request.hh revision 12917:c18b776f460c
1/*
2 * Copyright (c) 2012-2013,2017-2018 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 *          Steve Reinhardt
43 *          Ali Saidi
44 */
45
46/**
47 * @file
48 * Declaration of a request, the overall memory request consisting of
49 the parts of the request that are persistent throughout the transaction.
50 */
51
52#ifndef __MEM_REQUEST_HH__
53#define __MEM_REQUEST_HH__
54
55#include <cassert>
56#include <climits>
57
58#include "base/flags.hh"
59#include "base/logging.hh"
60#include "base/types.hh"
61#include "cpu/inst_seq.hh"
62#include "sim/core.hh"
63
64/**
65 * Special TaskIds that are used for per-context-switch stats dumps
66 * and Cache Occupancy. Having too many tasks seems to be a problem
67 * with vector stats. 1024 seems to be a reasonable number that
68 * doesn't cause a problem with stats and is large enough to realistic
69 * benchmarks (Linux/Android boot, BBench, etc.)
70 */
71
72namespace ContextSwitchTaskId {
73    enum TaskId {
74        MaxNormalTaskId = 1021, /* Maximum number of normal tasks */
75        Prefetcher = 1022, /* For cache lines brought in by prefetcher */
76        DMA = 1023, /* Mostly Table Walker */
77        Unknown = 1024,
78        NumTaskId
79    };
80}
81
82class Request;
83
84typedef std::shared_ptr<Request> RequestPtr;
85typedef uint16_t MasterID;
86
87class Request
88{
89  public:
90    typedef uint64_t FlagsType;
91    typedef uint8_t ArchFlagsType;
92    typedef ::Flags<FlagsType> Flags;
93
94    enum : FlagsType {
95        /**
96         * Architecture specific flags.
97         *
98         * These bits int the flag field are reserved for
99         * architecture-specific code. For example, SPARC uses them to
100         * represent ASIs.
101         */
102        ARCH_BITS                   = 0x000000FF,
103        /** The request was an instruction fetch. */
104        INST_FETCH                  = 0x00000100,
105        /** The virtual address is also the physical address. */
106        PHYSICAL                    = 0x00000200,
107        /**
108         * The request is to an uncacheable address.
109         *
110         * @note Uncacheable accesses may be reordered by CPU models. The
111         * STRICT_ORDER flag should be set if such reordering is
112         * undesirable.
113         */
114        UNCACHEABLE                = 0x00000400,
115        /**
116         * The request is required to be strictly ordered by <i>CPU
117         * models</i> and is non-speculative.
118         *
119         * A strictly ordered request is guaranteed to never be
120         * re-ordered or executed speculatively by a CPU model. The
121         * memory system may still reorder requests in caches unless
122         * the UNCACHEABLE flag is set as well.
123         */
124        STRICT_ORDER                = 0x00000800,
125        /** This request is to a memory mapped register. */
126        MMAPPED_IPR                 = 0x00002000,
127        /** This request is made in privileged mode. */
128        PRIVILEGED                  = 0x00008000,
129
130        /**
131         * This is a write that is targeted and zeroing an entire
132         * cache block.  There is no need for a read/modify/write
133         */
134        CACHE_BLOCK_ZERO            = 0x00010000,
135
136        /** The request should not cause a memory access. */
137        NO_ACCESS                   = 0x00080000,
138        /**
139         * This request will lock or unlock the accessed memory. When
140         * used with a load, the access locks the particular chunk of
141         * memory. When used with a store, it unlocks. The rule is
142         * that locked accesses have to be made up of a locked load,
143         * some operation on the data, and then a locked store.
144         */
145        LOCKED_RMW                  = 0x00100000,
146        /** The request is a Load locked/store conditional. */
147        LLSC                        = 0x00200000,
148        /** This request is for a memory swap. */
149        MEM_SWAP                    = 0x00400000,
150        MEM_SWAP_COND               = 0x00800000,
151
152        /** The request is a prefetch. */
153        PREFETCH                    = 0x01000000,
154        /** The request should be prefetched into the exclusive state. */
155        PF_EXCLUSIVE                = 0x02000000,
156        /** The request should be marked as LRU. */
157        EVICT_NEXT                  = 0x04000000,
158        /** The request should be marked with ACQUIRE. */
159        ACQUIRE                     = 0x00020000,
160        /** The request should be marked with RELEASE. */
161        RELEASE                     = 0x00040000,
162
163        /** The request is an atomic that returns data. */
164        ATOMIC_RETURN_OP            = 0x40000000,
165        /** The request is an atomic that does not return data. */
166        ATOMIC_NO_RETURN_OP         = 0x80000000,
167
168        /** The request should be marked with KERNEL.
169          * Used to indicate the synchronization associated with a GPU kernel
170          * launch or completion.
171          */
172        KERNEL                      = 0x00001000,
173
174        /**
175         * The request should be handled by the generic IPR code (only
176         * valid together with MMAPPED_IPR)
177         */
178        GENERIC_IPR                 = 0x08000000,
179
180        /** The request targets the secure memory space. */
181        SECURE                      = 0x10000000,
182        /** The request is a page table walk */
183        PT_WALK                     = 0x20000000,
184
185        /** The request invalidates a memory location */
186        INVALIDATE                  = 0x0000000100000000,
187        /** The request cleans a memory location */
188        CLEAN                       = 0x0000000200000000,
189
190        /** The request targets the point of unification */
191        DST_POU                     = 0x0000001000000000,
192
193        /** The request targets the point of coherence */
194        DST_POC                     = 0x0000002000000000,
195
196        /** Bits to define the destination of a request */
197        DST_BITS                    = 0x0000003000000000,
198
199        /**
200         * These flags are *not* cleared when a Request object is
201         * reused (assigned a new address).
202         */
203        STICKY_FLAGS = INST_FETCH
204    };
205    static const FlagsType STORE_NO_DATA = CACHE_BLOCK_ZERO |
206        CLEAN | INVALIDATE;
207
208    /** Master Ids that are statically allocated
209     * @{*/
210    enum : MasterID {
211        /** This master id is used for writeback requests by the caches */
212        wbMasterId = 0,
213        /**
214         * This master id is used for functional requests that
215         * don't come from a particular device
216         */
217        funcMasterId = 1,
218        /** This master id is used for message signaled interrupts */
219        intMasterId = 2,
220        /**
221         * Invalid master id for assertion checking only. It is
222         * invalid behavior to ever send this id as part of a request.
223         */
224        invldMasterId = std::numeric_limits<MasterID>::max()
225    };
226    /** @} */
227
228    typedef uint32_t MemSpaceConfigFlagsType;
229    typedef ::Flags<MemSpaceConfigFlagsType> MemSpaceConfigFlags;
230
231    enum : MemSpaceConfigFlagsType {
232        /** Has a synchronization scope been set? */
233        SCOPE_VALID            = 0x00000001,
234        /** Access has Wavefront scope visibility */
235        WAVEFRONT_SCOPE        = 0x00000002,
236        /** Access has Workgroup scope visibility */
237        WORKGROUP_SCOPE        = 0x00000004,
238        /** Access has Device (e.g., GPU) scope visibility */
239        DEVICE_SCOPE           = 0x00000008,
240        /** Access has System (e.g., CPU + GPU) scope visibility */
241        SYSTEM_SCOPE           = 0x00000010,
242
243        /** Global Segment */
244        GLOBAL_SEGMENT         = 0x00000020,
245        /** Group Segment */
246        GROUP_SEGMENT          = 0x00000040,
247        /** Private Segment */
248        PRIVATE_SEGMENT        = 0x00000080,
249        /** Kergarg Segment */
250        KERNARG_SEGMENT        = 0x00000100,
251        /** Readonly Segment */
252        READONLY_SEGMENT       = 0x00000200,
253        /** Spill Segment */
254        SPILL_SEGMENT          = 0x00000400,
255        /** Arg Segment */
256        ARG_SEGMENT            = 0x00000800,
257    };
258
259  private:
260    typedef uint16_t PrivateFlagsType;
261    typedef ::Flags<PrivateFlagsType> PrivateFlags;
262
263    enum : PrivateFlagsType {
264        /** Whether or not the size is valid. */
265        VALID_SIZE           = 0x00000001,
266        /** Whether or not paddr is valid (has been written yet). */
267        VALID_PADDR          = 0x00000002,
268        /** Whether or not the vaddr & asid are valid. */
269        VALID_VADDR          = 0x00000004,
270        /** Whether or not the instruction sequence number is valid. */
271        VALID_INST_SEQ_NUM   = 0x00000008,
272        /** Whether or not the pc is valid. */
273        VALID_PC             = 0x00000010,
274        /** Whether or not the context ID is valid. */
275        VALID_CONTEXT_ID     = 0x00000020,
276        /** Whether or not the sc result is valid. */
277        VALID_EXTRA_DATA     = 0x00000080,
278        /** Whether or not the stream ID and substream ID is valid. */
279        VALID_STREAM_ID      = 0x00000100,
280        VALID_SUBSTREAM_ID   = 0x00000200,
281        /**
282         * These flags are *not* cleared when a Request object is reused
283         * (assigned a new address).
284         */
285        STICKY_PRIVATE_FLAGS = VALID_CONTEXT_ID
286    };
287
288  private:
289
290    /**
291     * Set up a physical (e.g. device) request in a previously
292     * allocated Request object.
293     */
294    void
295    setPhys(Addr paddr, unsigned size, Flags flags, MasterID mid, Tick time)
296    {
297        _paddr = paddr;
298        _size = size;
299        _time = time;
300        _masterId = mid;
301        _flags.clear(~STICKY_FLAGS);
302        _flags.set(flags);
303        privateFlags.clear(~STICKY_PRIVATE_FLAGS);
304        privateFlags.set(VALID_PADDR|VALID_SIZE);
305        depth = 0;
306        accessDelta = 0;
307        //translateDelta = 0;
308    }
309
310    /**
311     * The physical address of the request. Valid only if validPaddr
312     * is set.
313     */
314    Addr _paddr;
315
316    /**
317     * The size of the request. This field must be set when vaddr or
318     * paddr is written via setVirt() or setPhys(), so it is always
319     * valid as long as one of the address fields is valid.
320     */
321    unsigned _size;
322
323    /** The requestor ID which is unique in the system for all ports
324     * that are capable of issuing a transaction
325     */
326    MasterID _masterId;
327
328    /** Flag structure for the request. */
329    Flags _flags;
330
331    /** Memory space configuraiton flag structure for the request. */
332    MemSpaceConfigFlags _memSpaceConfigFlags;
333
334    /** Private flags for field validity checking. */
335    PrivateFlags privateFlags;
336
337    /**
338     * The time this request was started. Used to calculate
339     * latencies. This field is set to curTick() any time paddr or vaddr
340     * is written.
341     */
342    Tick _time;
343
344    /**
345     * The task id associated with this request
346     */
347    uint32_t _taskId;
348
349    union {
350        struct {
351            /**
352             * The stream ID uniquely identifies a device behind the
353             * SMMU/IOMMU Each transaction arriving at the SMMU/IOMMU is
354             * associated with exactly one stream ID.
355             */
356            uint32_t  _streamId;
357
358            /**
359             * The substream ID identifies an "execution context" within a
360             * device behind an SMMU/IOMMU. It's intended to map 1-to-1 to
361             * PCIe PASID (Process Address Space ID). The presence of a
362             * substream ID is optional.
363             */
364            uint32_t _substreamId;
365        };
366
367        /** The address space ID. */
368        uint64_t _asid;
369    };
370
371    /** The virtual address of the request. */
372    Addr _vaddr;
373
374    /**
375     * Extra data for the request, such as the return value of
376     * store conditional or the compare value for a CAS. */
377    uint64_t _extraData;
378
379    /** The context ID (for statistics, locks, and wakeups). */
380    ContextID _contextId;
381
382    /** program counter of initiating access; for tracing/debugging */
383    Addr _pc;
384
385    /** Sequence number of the instruction that creates the request */
386    InstSeqNum _reqInstSeqNum;
387
388    /** A pointer to an atomic operation */
389    AtomicOpFunctor *atomicOpFunctor;
390
391  public:
392
393    /**
394     * Minimal constructor. No fields are initialized. (Note that
395     *  _flags and privateFlags are cleared by Flags default
396     *  constructor.)
397     */
398    Request()
399        : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
400          _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
401          _extraData(0), _contextId(0), _pc(0),
402          _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0),
403          accessDelta(0), depth(0)
404    {}
405
406    Request(Addr paddr, unsigned size, Flags flags, MasterID mid,
407            InstSeqNum seq_num, ContextID cid)
408        : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
409          _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
410          _extraData(0), _contextId(0), _pc(0),
411          _reqInstSeqNum(seq_num), atomicOpFunctor(nullptr), translateDelta(0),
412          accessDelta(0), depth(0)
413    {
414        setPhys(paddr, size, flags, mid, curTick());
415        setContext(cid);
416        privateFlags.set(VALID_INST_SEQ_NUM);
417    }
418
419    /**
420     * Constructor for physical (e.g. device) requests.  Initializes
421     * just physical address, size, flags, and timestamp (to curTick()).
422     * These fields are adequate to perform a request.
423     */
424    Request(Addr paddr, unsigned size, Flags flags, MasterID mid)
425        : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
426          _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
427          _extraData(0), _contextId(0), _pc(0),
428          _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0),
429          accessDelta(0), depth(0)
430    {
431        setPhys(paddr, size, flags, mid, curTick());
432    }
433
434    Request(Addr paddr, unsigned size, Flags flags, MasterID mid, Tick time)
435        : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
436          _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
437          _extraData(0), _contextId(0), _pc(0),
438          _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0),
439          accessDelta(0), depth(0)
440    {
441        setPhys(paddr, size, flags, mid, time);
442    }
443
444    Request(Addr paddr, unsigned size, Flags flags, MasterID mid, Tick time,
445            Addr pc)
446        : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
447          _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
448          _extraData(0), _contextId(0), _pc(pc),
449          _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0),
450          accessDelta(0), depth(0)
451    {
452        setPhys(paddr, size, flags, mid, time);
453        privateFlags.set(VALID_PC);
454    }
455
456    Request(uint64_t asid, Addr vaddr, unsigned size, Flags flags,
457            MasterID mid, Addr pc, ContextID cid)
458        : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
459          _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
460          _extraData(0), _contextId(0), _pc(0),
461          _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0),
462          accessDelta(0), depth(0)
463    {
464        setVirt(asid, vaddr, size, flags, mid, pc);
465        setContext(cid);
466    }
467
468    Request(uint64_t asid, Addr vaddr, unsigned size, Flags flags,
469            MasterID mid, Addr pc, ContextID cid,
470            AtomicOpFunctor *atomic_op)
471    {
472        setVirt(asid, vaddr, size, flags, mid, pc, atomic_op);
473        setContext(cid);
474    }
475
476    Request(const Request& other)
477        : _paddr(other._paddr), _size(other._size),
478          _masterId(other._masterId),
479          _flags(other._flags),
480          _memSpaceConfigFlags(other._memSpaceConfigFlags),
481          privateFlags(other.privateFlags),
482          _time(other._time),
483          _taskId(other._taskId), _asid(other._asid), _vaddr(other._vaddr),
484          _extraData(other._extraData), _contextId(other._contextId),
485          _pc(other._pc), _reqInstSeqNum(other._reqInstSeqNum),
486          translateDelta(other.translateDelta),
487          accessDelta(other.accessDelta), depth(other.depth)
488    {
489        if (other.atomicOpFunctor)
490            atomicOpFunctor = (other.atomicOpFunctor)->clone();
491        else
492            atomicOpFunctor = nullptr;
493    }
494
495    ~Request()
496    {
497        if (hasAtomicOpFunctor()) {
498            delete atomicOpFunctor;
499        }
500    }
501
502    /**
503     * Set up Context numbers.
504     */
505    void
506    setContext(ContextID context_id)
507    {
508        _contextId = context_id;
509        privateFlags.set(VALID_CONTEXT_ID);
510    }
511
512    void
513    setStreamId(uint32_t sid)
514    {
515        _streamId = sid;
516        privateFlags.set(VALID_STREAM_ID);
517    }
518
519    void
520    setSubStreamId(uint32_t ssid)
521    {
522        assert(privateFlags.isSet(VALID_STREAM_ID));
523        _substreamId = ssid;
524        privateFlags.set(VALID_SUBSTREAM_ID);
525    }
526
527    /**
528     * Set up a virtual (e.g., CPU) request in a previously
529     * allocated Request object.
530     */
531    void
532    setVirt(uint64_t asid, Addr vaddr, unsigned size, Flags flags,
533            MasterID mid, Addr pc, AtomicOpFunctor *amo_op = nullptr)
534    {
535        _asid = asid;
536        _vaddr = vaddr;
537        _size = size;
538        _masterId = mid;
539        _pc = pc;
540        _time = curTick();
541
542        _flags.clear(~STICKY_FLAGS);
543        _flags.set(flags);
544        privateFlags.clear(~STICKY_PRIVATE_FLAGS);
545        privateFlags.set(VALID_VADDR|VALID_SIZE|VALID_PC);
546        depth = 0;
547        accessDelta = 0;
548        translateDelta = 0;
549        atomicOpFunctor = amo_op;
550    }
551
552    /**
553     * Set just the physical address.  This usually used to record the
554     * result of a translation. However, when using virtualized CPUs
555     * setPhys() is sometimes called to finalize a physical address
556     * without a virtual address, so we can't check if the virtual
557     * address is valid.
558     */
559    void
560    setPaddr(Addr paddr)
561    {
562        _paddr = paddr;
563        privateFlags.set(VALID_PADDR);
564    }
565
566    /**
567     * Generate two requests as if this request had been split into two
568     * pieces. The original request can't have been translated already.
569     */
570    void splitOnVaddr(Addr split_addr, RequestPtr &req1, RequestPtr &req2)
571    {
572        assert(privateFlags.isSet(VALID_VADDR));
573        assert(privateFlags.noneSet(VALID_PADDR));
574        assert(split_addr > _vaddr && split_addr < _vaddr + _size);
575        req1 = std::make_shared<Request>(*this);
576        req2 = std::make_shared<Request>(*this);
577        req1->_size = split_addr - _vaddr;
578        req2->_vaddr = split_addr;
579        req2->_size = _size - req1->_size;
580    }
581
582    /**
583     * Accessor for paddr.
584     */
585    bool
586    hasPaddr() const
587    {
588        return privateFlags.isSet(VALID_PADDR);
589    }
590
591    Addr
592    getPaddr() const
593    {
594        assert(privateFlags.isSet(VALID_PADDR));
595        return _paddr;
596    }
597
598    /**
599     * Time for the TLB/table walker to successfully translate this request.
600     */
601    Tick translateDelta;
602
603    /**
604     * Access latency to complete this memory transaction not including
605     * translation time.
606     */
607    Tick accessDelta;
608
609    /**
610     * Level of the cache hierachy where this request was responded to
611     * (e.g. 0 = L1; 1 = L2).
612     */
613    mutable int depth;
614
615    /**
616     *  Accessor for size.
617     */
618    bool
619    hasSize() const
620    {
621        return privateFlags.isSet(VALID_SIZE);
622    }
623
624    unsigned
625    getSize() const
626    {
627        assert(privateFlags.isSet(VALID_SIZE));
628        return _size;
629    }
630
631    /** Accessor for time. */
632    Tick
633    time() const
634    {
635        assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
636        return _time;
637    }
638
639    /**
640     * Accessor for atomic-op functor.
641     */
642    bool
643    hasAtomicOpFunctor()
644    {
645        return atomicOpFunctor != NULL;
646    }
647
648    AtomicOpFunctor *
649    getAtomicOpFunctor()
650    {
651        assert(atomicOpFunctor != NULL);
652        return atomicOpFunctor;
653    }
654
655    /** Accessor for flags. */
656    Flags
657    getFlags()
658    {
659        assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
660        return _flags;
661    }
662
663    /** Note that unlike other accessors, this function sets *specific
664        flags* (ORs them in); it does not assign its argument to the
665        _flags field.  Thus this method should rightly be called
666        setFlags() and not just flags(). */
667    void
668    setFlags(Flags flags)
669    {
670        assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
671        _flags.set(flags);
672    }
673
674    void
675    setMemSpaceConfigFlags(MemSpaceConfigFlags extraFlags)
676    {
677        assert(privateFlags.isSet(VALID_PADDR | VALID_VADDR));
678        _memSpaceConfigFlags.set(extraFlags);
679    }
680
681    /** Accessor function for vaddr.*/
682    bool
683    hasVaddr() const
684    {
685        return privateFlags.isSet(VALID_VADDR);
686    }
687
688    Addr
689    getVaddr() const
690    {
691        assert(privateFlags.isSet(VALID_VADDR));
692        return _vaddr;
693    }
694
695    /** Accesssor for the requestor id. */
696    MasterID
697    masterId() const
698    {
699        return _masterId;
700    }
701
702    uint32_t
703    taskId() const
704    {
705        return _taskId;
706    }
707
708    void
709    taskId(uint32_t id) {
710        _taskId = id;
711    }
712
713    /** Accessor function for asid.*/
714    uint64_t
715    getAsid() const
716    {
717        assert(privateFlags.isSet(VALID_VADDR));
718        return _asid;
719    }
720
721    /** Accessor function for asid.*/
722    void
723    setAsid(uint64_t asid)
724    {
725        _asid = asid;
726    }
727
728    /** Accessor function for architecture-specific flags.*/
729    ArchFlagsType
730    getArchFlags() const
731    {
732        assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
733        return _flags & ARCH_BITS;
734    }
735
736    /** Accessor function to check if sc result is valid. */
737    bool
738    extraDataValid() const
739    {
740        return privateFlags.isSet(VALID_EXTRA_DATA);
741    }
742
743    /** Accessor function for store conditional return value.*/
744    uint64_t
745    getExtraData() const
746    {
747        assert(privateFlags.isSet(VALID_EXTRA_DATA));
748        return _extraData;
749    }
750
751    /** Accessor function for store conditional return value.*/
752    void
753    setExtraData(uint64_t extraData)
754    {
755        _extraData = extraData;
756        privateFlags.set(VALID_EXTRA_DATA);
757    }
758
759    bool
760    hasContextId() const
761    {
762        return privateFlags.isSet(VALID_CONTEXT_ID);
763    }
764
765    /** Accessor function for context ID.*/
766    ContextID
767    contextId() const
768    {
769        assert(privateFlags.isSet(VALID_CONTEXT_ID));
770        return _contextId;
771    }
772
773    uint32_t
774    streamId() const
775    {
776        assert(privateFlags.isSet(VALID_STREAM_ID));
777        return _streamId;
778    }
779
780    bool
781    hasSubstreamId() const
782    {
783        return privateFlags.isSet(VALID_SUBSTREAM_ID);
784    }
785
786    uint32_t
787    substreamId() const
788    {
789        assert(privateFlags.isSet(VALID_SUBSTREAM_ID));
790        return _substreamId;
791    }
792
793    void
794    setPC(Addr pc)
795    {
796        privateFlags.set(VALID_PC);
797        _pc = pc;
798    }
799
800    bool
801    hasPC() const
802    {
803        return privateFlags.isSet(VALID_PC);
804    }
805
806    /** Accessor function for pc.*/
807    Addr
808    getPC() const
809    {
810        assert(privateFlags.isSet(VALID_PC));
811        return _pc;
812    }
813
814    /**
815     * Increment/Get the depth at which this request is responded to.
816     * This currently happens when the request misses in any cache level.
817     */
818    void incAccessDepth() const { depth++; }
819    int getAccessDepth() const { return depth; }
820
821    /**
822     * Set/Get the time taken for this request to be successfully translated.
823     */
824    void setTranslateLatency() { translateDelta = curTick() - _time; }
825    Tick getTranslateLatency() const { return translateDelta; }
826
827    /**
828     * Set/Get the time taken to complete this request's access, not including
829     *  the time to successfully translate the request.
830     */
831    void setAccessLatency() { accessDelta = curTick() - _time - translateDelta; }
832    Tick getAccessLatency() const { return accessDelta; }
833
834    /**
835     * Accessor for the sequence number of instruction that creates the
836     * request.
837     */
838    bool
839    hasInstSeqNum() const
840    {
841        return privateFlags.isSet(VALID_INST_SEQ_NUM);
842    }
843
844    InstSeqNum
845    getReqInstSeqNum() const
846    {
847        assert(privateFlags.isSet(VALID_INST_SEQ_NUM));
848        return _reqInstSeqNum;
849    }
850
851    void
852    setReqInstSeqNum(const InstSeqNum seq_num)
853    {
854        privateFlags.set(VALID_INST_SEQ_NUM);
855        _reqInstSeqNum = seq_num;
856    }
857
858    /** Accessor functions for flags. Note that these are for testing
859        only; setting flags should be done via setFlags(). */
860    bool isUncacheable() const { return _flags.isSet(UNCACHEABLE); }
861    bool isStrictlyOrdered() const { return _flags.isSet(STRICT_ORDER); }
862    bool isInstFetch() const { return _flags.isSet(INST_FETCH); }
863    bool isPrefetch() const { return _flags.isSet(PREFETCH); }
864    bool isLLSC() const { return _flags.isSet(LLSC); }
865    bool isPriv() const { return _flags.isSet(PRIVILEGED); }
866    bool isLockedRMW() const { return _flags.isSet(LOCKED_RMW); }
867    bool isSwap() const { return _flags.isSet(MEM_SWAP|MEM_SWAP_COND); }
868    bool isCondSwap() const { return _flags.isSet(MEM_SWAP_COND); }
869    bool isMmappedIpr() const { return _flags.isSet(MMAPPED_IPR); }
870    bool isSecure() const { return _flags.isSet(SECURE); }
871    bool isPTWalk() const { return _flags.isSet(PT_WALK); }
872    bool isAcquire() const { return _flags.isSet(ACQUIRE); }
873    bool isRelease() const { return _flags.isSet(RELEASE); }
874    bool isKernel() const { return _flags.isSet(KERNEL); }
875    bool isAtomicReturn() const { return _flags.isSet(ATOMIC_RETURN_OP); }
876    bool isAtomicNoReturn() const { return _flags.isSet(ATOMIC_NO_RETURN_OP); }
877
878    bool
879    isAtomic() const
880    {
881        return _flags.isSet(ATOMIC_RETURN_OP) ||
882               _flags.isSet(ATOMIC_NO_RETURN_OP);
883    }
884
885    /**
886     * Accessor functions for the destination of a memory request. The
887     * destination flag can specify a point of reference for the
888     * operation (e.g. a cache block clean to the the point of
889     * unification). At the moment the destination is only used by the
890     * cache maintenance operations.
891     */
892    bool isToPOU() const { return _flags.isSet(DST_POU); }
893    bool isToPOC() const { return _flags.isSet(DST_POC); }
894    Flags getDest() const { return _flags & DST_BITS; }
895
896    /**
897     * Accessor functions for the memory space configuration flags and used by
898     * GPU ISAs such as the Heterogeneous System Architecture (HSA). Note that
899     * these are for testing only; setting extraFlags should be done via
900     * setMemSpaceConfigFlags().
901     */
902    bool isScoped() const { return _memSpaceConfigFlags.isSet(SCOPE_VALID); }
903
904    bool
905    isWavefrontScope() const
906    {
907        assert(isScoped());
908        return _memSpaceConfigFlags.isSet(WAVEFRONT_SCOPE);
909    }
910
911    bool
912    isWorkgroupScope() const
913    {
914        assert(isScoped());
915        return _memSpaceConfigFlags.isSet(WORKGROUP_SCOPE);
916    }
917
918    bool
919    isDeviceScope() const
920    {
921        assert(isScoped());
922        return _memSpaceConfigFlags.isSet(DEVICE_SCOPE);
923    }
924
925    bool
926    isSystemScope() const
927    {
928        assert(isScoped());
929        return _memSpaceConfigFlags.isSet(SYSTEM_SCOPE);
930    }
931
932    bool
933    isGlobalSegment() const
934    {
935        return _memSpaceConfigFlags.isSet(GLOBAL_SEGMENT) ||
936               (!isGroupSegment() && !isPrivateSegment() &&
937                !isKernargSegment() && !isReadonlySegment() &&
938                !isSpillSegment() && !isArgSegment());
939    }
940
941    bool
942    isGroupSegment() const
943    {
944        return _memSpaceConfigFlags.isSet(GROUP_SEGMENT);
945    }
946
947    bool
948    isPrivateSegment() const
949    {
950        return _memSpaceConfigFlags.isSet(PRIVATE_SEGMENT);
951    }
952
953    bool
954    isKernargSegment() const
955    {
956        return _memSpaceConfigFlags.isSet(KERNARG_SEGMENT);
957    }
958
959    bool
960    isReadonlySegment() const
961    {
962        return _memSpaceConfigFlags.isSet(READONLY_SEGMENT);
963    }
964
965    bool
966    isSpillSegment() const
967    {
968        return _memSpaceConfigFlags.isSet(SPILL_SEGMENT);
969    }
970
971    bool
972    isArgSegment() const
973    {
974        return _memSpaceConfigFlags.isSet(ARG_SEGMENT);
975    }
976
977    /**
978     * Accessor functions to determine whether this request is part of
979     * a cache maintenance operation. At the moment three operations
980     * are supported:
981
982     * 1) A cache clean operation updates all copies of a memory
983     * location to the point of reference,
984     * 2) A cache invalidate operation invalidates all copies of the
985     * specified block in the memory above the point of reference,
986     * 3) A clean and invalidate operation is a combination of the two
987     * operations.
988     * @{ */
989    bool isCacheClean() const { return _flags.isSet(CLEAN); }
990    bool isCacheInvalidate() const { return _flags.isSet(INVALIDATE); }
991    bool isCacheMaintenance() const { return _flags.isSet(CLEAN|INVALIDATE); }
992    /** @} */
993};
994
995#endif // __MEM_REQUEST_HH__
996