the ports being put back on the
364        // list. Therefore we want to clear the retryList before calling
365        // sendRetry.
366        //
367        std::vector<MemSlavePort *> curRetryList(retryList);
368
369        retryList.clear();
370
371        for (auto i = curRetryList.begin(); i != curRetryList.end(); ++i) {
372            DPRINTF(RubyPort,
373                    "Sequencer may now be free.  SendRetry to port %s\n",
374                    (*i)->name());
375            (*i)->sendRetry();
376        }
377    }
378
379    testDrainComplete();
380}
381
382void
383RubyPort::testDrainComplete()
384{
385    //If we weren't able to drain before, we might be able to now.
386    if (drainManager != NULL) {
387        unsigned int drainCount = outstandingCount();
388        DPRINTF(Drain, "Drain count: %u\n", drainCount);
389        if (drainCount == 0) {
390            DPRINTF(Drain, "RubyPort done draining, signaling drain done\n");
391            drainManager->signalDrainDone();
392            // Clear the drain manager once we're done with it.
393            drainManager = NULL;
394        }
395    }
396}
397
398unsigned int
399RubyPort::getChildDrainCount(DrainManager *dm)
400{
401    int count = 0;
402
403    if (memMasterPort.isConnected()) {
404        count += memMasterPort.drain(dm);
405        DPRINTF(Config, "count after pio check %d\n", count);
406    }
407
408    for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
409        count += (*p)->drain(dm);
410        DPRINTF(Config, "count after slave port check %d\n", count);
411    }
412
413    for (std::vector<PioMasterPort *>::iterator p = master_ports.begin();
414         p != master_ports.end(); ++p) {
415        count += (*p)->drain(dm);
416        DPRINTF(Config, "count after master port check %d\n", count);
417    }
418
419    DPRINTF(Config, "final count %d\n", count);
420    return count;
421}
422
423unsigned int
424RubyPort::drain(DrainManager *dm)
425{
426    if (isDeadlockEventScheduled()) {
427        descheduleDeadlockEvent();
428    }
429
430    //
431    // If the RubyPort is not empty, then it needs to clear all outstanding
432    // requests before it should call drainManager->signalDrainDone()
433    //
434    DPRINTF(Config, "outstanding count %d\n", outstandingCount());
435    bool need_drain = outstandingCount() > 0;
436
437    //
438    // Also, get the number of child ports that will also need to clear
439    // their buffered requests before they call drainManager->signalDrainDone()
440    //
441    unsigned int child_drain_count = getChildDrainCount(dm);
442
443    // Set status
444    if (need_drain) {
445        drainManager = dm;
446
447        DPRINTF(Drain, "RubyPort not drained\n");
448        setDrainState(Drainable::Draining);
449        return child_drain_count + 1;
450    }
451
452    drainManager = NULL;
453    setDrainState(Drainable::Drained);
454    return child_drain_count;
455}
456
457void
458RubyPort::MemSlavePort::hitCallback(PacketPtr pkt)
459{
460    bool needsResponse = pkt->needsResponse();
461
462    //
463    // Unless specified at configuraiton, all responses except failed SC
464    // and Flush operations access M5 physical memory.
465    //
466    bool accessPhysMem = access_phys_mem;
467
468    if (pkt->isLLSC()) {
469        if (pkt->isWrite()) {
470            if (pkt->req->getExtraData() != 0) {
471                //
472                // Successful SC packets convert to normal writes
473                //
474                pkt->convertScToWrite();
475            } else {
476                //
477                // Failed SC packets don't access physical memory and thus
478                // the RubyPort itself must convert it to a response.
479                //
480                accessPhysMem = false;
481            }
482        } else {
483            //
484            // All LL packets convert to normal loads so that M5 PhysMem does
485            // not lock the blocks.
486            //
487            pkt->convertLlToRead();
488        }
489    }
490
491    //
492    // Flush requests don't access physical memory
493    //
494    if (pkt->isFlush()) {
495        accessPhysMem = false;
496    }
497
498    DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);
499
500    if (accessPhysMem) {
501        RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
502        ruby_port->system->getPhysMem().access(pkt);
503    } else if (needsResponse) {
504        pkt->makeResponse();
505    }
506
507    // turn packet around to go back to requester if response expected
508    if (needsResponse) {
509        DPRINTF(RubyPort, "Sending packet back over port\n");
510        // send next cycle
511        schedTimingResp(pkt, curTick() + g_system_ptr->clockPeriod());
512    } else {
513        delete pkt;
514    }
515    DPRINTF(RubyPort, "Hit callback done!\n");
516}
517
518AddrRangeList
519RubyPort::PioSlavePort::getAddrRanges() const
520{
521    // at the moment the assumption is that the master does not care
522    AddrRangeList ranges;
523    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
524
525    for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
526        ranges.splice(ranges.begin(),
527                ruby_port->master_ports[i]->getAddrRanges());
528    }
529    for (const auto M5_VAR_USED &r : ranges)
530        DPRINTF(RubyPort, "%s\n", r.to_string());
531    return ranges;
532}
533
534bool
535RubyPort::MemSlavePort::isPhysMemAddress(Addr addr) const
536{
537    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
538    return ruby_port->system->isMemAddr(addr);
539}
540
541void
542RubyPort::ruby_eviction_callback(const Address& address)
543{
544    DPRINTF(RubyPort, "Sending invalidations.\n");
545    // This request is deleted in the stack-allocated packet destructor
546    // when this function exits
547    // TODO: should this really be using funcMasterId?
548    RequestPtr req =
549            new Request(address.getAddress(), 0, 0, Request::funcMasterId);
550    // Use a single packet to signal all snooping ports of the invalidation.
551    // This assumes that snooping ports do NOT modify the packet/request
552    Packet pkt(req, MemCmd::InvalidationReq);
553    for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
554        // check if the connected master port is snooping
555        if ((*p)->isSnooping()) {
556            // send as a snoop request
557            (*p)->sendTimingSnoopReq(&pkt);
558        }
559    }
560}
561
562void
563RubyPort::PioMasterPort::recvRangeChange()
564{
565    RubyPort &r = static_cast<RubyPort &>(owner);
566    r.gotAddrRanges--;
567    if (r.gotAddrRanges == 0 && FullSystem) {
568        r.pioSlavePort.sendRangeChange();
569    }
570}
571