1/* 2 * Copyright (c) 2009-2012 Mark D. Hill and David A. Wood 3 * Copyright (c) 2010-2012 Advanced Micro Devices, Inc. 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions are 8 * met: redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer; 10 * redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution; 13 * neither the name of the copyright holders nor the names of its 14 * contributors may be used to endorse or promote products derived from 15 * this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30machine(MachineType:Directory, "Directory protocol") 31 : DirectoryMemory * directory; 32 Cycles directory_latency := 12; 33 Cycles to_memory_controller_latency := 1; 34 35 MessageBuffer * forwardFromDir, network="To", virtual_network="3", 36 vnet_type="forward"; 37 MessageBuffer * responseFromDir, network="To", virtual_network="4", 38 vnet_type="response"; 39 MessageBuffer * dmaResponseFromDir, network="To", virtual_network="1", 40 vnet_type="response"; 41 42 MessageBuffer * requestToDir, network="From", virtual_network="2", 43 vnet_type="request"; 44 MessageBuffer * dmaRequestToDir, network="From", virtual_network="0", 45 vnet_type="request"; 46 MessageBuffer * responseFromMemory; 47{ 48 // STATES 49 state_declaration(State, desc="Directory states", default="Directory_State_I") { 50 // Base states 51 I, AccessPermission:Read_Write, desc="Invalid"; 52 M, AccessPermission:Invalid, desc="Modified"; 53 54 M_DRD, AccessPermission:Busy, desc="Blocked on an invalidation for a DMA read"; 55 M_DWR, AccessPermission:Busy, desc="Blocked on an invalidation for a DMA write"; 56 57 M_DWRI, AccessPermission:Busy, desc="Intermediate state M_DWR-->I"; 58 M_DRDI, AccessPermission:Busy, desc="Intermediate state M_DRD-->I"; 59 60 IM, AccessPermission:Busy, desc="Intermediate state I-->M"; 61 MI, AccessPermission:Busy, desc="Intermediate state M-->I"; 62 ID, AccessPermission:Busy, desc="Intermediate state for DMA_READ when in I"; 63 ID_W, AccessPermission:Busy, desc="Intermediate state for DMA_WRITE when in I"; 64 } 65 66 // Events 67 enumeration(Event, desc="Directory events") { 68 // processor requests 69 GETX, desc="A GETX arrives"; 70 GETS, desc="A GETS arrives"; 71 PUTX, desc="A PUTX arrives"; 72 PUTX_NotOwner, desc="A PUTX arrives"; 73 74 // DMA requests 75 DMA_READ, desc="A DMA Read memory request"; 76 DMA_WRITE, desc="A DMA Write memory request"; 77 78 // Memory Controller 79 Memory_Data, desc="Fetched data from memory arrives"; 80 Memory_Ack, desc="Writeback Ack from memory arrives"; 81 } 82 83 // TYPES 84 85 // DirectoryEntry 86 structure(Entry, desc="...", interface="AbstractEntry") { 87 State DirectoryState, desc="Directory state"; 88 NetDest Sharers, desc="Sharers for this block"; 89 NetDest Owner, desc="Owner of this block"; 90 } 91 92 // TBE entries for DMA requests 93 structure(TBE, desc="TBE entries for outstanding DMA requests") { 94 Addr PhysicalAddress, desc="physical address"; 95 State TBEState, desc="Transient State"; 96 DataBlock DataBlk, desc="Data to be written (DMA write only)"; 97 int Len, desc="..."; 98 MachineID DmaRequestor, desc="DMA requestor"; 99 } 100 101 structure(TBETable, external="yes") { 102 TBE lookup(Addr); 103 void allocate(Addr); 104 void deallocate(Addr); 105 bool isPresent(Addr); 106 } 107 108 // ** OBJECTS ** 109 TBETable TBEs, template="<Directory_TBE>", constructor="m_number_of_TBEs"; 110 111 Tick clockEdge(); 112 Cycles ticksToCycles(Tick t); 113 Tick cyclesToTicks(Cycles c); 114 void set_tbe(TBE b); 115 void unset_tbe(); 116 117 Entry getDirectoryEntry(Addr addr), return_by_pointer="yes" { 118 Entry dir_entry := static_cast(Entry, "pointer", directory[addr]); 119 120 if (is_valid(dir_entry)) { 121 return dir_entry; 122 } 123 124 dir_entry := static_cast(Entry, "pointer", 125 directory.allocate(addr, new Entry)); 126 return dir_entry; 127 } 128 129 State getState(TBE tbe, Addr addr) { 130 if (is_valid(tbe)) { 131 return tbe.TBEState; 132 } else if (directory.isPresent(addr)) { 133 return getDirectoryEntry(addr).DirectoryState; 134 } else { 135 return State:I; 136 } 137 } 138 139 void setState(TBE tbe, Addr addr, State state) { 140 141 if (is_valid(tbe)) { 142 tbe.TBEState := state; 143 } 144 145 if (directory.isPresent(addr)) { 146 147 if (state == State:M) { 148 assert(getDirectoryEntry(addr).Owner.count() == 1); 149 assert(getDirectoryEntry(addr).Sharers.count() == 0); 150 } 151 152 getDirectoryEntry(addr).DirectoryState := state; 153 154 if (state == State:I) { 155 assert(getDirectoryEntry(addr).Owner.count() == 0); 156 assert(getDirectoryEntry(addr).Sharers.count() == 0); 157 } 158 } 159 } 160 161 AccessPermission getAccessPermission(Addr addr) { 162 TBE tbe := TBEs[addr]; 163 if(is_valid(tbe)) { 164 return Directory_State_to_permission(tbe.TBEState); 165 } 166 167 if(directory.isPresent(addr)) { 168 return Directory_State_to_permission(getDirectoryEntry(addr).DirectoryState); 169 } 170 171 return AccessPermission:NotPresent; 172 } 173 174 void setAccessPermission(Addr addr, State state) { 175 if (directory.isPresent(addr)) { 176 getDirectoryEntry(addr).changePermission(Directory_State_to_permission(state)); 177 } 178 } 179 180 void functionalRead(Addr addr, Packet *pkt) { 181 TBE tbe := TBEs[addr]; 182 if(is_valid(tbe)) { 183 testAndRead(addr, tbe.DataBlk, pkt); 184 } else { 185 functionalMemoryRead(pkt); 186 } 187 } 188 189 int functionalWrite(Addr addr, Packet *pkt) { 190 int num_functional_writes := 0; 191 192 TBE tbe := TBEs[addr]; 193 if(is_valid(tbe)) { 194 num_functional_writes := num_functional_writes + 195 testAndWrite(addr, tbe.DataBlk, pkt); 196 } 197 198 num_functional_writes := num_functional_writes + functionalMemoryWrite(pkt); 199 return num_functional_writes; 200 } 201 202 // ** OUT_PORTS ** 203 out_port(forwardNetwork_out, RequestMsg, forwardFromDir); 204 out_port(responseNetwork_out, ResponseMsg, responseFromDir); 205 out_port(requestQueue_out, ResponseMsg, requestToDir); // For recycling requests 206 out_port(dmaResponseNetwork_out, DMAResponseMsg, dmaResponseFromDir); 207 208 // ** IN_PORTS ** 209 in_port(dmaRequestQueue_in, DMARequestMsg, dmaRequestToDir) { 210 if (dmaRequestQueue_in.isReady(clockEdge())) { 211 peek(dmaRequestQueue_in, DMARequestMsg) { 212 TBE tbe := TBEs[in_msg.LineAddress]; 213 if (in_msg.Type == DMARequestType:READ) { 214 trigger(Event:DMA_READ, in_msg.LineAddress, tbe); 215 } else if (in_msg.Type == DMARequestType:WRITE) { 216 trigger(Event:DMA_WRITE, in_msg.LineAddress, tbe); 217 } else { 218 error("Invalid message"); 219 } 220 } 221 } 222 } 223 224 in_port(requestQueue_in, RequestMsg, requestToDir) { 225 if (requestQueue_in.isReady(clockEdge())) { 226 peek(requestQueue_in, RequestMsg) { 227 TBE tbe := TBEs[in_msg.addr]; 228 if (in_msg.Type == CoherenceRequestType:GETS) { 229 trigger(Event:GETS, in_msg.addr, tbe); 230 } else if (in_msg.Type == CoherenceRequestType:GETX) { 231 trigger(Event:GETX, in_msg.addr, tbe); 232 } else if (in_msg.Type == CoherenceRequestType:PUTX) { 233 if (getDirectoryEntry(in_msg.addr).Owner.isElement(in_msg.Requestor)) { 234 trigger(Event:PUTX, in_msg.addr, tbe); 235 } else { 236 trigger(Event:PUTX_NotOwner, in_msg.addr, tbe); 237 } 238 } else { 239 error("Invalid message"); 240 } 241 } 242 } 243 } 244 245//added by SS 246 // off-chip memory request/response is done 247 in_port(memQueue_in, MemoryMsg, responseFromMemory) { 248 if (memQueue_in.isReady(clockEdge())) { 249 peek(memQueue_in, MemoryMsg) { 250 TBE tbe := TBEs[in_msg.addr]; 251 if (in_msg.Type == MemoryRequestType:MEMORY_READ) { 252 trigger(Event:Memory_Data, in_msg.addr, tbe); 253 } else if (in_msg.Type == MemoryRequestType:MEMORY_WB) { 254 trigger(Event:Memory_Ack, in_msg.addr, tbe); 255 } else { 256 DPRINTF(RubySlicc,"%s\n", in_msg.Type); 257 error("Invalid message"); 258 } 259 } 260 } 261 } 262 263 // Actions 264 265 action(a_sendWriteBackAck, "a", desc="Send writeback ack to requestor") { 266 peek(requestQueue_in, RequestMsg) { 267 enqueue(forwardNetwork_out, RequestMsg, directory_latency) { 268 out_msg.addr := address; 269 out_msg.Type := CoherenceRequestType:WB_ACK; 270 out_msg.Requestor := in_msg.Requestor; 271 out_msg.Destination.add(in_msg.Requestor); 272 out_msg.MessageSize := MessageSizeType:Writeback_Control; 273 } 274 } 275 } 276 277 action(l_sendWriteBackAck, "la", desc="Send writeback ack to requestor") { 278 peek(memQueue_in, MemoryMsg) { 279 enqueue(forwardNetwork_out, RequestMsg, 1) { 280 out_msg.addr := address; 281 out_msg.Type := CoherenceRequestType:WB_ACK; 282 out_msg.Requestor := in_msg.OriginalRequestorMachId; 283 out_msg.Destination.add(in_msg.OriginalRequestorMachId); 284 out_msg.MessageSize := MessageSizeType:Writeback_Control; 285 } 286 } 287 } 288 289 action(b_sendWriteBackNack, "b", desc="Send writeback nack to requestor") { 290 peek(requestQueue_in, RequestMsg) { 291 enqueue(forwardNetwork_out, RequestMsg, directory_latency) { 292 out_msg.addr := address; 293 out_msg.Type := CoherenceRequestType:WB_NACK; 294 out_msg.Requestor := in_msg.Requestor; 295 out_msg.Destination.add(in_msg.Requestor); 296 out_msg.MessageSize := MessageSizeType:Writeback_Control; 297 } 298 } 299 } 300 301 action(c_clearOwner, "c", desc="Clear the owner field") { 302 getDirectoryEntry(address).Owner.clear(); 303 } 304 305 action(d_sendData, "d", desc="Send data to requestor") { 306 peek(memQueue_in, MemoryMsg) { 307 enqueue(responseNetwork_out, ResponseMsg, 1) { 308 out_msg.addr := address; 309 out_msg.Type := CoherenceResponseType:DATA; 310 out_msg.Sender := machineID; 311 out_msg.Destination.add(in_msg.OriginalRequestorMachId); 312 out_msg.DataBlk := in_msg.DataBlk; 313 out_msg.MessageSize := MessageSizeType:Response_Data; 314 } 315 } 316 } 317 318 action(dr_sendDMAData, "dr", desc="Send Data to DMA controller from directory") { 319 peek(memQueue_in, MemoryMsg) { 320 enqueue(dmaResponseNetwork_out, DMAResponseMsg, 1) { 321 assert(is_valid(tbe)); 322 out_msg.PhysicalAddress := address; 323 out_msg.LineAddress := address; 324 out_msg.Type := DMAResponseType:DATA; 325 out_msg.DataBlk := in_msg.DataBlk; // we send the entire data block and rely on the dma controller to split it up if need be 326 out_msg.Destination.add(tbe.DmaRequestor); 327 out_msg.MessageSize := MessageSizeType:Response_Data; 328 } 329 } 330 } 331 332 333 334 action(drp_sendDMAData, "drp", desc="Send Data to DMA controller from incoming PUTX") { 335 peek(requestQueue_in, RequestMsg) { 336 enqueue(dmaResponseNetwork_out, DMAResponseMsg, 1) { 337 assert(is_valid(tbe)); 338 out_msg.PhysicalAddress := address; 339 out_msg.LineAddress := address; 340 out_msg.Type := DMAResponseType:DATA; 341 342 // we send the entire data block and rely on the dma controller 343 // to split it up if need be 344 out_msg.DataBlk := in_msg.DataBlk; 345 out_msg.Destination.add(tbe.DmaRequestor); 346 out_msg.MessageSize := MessageSizeType:Response_Data; 347 } 348 } 349 } 350 351 action(da_sendDMAAck, "da", desc="Send Ack to DMA controller") { 352 enqueue(dmaResponseNetwork_out, DMAResponseMsg, 1) { 353 assert(is_valid(tbe)); 354 out_msg.PhysicalAddress := address; 355 out_msg.LineAddress := address; 356 out_msg.Type := DMAResponseType:ACK; 357 out_msg.Destination.add(tbe.DmaRequestor); 358 out_msg.MessageSize := MessageSizeType:Writeback_Control; 359 } 360 } 361 362 action(e_ownerIsRequestor, "e", desc="The owner is now the requestor") { 363 peek(requestQueue_in, RequestMsg) { 364 getDirectoryEntry(address).Owner.clear(); 365 getDirectoryEntry(address).Owner.add(in_msg.Requestor); 366 } 367 } 368 369 action(f_forwardRequest, "f", desc="Forward request to owner") { 370 peek(requestQueue_in, RequestMsg) { 371 APPEND_TRANSITION_COMMENT("Own: "); 372 APPEND_TRANSITION_COMMENT(getDirectoryEntry(in_msg.addr).Owner); 373 APPEND_TRANSITION_COMMENT("Req: "); 374 APPEND_TRANSITION_COMMENT(in_msg.Requestor); 375 enqueue(forwardNetwork_out, RequestMsg, directory_latency) { 376 out_msg.addr := address; 377 out_msg.Type := in_msg.Type; 378 out_msg.Requestor := in_msg.Requestor; 379 out_msg.Destination := getDirectoryEntry(in_msg.addr).Owner; 380 out_msg.MessageSize := MessageSizeType:Writeback_Control; 381 } 382 } 383 } 384 385 action(inv_sendCacheInvalidate, "inv", desc="Invalidate a cache block") { 386 peek(dmaRequestQueue_in, DMARequestMsg) { 387 enqueue(forwardNetwork_out, RequestMsg, directory_latency) { 388 out_msg.addr := address; 389 out_msg.Type := CoherenceRequestType:INV; 390 out_msg.Requestor := machineID; 391 out_msg.Destination := getDirectoryEntry(in_msg.PhysicalAddress).Owner; 392 out_msg.MessageSize := MessageSizeType:Writeback_Control; 393 } 394 } 395 } 396 397 action(i_popIncomingRequestQueue, "i", desc="Pop incoming request queue") { 398 requestQueue_in.dequeue(clockEdge()); 399 } 400 401 action(p_popIncomingDMARequestQueue, "p", desc="Pop incoming DMA queue") { 402 dmaRequestQueue_in.dequeue(clockEdge()); 403 } 404 405 action(v_allocateTBE, "v", desc="Allocate TBE") { 406 peek(dmaRequestQueue_in, DMARequestMsg) { 407 TBEs.allocate(address); 408 set_tbe(TBEs[address]); 409 tbe.DataBlk := in_msg.DataBlk; 410 tbe.PhysicalAddress := in_msg.PhysicalAddress; 411 tbe.Len := in_msg.Len; 412 tbe.DmaRequestor := in_msg.Requestor; 413 } 414 } 415 416 action(r_allocateTbeForDmaRead, "\r", desc="Allocate TBE for DMA Read") { 417 peek(dmaRequestQueue_in, DMARequestMsg) { 418 TBEs.allocate(address); 419 set_tbe(TBEs[address]); 420 tbe.DmaRequestor := in_msg.Requestor; 421 } 422 } 423 424 action(v_allocateTBEFromRequestNet, "\v", desc="Allocate TBE") { 425 peek(requestQueue_in, RequestMsg) { 426 TBEs.allocate(address); 427 set_tbe(TBEs[address]); 428 tbe.DataBlk := in_msg.DataBlk; 429 } 430 } 431 432 action(w_deallocateTBE, "w", desc="Deallocate TBE") { 433 TBEs.deallocate(address); 434 unset_tbe(); 435 } 436 437 action(z_recycleRequestQueue, "z", desc="recycle request queue") { 438 requestQueue_in.recycle(clockEdge(), cyclesToTicks(recycle_latency)); 439 } 440 441 action(y_recycleDMARequestQueue, "y", desc="recycle dma request queue") { 442 dmaRequestQueue_in.recycle(clockEdge(), cyclesToTicks(recycle_latency)); 443 } 444 445 446 action(qf_queueMemoryFetchRequest, "qf", desc="Queue off-chip fetch request") { 447 peek(requestQueue_in, RequestMsg) { 448 queueMemoryRead(in_msg.Requestor, address, to_memory_controller_latency); 449 } 450 } 451 452 action(qf_queueMemoryFetchRequestDMA, "qfd", desc="Queue off-chip fetch request") { 453 peek(dmaRequestQueue_in, DMARequestMsg) { 454 queueMemoryRead(in_msg.Requestor, address, to_memory_controller_latency); 455 } 456 } 457 458 action(qw_queueMemoryWBRequest_partial, "qwp", desc="Queue off-chip writeback request") { 459 peek(dmaRequestQueue_in, DMARequestMsg) { 460 queueMemoryWritePartial(in_msg.Requestor, address, 461 to_memory_controller_latency, in_msg.DataBlk, 462 in_msg.Len); 463 } 464 } 465 466 action(qw_queueMemoryWBRequest_partialTBE, "qwt", desc="Queue off-chip writeback request") { 467 peek(requestQueue_in, RequestMsg) { 468 queueMemoryWritePartial(in_msg.Requestor, address, 469 to_memory_controller_latency, tbe.DataBlk, 470 tbe.Len); 471 } 472 } 473 474 action(l_queueMemoryWBRequest, "lq", desc="Write PUTX data to memory") { 475 peek(requestQueue_in, RequestMsg) { 476 queueMemoryWrite(in_msg.Requestor, address, to_memory_controller_latency, 477 in_msg.DataBlk); 478 } 479 } 480 481 action(l_popMemQueue, "q", desc="Pop off-chip request queue") { 482 memQueue_in.dequeue(clockEdge()); 483 } 484 485 // TRANSITIONS 486 transition({M_DRD, M_DWR, M_DWRI, M_DRDI}, GETX) { 487 z_recycleRequestQueue; 488 } 489 490 transition({IM, MI, ID, ID_W}, {GETX, GETS, PUTX, PUTX_NotOwner} ) { 491 z_recycleRequestQueue; 492 } 493 494 transition({IM, MI, ID, ID_W}, {DMA_READ, DMA_WRITE} ) { 495 y_recycleDMARequestQueue; 496 } 497 498 499 transition(I, GETX, IM) { 500 //d_sendData; 501 v_allocateTBEFromRequestNet; 502 qf_queueMemoryFetchRequest; 503 e_ownerIsRequestor; 504 i_popIncomingRequestQueue; 505 } 506 507 transition(IM, Memory_Data, M) { 508 d_sendData; 509 //e_ownerIsRequestor; 510 w_deallocateTBE; 511 l_popMemQueue; 512 } 513 514 515 transition(I, DMA_READ, ID) { 516 //dr_sendDMAData; 517 r_allocateTbeForDmaRead; 518 qf_queueMemoryFetchRequestDMA; 519 p_popIncomingDMARequestQueue; 520 } 521 522 transition(ID, Memory_Data, I) { 523 dr_sendDMAData; 524 //p_popIncomingDMARequestQueue; 525 w_deallocateTBE; 526 l_popMemQueue; 527 } 528 529 530 531 transition(I, DMA_WRITE, ID_W) { 532 v_allocateTBE; 533 qw_queueMemoryWBRequest_partial; 534 p_popIncomingDMARequestQueue; 535 } 536 537 transition(ID_W, Memory_Ack, I) { 538 da_sendDMAAck; 539 w_deallocateTBE; 540 l_popMemQueue; 541 } 542 543 transition(M, DMA_READ, M_DRD) { 544 v_allocateTBE; 545 inv_sendCacheInvalidate; 546 p_popIncomingDMARequestQueue; 547 } 548 549 transition(M_DRD, PUTX, M_DRDI) { 550 drp_sendDMAData; 551 c_clearOwner; 552 l_queueMemoryWBRequest; 553 i_popIncomingRequestQueue; 554 } 555 556 transition(M_DRDI, Memory_Ack, I) { 557 l_sendWriteBackAck; 558 w_deallocateTBE; 559 l_popMemQueue; 560 } 561 562 563 transition(M, DMA_WRITE, M_DWR) { 564 v_allocateTBE; 565 inv_sendCacheInvalidate; 566 p_popIncomingDMARequestQueue; 567 } 568 569 transition(M_DWR, PUTX, M_DWRI) { 570 qw_queueMemoryWBRequest_partialTBE; 571 c_clearOwner; 572 i_popIncomingRequestQueue; 573 } 574 575 transition(M_DWRI, Memory_Ack, I) { 576 l_sendWriteBackAck; 577 da_sendDMAAck; 578 w_deallocateTBE; 579 l_popMemQueue; 580 } 581 582 transition(M, GETX, M) { 583 f_forwardRequest; 584 e_ownerIsRequestor; 585 i_popIncomingRequestQueue; 586 } 587 588 transition(M, PUTX, MI) { 589 c_clearOwner; 590 v_allocateTBEFromRequestNet; 591 l_queueMemoryWBRequest; 592 i_popIncomingRequestQueue; 593 } 594 595 transition(MI, Memory_Ack, I) { 596 l_sendWriteBackAck; 597 w_deallocateTBE; 598 l_popMemQueue; 599 } 600 601 transition(M, PUTX_NotOwner, M) { 602 b_sendWriteBackNack; 603 i_popIncomingRequestQueue; 604 } 605 606 transition(I, PUTX_NotOwner, I) { 607 b_sendWriteBackNack; 608 i_popIncomingRequestQueue; 609 } 610} 611