RubyPort.cc revision 10089:bc3126a05a7f
1/* 2 * Copyright (c) 2012-2013 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2009 Advanced Micro Devices, Inc. 15 * Copyright (c) 2011 Mark D. Hill and David A. Wood 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 */ 41 42#include "cpu/testers/rubytest/RubyTester.hh" 43#include "debug/Config.hh" 44#include "debug/Drain.hh" 45#include "debug/Ruby.hh" 46#include "mem/protocol/AccessPermission.hh" 47#include "mem/ruby/slicc_interface/AbstractController.hh" 48#include "mem/ruby/system/RubyPort.hh" 49#include "sim/system.hh" 50 51RubyPort::RubyPort(const Params *p) 52 : MemObject(p), m_version(p->version), m_controller(NULL), 53 m_mandatory_q_ptr(NULL), 54 pio_port(csprintf("%s-pio-port", name()), this), 55 m_usingRubyTester(p->using_ruby_tester), 56 drainManager(NULL), ruby_system(p->ruby_system), system(p->system), 57 access_phys_mem(p->access_phys_mem) 58{ 59 assert(m_version != -1); 60 61 // create the slave ports based on the number of connected ports 62 for (size_t i = 0; i < p->port_slave_connection_count; ++i) { 63 slave_ports.push_back(new M5Port(csprintf("%s-slave%d", name(), i), 64 this, ruby_system, 65 access_phys_mem, i)); 66 } 67 68 // create the master ports based on the number of connected ports 69 for (size_t i = 0; i < p->port_master_connection_count; ++i) { 70 master_ports.push_back(new PioPort(csprintf("%s-master%d", name(), i), 71 this)); 72 } 73} 74 75void 76RubyPort::init() 77{ 78 assert(m_controller != NULL); 79 m_mandatory_q_ptr = m_controller->getMandatoryQueue(); 80 m_mandatory_q_ptr->setSender(this); 81} 82 83BaseMasterPort & 84RubyPort::getMasterPort(const std::string &if_name, PortID idx) 85{ 86 if (if_name == "pio_port") { 87 return pio_port; 88 } 89 90 // used by the x86 CPUs to connect the interrupt PIO and interrupt slave 91 // port 92 if (if_name != "master") { 93 // pass it along to our super class 94 return MemObject::getMasterPort(if_name, idx); 95 } else { 96 if (idx >= static_cast<PortID>(master_ports.size())) { 97 panic("RubyPort::getMasterPort: unknown index %d\n", idx); 98 } 99 100 return *master_ports[idx]; 101 } 102} 103 104BaseSlavePort & 105RubyPort::getSlavePort(const std::string &if_name, PortID idx) 106{ 107 // used by the CPUs to connect the caches to the interconnect, and 108 // for the x86 case also the interrupt master 109 if (if_name != "slave") { 110 // pass it along to our super class 111 return MemObject::getSlavePort(if_name, idx); 112 } else { 113 if (idx >= static_cast<PortID>(slave_ports.size())) { 114 panic("RubyPort::getSlavePort: unknown index %d\n", idx); 115 } 116 117 return *slave_ports[idx]; 118 } 119} 120 121RubyPort::PioPort::PioPort(const std::string &_name, 122 RubyPort *_port) 123 : QueuedMasterPort(_name, _port, queue), queue(*_port, *this), 124 ruby_port(_port) 125{ 126 DPRINTF(RubyPort, "creating master port on ruby sequencer %s\n", _name); 127} 128 129RubyPort::M5Port::M5Port(const std::string &_name, RubyPort *_port, 130 RubySystem *_system, bool _access_phys_mem, PortID id) 131 : QueuedSlavePort(_name, _port, queue, id), queue(*_port, *this), 132 ruby_port(_port), ruby_system(_system), 133 access_phys_mem(_access_phys_mem) 134{ 135 DPRINTF(RubyPort, "creating slave port on ruby sequencer %s\n", _name); 136} 137 138Tick 139RubyPort::M5Port::recvAtomic(PacketPtr pkt) 140{ 141 panic("RubyPort::M5Port::recvAtomic() not implemented!\n"); 142 return 0; 143} 144 145bool 146RubyPort::recvTimingResp(PacketPtr pkt, PortID master_port_id) 147{ 148 // got a response from a device 149 assert(pkt->isResponse()); 150 151 // In FS mode, ruby memory will receive pio responses from devices 152 // and it must forward these responses back to the particular CPU. 153 DPRINTF(RubyPort, "Pio response for address %#x, going to %d\n", 154 pkt->getAddr(), pkt->getDest()); 155 156 // Retrieve the port from the destination field 157 assert(pkt->getDest() < slave_ports.size()); 158 159 // attempt to send the response in the next cycle 160 slave_ports[pkt->getDest()]->schedTimingResp(pkt, curTick() + 161 g_system_ptr->clockPeriod()); 162 163 return true; 164} 165 166bool 167RubyPort::M5Port::recvTimingReq(PacketPtr pkt) 168{ 169 DPRINTF(RubyPort, 170 "Timing access for address %#x on port %d\n", pkt->getAddr(), 171 id); 172 173 if (pkt->memInhibitAsserted()) 174 panic("RubyPort should never see an inhibited request\n"); 175 176 // Save the port id to be used later to route the response 177 pkt->setSrc(id); 178 179 // Check for pio requests and directly send them to the dedicated 180 // pio port. 181 if (!isPhysMemAddress(pkt->getAddr())) { 182 assert(ruby_port->pio_port.isConnected()); 183 DPRINTF(RubyPort, 184 "Request for address 0x%#x is assumed to be a pio request\n", 185 pkt->getAddr()); 186 187 // send next cycle 188 ruby_port->pio_port.schedTimingReq(pkt, 189 curTick() + g_system_ptr->clockPeriod()); 190 return true; 191 } 192 193 assert(Address(pkt->getAddr()).getOffset() + pkt->getSize() <= 194 RubySystem::getBlockSizeBytes()); 195 196 // Submit the ruby request 197 RequestStatus requestStatus = ruby_port->makeRequest(pkt); 198 199 // If the request successfully issued then we should return true. 200 // Otherwise, we need to tell the port to retry at a later point 201 // and return false. 202 if (requestStatus == RequestStatus_Issued) { 203 DPRINTF(RubyPort, "Request %s 0x%x issued\n", pkt->cmdString(), 204 pkt->getAddr()); 205 return true; 206 } 207 208 // 209 // Unless one is using the ruby tester, record the stalled M5 port for 210 // later retry when the sequencer becomes free. 211 // 212 if (!ruby_port->m_usingRubyTester) { 213 ruby_port->addToRetryList(this); 214 } 215 216 DPRINTF(RubyPort, 217 "Request for address %#x did not issue because %s\n", 218 pkt->getAddr(), RequestStatus_to_string(requestStatus)); 219 220 return false; 221} 222 223void 224RubyPort::M5Port::recvFunctional(PacketPtr pkt) 225{ 226 DPRINTF(RubyPort, "Functional access caught for address %#x\n", 227 pkt->getAddr()); 228 229 // Check for pio requests and directly send them to the dedicated 230 // pio port. 231 if (!isPhysMemAddress(pkt->getAddr())) { 232 assert(ruby_port->pio_port.isConnected()); 233 DPRINTF(RubyPort, "Request for address 0x%#x is a pio request\n", 234 pkt->getAddr()); 235 panic("RubyPort::PioPort::recvFunctional() not implemented!\n"); 236 } 237 238 assert(pkt->getAddr() + pkt->getSize() <= 239 line_address(Address(pkt->getAddr())).getAddress() + 240 RubySystem::getBlockSizeBytes()); 241 242 bool accessSucceeded = false; 243 bool needsResponse = pkt->needsResponse(); 244 245 // Do the functional access on ruby memory 246 if (pkt->isRead()) { 247 accessSucceeded = ruby_system->functionalRead(pkt); 248 } else if (pkt->isWrite()) { 249 accessSucceeded = ruby_system->functionalWrite(pkt); 250 } else { 251 panic("RubyPort: unsupported functional command %s\n", 252 pkt->cmdString()); 253 } 254 255 // Unless the requester explicitly said otherwise, generate an error if 256 // the functional request failed 257 if (!accessSucceeded && !pkt->suppressFuncError()) { 258 fatal("Ruby functional %s failed for address %#x\n", 259 pkt->isWrite() ? "write" : "read", pkt->getAddr()); 260 } 261 262 if (access_phys_mem) { 263 // The attached physmem contains the official version of data. 264 // The following command performs the real functional access. 265 // This line should be removed once Ruby supplies the official version 266 // of data. 267 ruby_port->system->getPhysMem().functionalAccess(pkt); 268 } 269 270 // turn packet around to go back to requester if response expected 271 if (needsResponse) { 272 pkt->setFunctionalResponseStatus(accessSucceeded); 273 274 // @todo There should not be a reverse call since the response is 275 // communicated through the packet pointer 276 // DPRINTF(RubyPort, "Sending packet back over port\n"); 277 // sendFunctional(pkt); 278 } 279 DPRINTF(RubyPort, "Functional access %s!\n", 280 accessSucceeded ? "successful":"failed"); 281} 282 283void 284RubyPort::ruby_hit_callback(PacketPtr pkt) 285{ 286 DPRINTF(RubyPort, "Hit callback for %s 0x%x\n", pkt->cmdString(), 287 pkt->getAddr()); 288 289 // The packet was destined for memory and has not yet been turned 290 // into a response 291 assert(system->isMemAddr(pkt->getAddr())); 292 assert(pkt->isRequest()); 293 294 // As it has not yet been turned around, the source field tells us 295 // which port it came from. 296 assert(pkt->getSrc() < slave_ports.size()); 297 298 slave_ports[pkt->getSrc()]->hitCallback(pkt); 299 300 // 301 // If we had to stall the M5Ports, wake them up because the sequencer 302 // likely has free resources now. 303 // 304 if (!retryList.empty()) { 305 // 306 // Record the current list of ports to retry on a temporary list before 307 // calling sendRetry on those ports. sendRetry will cause an 308 // immediate retry, which may result in the ports being put back on the 309 // list. Therefore we want to clear the retryList before calling 310 // sendRetry. 311 // 312 std::vector<M5Port*> curRetryList(retryList); 313 314 retryList.clear(); 315 316 for (auto i = curRetryList.begin(); i != curRetryList.end(); ++i) { 317 DPRINTF(RubyPort, 318 "Sequencer may now be free. SendRetry to port %s\n", 319 (*i)->name()); 320 (*i)->sendRetry(); 321 } 322 } 323 324 testDrainComplete(); 325} 326 327void 328RubyPort::testDrainComplete() 329{ 330 //If we weren't able to drain before, we might be able to now. 331 if (drainManager != NULL) { 332 unsigned int drainCount = outstandingCount(); 333 DPRINTF(Drain, "Drain count: %u\n", drainCount); 334 if (drainCount == 0) { 335 DPRINTF(Drain, "RubyPort done draining, signaling drain done\n"); 336 drainManager->signalDrainDone(); 337 // Clear the drain manager once we're done with it. 338 drainManager = NULL; 339 } 340 } 341} 342 343unsigned int 344RubyPort::getChildDrainCount(DrainManager *dm) 345{ 346 int count = 0; 347 348 if (pio_port.isConnected()) { 349 count += pio_port.drain(dm); 350 DPRINTF(Config, "count after pio check %d\n", count); 351 } 352 353 for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) { 354 count += (*p)->drain(dm); 355 DPRINTF(Config, "count after slave port check %d\n", count); 356 } 357 358 for (std::vector<PioPort*>::iterator p = master_ports.begin(); 359 p != master_ports.end(); ++p) { 360 count += (*p)->drain(dm); 361 DPRINTF(Config, "count after master port check %d\n", count); 362 } 363 364 DPRINTF(Config, "final count %d\n", count); 365 366 return count; 367} 368 369unsigned int 370RubyPort::drain(DrainManager *dm) 371{ 372 if (isDeadlockEventScheduled()) { 373 descheduleDeadlockEvent(); 374 } 375 376 // 377 // If the RubyPort is not empty, then it needs to clear all outstanding 378 // requests before it should call drainManager->signalDrainDone() 379 // 380 DPRINTF(Config, "outstanding count %d\n", outstandingCount()); 381 bool need_drain = outstandingCount() > 0; 382 383 // 384 // Also, get the number of child ports that will also need to clear 385 // their buffered requests before they call drainManager->signalDrainDone() 386 // 387 unsigned int child_drain_count = getChildDrainCount(dm); 388 389 // Set status 390 if (need_drain) { 391 drainManager = dm; 392 393 DPRINTF(Drain, "RubyPort not drained\n"); 394 setDrainState(Drainable::Draining); 395 return child_drain_count + 1; 396 } 397 398 drainManager = NULL; 399 setDrainState(Drainable::Drained); 400 return child_drain_count; 401} 402 403void 404RubyPort::M5Port::hitCallback(PacketPtr pkt) 405{ 406 bool needsResponse = pkt->needsResponse(); 407 408 // 409 // Unless specified at configuraiton, all responses except failed SC 410 // and Flush operations access M5 physical memory. 411 // 412 bool accessPhysMem = access_phys_mem; 413 414 if (pkt->isLLSC()) { 415 if (pkt->isWrite()) { 416 if (pkt->req->getExtraData() != 0) { 417 // 418 // Successful SC packets convert to normal writes 419 // 420 pkt->convertScToWrite(); 421 } else { 422 // 423 // Failed SC packets don't access physical memory and thus 424 // the RubyPort itself must convert it to a response. 425 // 426 accessPhysMem = false; 427 } 428 } else { 429 // 430 // All LL packets convert to normal loads so that M5 PhysMem does 431 // not lock the blocks. 432 // 433 pkt->convertLlToRead(); 434 } 435 } 436 437 // 438 // Flush requests don't access physical memory 439 // 440 if (pkt->isFlush()) { 441 accessPhysMem = false; 442 } 443 444 DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse); 445 446 if (accessPhysMem) { 447 ruby_port->system->getPhysMem().access(pkt); 448 } else if (needsResponse) { 449 pkt->makeResponse(); 450 } 451 452 // turn packet around to go back to requester if response expected 453 if (needsResponse) { 454 DPRINTF(RubyPort, "Sending packet back over port\n"); 455 // send next cycle 456 schedTimingResp(pkt, curTick() + g_system_ptr->clockPeriod()); 457 } else { 458 delete pkt; 459 } 460 DPRINTF(RubyPort, "Hit callback done!\n"); 461} 462 463AddrRangeList 464RubyPort::M5Port::getAddrRanges() const 465{ 466 // at the moment the assumption is that the master does not care 467 AddrRangeList ranges; 468 return ranges; 469} 470 471bool 472RubyPort::M5Port::isPhysMemAddress(Addr addr) const 473{ 474 return ruby_port->system->isMemAddr(addr); 475} 476 477void 478RubyPort::ruby_eviction_callback(const Address& address) 479{ 480 DPRINTF(RubyPort, "Sending invalidations.\n"); 481 // This request is deleted in the stack-allocated packet destructor 482 // when this function exits 483 // TODO: should this really be using funcMasterId? 484 RequestPtr req = 485 new Request(address.getAddress(), 0, 0, Request::funcMasterId); 486 // Use a single packet to signal all snooping ports of the invalidation. 487 // This assumes that snooping ports do NOT modify the packet/request 488 Packet pkt(req, MemCmd::InvalidationReq); 489 for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) { 490 // check if the connected master port is snooping 491 if ((*p)->isSnooping()) { 492 // send as a snoop request 493 (*p)->sendTimingSnoopReq(&pkt); 494 } 495 } 496} 497