1/* 2 * Copyright (c) 2012-2013,2017-2018 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2002-2005 The Regents of The University of Michigan 15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc. 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * Authors: Ron Dreslinski 42 * Steve Reinhardt 43 * Ali Saidi 44 */ 45 46/** 47 * @file 48 * Declaration of a request, the overall memory request consisting of 49 the parts of the request that are persistent throughout the transaction. 50 */ 51 52#ifndef __MEM_REQUEST_HH__ 53#define __MEM_REQUEST_HH__ 54 55#include <cassert> 56#include <climits> 57 58#include "base/flags.hh" 59#include "base/logging.hh" 60#include "base/types.hh" 61#include "cpu/inst_seq.hh" 62#include "sim/core.hh" 63 64/** 65 * Special TaskIds that are used for per-context-switch stats dumps 66 * and Cache Occupancy. Having too many tasks seems to be a problem 67 * with vector stats. 1024 seems to be a reasonable number that 68 * doesn't cause a problem with stats and is large enough to realistic 69 * benchmarks (Linux/Android boot, BBench, etc.) 70 */ 71 72namespace ContextSwitchTaskId { 73 enum TaskId { 74 MaxNormalTaskId = 1021, /* Maximum number of normal tasks */ 75 Prefetcher = 1022, /* For cache lines brought in by prefetcher */ 76 DMA = 1023, /* Mostly Table Walker */ 77 Unknown = 1024, 78 NumTaskId 79 }; 80} 81 82class Request; 83 84typedef std::shared_ptr<Request> RequestPtr; 85typedef uint16_t MasterID; 86 87class Request 88{ 89 public: 90 typedef uint64_t FlagsType; 91 typedef uint8_t ArchFlagsType; 92 typedef ::Flags<FlagsType> Flags; 93 94 enum : FlagsType { 95 /** 96 * Architecture specific flags. 97 * 98 * These bits int the flag field are reserved for 99 * architecture-specific code. For example, SPARC uses them to 100 * represent ASIs. 101 */ 102 ARCH_BITS = 0x000000FF, 103 /** The request was an instruction fetch. */ 104 INST_FETCH = 0x00000100, 105 /** The virtual address is also the physical address. */ 106 PHYSICAL = 0x00000200, 107 /** 108 * The request is to an uncacheable address. 109 * 110 * @note Uncacheable accesses may be reordered by CPU models. The 111 * STRICT_ORDER flag should be set if such reordering is 112 * undesirable. 113 */ 114 UNCACHEABLE = 0x00000400, 115 /** 116 * The request is required to be strictly ordered by <i>CPU 117 * models</i> and is non-speculative. 118 * 119 * A strictly ordered request is guaranteed to never be 120 * re-ordered or executed speculatively by a CPU model. The 121 * memory system may still reorder requests in caches unless 122 * the UNCACHEABLE flag is set as well. 123 */ 124 STRICT_ORDER = 0x00000800, 125 /** This request is to a memory mapped register. */ 126 MMAPPED_IPR = 0x00002000, 127 /** This request is made in privileged mode. */ 128 PRIVILEGED = 0x00008000, 129 130 /** 131 * This is a write that is targeted and zeroing an entire 132 * cache block. There is no need for a read/modify/write 133 */ 134 CACHE_BLOCK_ZERO = 0x00010000, 135 136 /** The request should not cause a memory access. */ 137 NO_ACCESS = 0x00080000, 138 /** 139 * This request will lock or unlock the accessed memory. When 140 * used with a load, the access locks the particular chunk of 141 * memory. When used with a store, it unlocks. The rule is 142 * that locked accesses have to be made up of a locked load, 143 * some operation on the data, and then a locked store. 144 */ 145 LOCKED_RMW = 0x00100000, 146 /** The request is a Load locked/store conditional. */ 147 LLSC = 0x00200000, 148 /** This request is for a memory swap. */ 149 MEM_SWAP = 0x00400000, 150 MEM_SWAP_COND = 0x00800000, 151 152 /** The request is a prefetch. */ 153 PREFETCH = 0x01000000, 154 /** The request should be prefetched into the exclusive state. */ 155 PF_EXCLUSIVE = 0x02000000, 156 /** The request should be marked as LRU. */ 157 EVICT_NEXT = 0x04000000, 158 /** The request should be marked with ACQUIRE. */ 159 ACQUIRE = 0x00020000, 160 /** The request should be marked with RELEASE. */ 161 RELEASE = 0x00040000, 162 163 /** The request is an atomic that returns data. */ 164 ATOMIC_RETURN_OP = 0x40000000, 165 /** The request is an atomic that does not return data. */ 166 ATOMIC_NO_RETURN_OP = 0x80000000, 167 168 /** The request should be marked with KERNEL. 169 * Used to indicate the synchronization associated with a GPU kernel 170 * launch or completion. 171 */ 172 KERNEL = 0x00001000, 173 174 /** 175 * The request should be handled by the generic IPR code (only 176 * valid together with MMAPPED_IPR) 177 */ 178 GENERIC_IPR = 0x08000000, 179 180 /** The request targets the secure memory space. */ 181 SECURE = 0x10000000, 182 /** The request is a page table walk */ 183 PT_WALK = 0x20000000, 184 185 /** The request invalidates a memory location */ 186 INVALIDATE = 0x0000000100000000, 187 /** The request cleans a memory location */ 188 CLEAN = 0x0000000200000000, 189 190 /** The request targets the point of unification */ 191 DST_POU = 0x0000001000000000, 192 193 /** The request targets the point of coherence */ 194 DST_POC = 0x0000002000000000, 195 196 /** Bits to define the destination of a request */ 197 DST_BITS = 0x0000003000000000, 198 199 /** 200 * These flags are *not* cleared when a Request object is 201 * reused (assigned a new address). 202 */ 203 STICKY_FLAGS = INST_FETCH 204 }; 205 static const FlagsType STORE_NO_DATA = CACHE_BLOCK_ZERO | 206 CLEAN | INVALIDATE; 207 208 /** Master Ids that are statically allocated 209 * @{*/ 210 enum : MasterID { 211 /** This master id is used for writeback requests by the caches */ 212 wbMasterId = 0, 213 /** 214 * This master id is used for functional requests that 215 * don't come from a particular device 216 */ 217 funcMasterId = 1, 218 /** This master id is used for message signaled interrupts */ 219 intMasterId = 2, 220 /** 221 * Invalid master id for assertion checking only. It is 222 * invalid behavior to ever send this id as part of a request. 223 */ 224 invldMasterId = std::numeric_limits<MasterID>::max() 225 }; 226 /** @} */ 227 228 typedef uint32_t MemSpaceConfigFlagsType; 229 typedef ::Flags<MemSpaceConfigFlagsType> MemSpaceConfigFlags; 230 231 enum : MemSpaceConfigFlagsType { 232 /** Has a synchronization scope been set? */ 233 SCOPE_VALID = 0x00000001, 234 /** Access has Wavefront scope visibility */ 235 WAVEFRONT_SCOPE = 0x00000002, 236 /** Access has Workgroup scope visibility */ 237 WORKGROUP_SCOPE = 0x00000004, 238 /** Access has Device (e.g., GPU) scope visibility */ 239 DEVICE_SCOPE = 0x00000008, 240 /** Access has System (e.g., CPU + GPU) scope visibility */ 241 SYSTEM_SCOPE = 0x00000010, 242 243 /** Global Segment */ 244 GLOBAL_SEGMENT = 0x00000020, 245 /** Group Segment */ 246 GROUP_SEGMENT = 0x00000040, 247 /** Private Segment */ 248 PRIVATE_SEGMENT = 0x00000080, 249 /** Kergarg Segment */ 250 KERNARG_SEGMENT = 0x00000100, 251 /** Readonly Segment */ 252 READONLY_SEGMENT = 0x00000200, 253 /** Spill Segment */ 254 SPILL_SEGMENT = 0x00000400, 255 /** Arg Segment */ 256 ARG_SEGMENT = 0x00000800, 257 }; 258 259 private: 260 typedef uint16_t PrivateFlagsType; 261 typedef ::Flags<PrivateFlagsType> PrivateFlags; 262 263 enum : PrivateFlagsType { 264 /** Whether or not the size is valid. */ 265 VALID_SIZE = 0x00000001, 266 /** Whether or not paddr is valid (has been written yet). */ 267 VALID_PADDR = 0x00000002, 268 /** Whether or not the vaddr & asid are valid. */ 269 VALID_VADDR = 0x00000004, 270 /** Whether or not the instruction sequence number is valid. */ 271 VALID_INST_SEQ_NUM = 0x00000008, 272 /** Whether or not the pc is valid. */ 273 VALID_PC = 0x00000010, 274 /** Whether or not the context ID is valid. */ 275 VALID_CONTEXT_ID = 0x00000020, 276 /** Whether or not the sc result is valid. */ 277 VALID_EXTRA_DATA = 0x00000080, 278 /** Whether or not the stream ID and substream ID is valid. */ 279 VALID_STREAM_ID = 0x00000100, 280 VALID_SUBSTREAM_ID = 0x00000200, 281 /** 282 * These flags are *not* cleared when a Request object is reused 283 * (assigned a new address). 284 */ 285 STICKY_PRIVATE_FLAGS = VALID_CONTEXT_ID 286 }; 287 288 private: 289 290 /** 291 * Set up a physical (e.g. device) request in a previously 292 * allocated Request object. 293 */ 294 void 295 setPhys(Addr paddr, unsigned size, Flags flags, MasterID mid, Tick time) 296 { 297 _paddr = paddr; 298 _size = size; 299 _time = time; 300 _masterId = mid; 301 _flags.clear(~STICKY_FLAGS); 302 _flags.set(flags); 303 privateFlags.clear(~STICKY_PRIVATE_FLAGS); 304 privateFlags.set(VALID_PADDR|VALID_SIZE); 305 depth = 0; 306 accessDelta = 0; 307 //translateDelta = 0; 308 } 309 310 /** 311 * The physical address of the request. Valid only if validPaddr 312 * is set. 313 */ 314 Addr _paddr; 315 316 /** 317 * The size of the request. This field must be set when vaddr or 318 * paddr is written via setVirt() or setPhys(), so it is always 319 * valid as long as one of the address fields is valid. 320 */ 321 unsigned _size; 322 323 /** Byte-enable mask for writes. */ 324 std::vector<bool> _byteEnable; 325 326 /** The requestor ID which is unique in the system for all ports 327 * that are capable of issuing a transaction 328 */ 329 MasterID _masterId; 330 331 /** Flag structure for the request. */ 332 Flags _flags; 333 334 /** Memory space configuraiton flag structure for the request. */ 335 MemSpaceConfigFlags _memSpaceConfigFlags; 336 337 /** Private flags for field validity checking. */ 338 PrivateFlags privateFlags; 339 340 /** 341 * The time this request was started. Used to calculate 342 * latencies. This field is set to curTick() any time paddr or vaddr 343 * is written. 344 */ 345 Tick _time; 346 347 /** 348 * The task id associated with this request 349 */ 350 uint32_t _taskId; 351 352 union { 353 struct { 354 /** 355 * The stream ID uniquely identifies a device behind the 356 * SMMU/IOMMU Each transaction arriving at the SMMU/IOMMU is 357 * associated with exactly one stream ID. 358 */ 359 uint32_t _streamId; 360 361 /** 362 * The substream ID identifies an "execution context" within a 363 * device behind an SMMU/IOMMU. It's intended to map 1-to-1 to 364 * PCIe PASID (Process Address Space ID). The presence of a 365 * substream ID is optional. 366 */ 367 uint32_t _substreamId; 368 }; 369 370 /** The address space ID. */ 371 uint64_t _asid; 372 }; 373 374 /** The virtual address of the request. */ 375 Addr _vaddr; 376 377 /** 378 * Extra data for the request, such as the return value of 379 * store conditional or the compare value for a CAS. */ 380 uint64_t _extraData; 381 382 /** The context ID (for statistics, locks, and wakeups). */ 383 ContextID _contextId; 384 385 /** program counter of initiating access; for tracing/debugging */ 386 Addr _pc; 387 388 /** Sequence number of the instruction that creates the request */ 389 InstSeqNum _reqInstSeqNum; 390 391 /** A pointer to an atomic operation */ 392 AtomicOpFunctorPtr atomicOpFunctor; 393 394 public: 395 396 /** 397 * Minimal constructor. No fields are initialized. (Note that 398 * _flags and privateFlags are cleared by Flags default 399 * constructor.) 400 */ 401 Request() 402 : _paddr(0), _size(0), _masterId(invldMasterId), _time(0), 403 _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0), 404 _extraData(0), _contextId(0), _pc(0), 405 _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0), 406 accessDelta(0), depth(0) 407 {} 408 409 Request(Addr paddr, unsigned size, Flags flags, MasterID mid, 410 InstSeqNum seq_num, ContextID cid) 411 : _paddr(0), _size(0), _masterId(invldMasterId), _time(0), 412 _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0), 413 _extraData(0), _contextId(0), _pc(0), 414 _reqInstSeqNum(seq_num), atomicOpFunctor(nullptr), translateDelta(0), 415 accessDelta(0), depth(0) 416 { 417 setPhys(paddr, size, flags, mid, curTick()); 418 setContext(cid); 419 privateFlags.set(VALID_INST_SEQ_NUM); 420 } 421 422 /** 423 * Constructor for physical (e.g. device) requests. Initializes 424 * just physical address, size, flags, and timestamp (to curTick()). 425 * These fields are adequate to perform a request. 426 */ 427 Request(Addr paddr, unsigned size, Flags flags, MasterID mid) 428 : _paddr(0), _size(0), _masterId(invldMasterId), _time(0), 429 _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0), 430 _extraData(0), _contextId(0), _pc(0), 431 _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0), 432 accessDelta(0), depth(0) 433 { 434 setPhys(paddr, size, flags, mid, curTick()); 435 } 436 437 Request(Addr paddr, unsigned size, Flags flags, MasterID mid, Tick time) 438 : _paddr(0), _size(0), _masterId(invldMasterId), _time(0), 439 _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0), 440 _extraData(0), _contextId(0), _pc(0), 441 _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0), 442 accessDelta(0), depth(0) 443 { 444 setPhys(paddr, size, flags, mid, time); 445 } 446 447 Request(Addr paddr, unsigned size, Flags flags, MasterID mid, Tick time, 448 Addr pc) 449 : _paddr(0), _size(0), _masterId(invldMasterId), _time(0), 450 _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0), 451 _extraData(0), _contextId(0), _pc(pc), 452 _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0), 453 accessDelta(0), depth(0) 454 { 455 setPhys(paddr, size, flags, mid, time); 456 privateFlags.set(VALID_PC); 457 } 458 459 Request(uint64_t asid, Addr vaddr, unsigned size, Flags flags, 460 MasterID mid, Addr pc, ContextID cid) 461 : _paddr(0), _size(0), _masterId(invldMasterId), _time(0), 462 _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0), 463 _extraData(0), _contextId(0), _pc(0), 464 _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0), 465 accessDelta(0), depth(0) 466 { 467 setVirt(asid, vaddr, size, flags, mid, pc); 468 setContext(cid); 469 } 470 471 Request(uint64_t asid, Addr vaddr, unsigned size, Flags flags, 472 MasterID mid, Addr pc, ContextID cid, 473 AtomicOpFunctorPtr atomic_op) 474 { 475 setVirt(asid, vaddr, size, flags, mid, pc, std::move(atomic_op)); 476 setContext(cid); 477 } 478 479 Request(const Request& other) 480 : _paddr(other._paddr), _size(other._size), 481 _masterId(other._masterId), 482 _flags(other._flags), 483 _memSpaceConfigFlags(other._memSpaceConfigFlags), 484 privateFlags(other.privateFlags), 485 _time(other._time), 486 _taskId(other._taskId), _asid(other._asid), _vaddr(other._vaddr), 487 _extraData(other._extraData), _contextId(other._contextId), 488 _pc(other._pc), _reqInstSeqNum(other._reqInstSeqNum), 489 translateDelta(other.translateDelta), 490 accessDelta(other.accessDelta), depth(other.depth) 491 { 492 493 atomicOpFunctor.reset(other.atomicOpFunctor ? 494 other.atomicOpFunctor->clone() : nullptr); 495 } 496 497 ~Request() {} 498 499 /** 500 * Set up Context numbers. 501 */ 502 void 503 setContext(ContextID context_id) 504 { 505 _contextId = context_id; 506 privateFlags.set(VALID_CONTEXT_ID); 507 } 508 509 void 510 setStreamId(uint32_t sid) 511 { 512 _streamId = sid; 513 privateFlags.set(VALID_STREAM_ID); 514 } 515 516 void 517 setSubStreamId(uint32_t ssid) 518 { 519 assert(privateFlags.isSet(VALID_STREAM_ID)); 520 _substreamId = ssid; 521 privateFlags.set(VALID_SUBSTREAM_ID); 522 } 523 524 /** 525 * Set up a virtual (e.g., CPU) request in a previously 526 * allocated Request object. 527 */ 528 void 529 setVirt(uint64_t asid, Addr vaddr, unsigned size, Flags flags, 530 MasterID mid, Addr pc, AtomicOpFunctorPtr amo_op = nullptr) 531 { 532 _asid = asid; 533 _vaddr = vaddr; 534 _size = size; 535 _masterId = mid; 536 _pc = pc; 537 _time = curTick(); 538 539 _flags.clear(~STICKY_FLAGS); 540 _flags.set(flags); 541 privateFlags.clear(~STICKY_PRIVATE_FLAGS); 542 privateFlags.set(VALID_VADDR|VALID_SIZE|VALID_PC); 543 depth = 0; 544 accessDelta = 0; 545 translateDelta = 0; 546 atomicOpFunctor = std::move(amo_op); 547 } 548 549 /** 550 * Set just the physical address. This usually used to record the 551 * result of a translation. However, when using virtualized CPUs 552 * setPhys() is sometimes called to finalize a physical address 553 * without a virtual address, so we can't check if the virtual 554 * address is valid. 555 */ 556 void 557 setPaddr(Addr paddr) 558 { 559 _paddr = paddr; 560 privateFlags.set(VALID_PADDR); 561 } 562 563 /** 564 * Generate two requests as if this request had been split into two 565 * pieces. The original request can't have been translated already. 566 */ 567 // TODO: this function is still required by TimingSimpleCPU - should be 568 // removed once TimingSimpleCPU will support arbitrarily long multi-line 569 // mem. accesses 570 void splitOnVaddr(Addr split_addr, RequestPtr &req1, RequestPtr &req2) 571 { 572 assert(privateFlags.isSet(VALID_VADDR)); 573 assert(privateFlags.noneSet(VALID_PADDR)); 574 assert(split_addr > _vaddr && split_addr < _vaddr + _size); 575 req1 = std::make_shared<Request>(*this); 576 req2 = std::make_shared<Request>(*this); 577 req1->_size = split_addr - _vaddr; 578 req2->_vaddr = split_addr; 579 req2->_size = _size - req1->_size; 580 if (!_byteEnable.empty()) { 581 req1->_byteEnable = std::vector<bool>( 582 _byteEnable.begin(), 583 _byteEnable.begin() + req1->_size); 584 req2->_byteEnable = std::vector<bool>( 585 _byteEnable.begin() + req1->_size, 586 _byteEnable.end()); 587 } 588 } 589 590 /** 591 * Accessor for paddr. 592 */ 593 bool 594 hasPaddr() const 595 { 596 return privateFlags.isSet(VALID_PADDR); 597 } 598 599 Addr 600 getPaddr() const 601 { 602 assert(privateFlags.isSet(VALID_PADDR)); 603 return _paddr; 604 } 605 606 /** 607 * Time for the TLB/table walker to successfully translate this request. 608 */ 609 Tick translateDelta; 610 611 /** 612 * Access latency to complete this memory transaction not including 613 * translation time. 614 */ 615 Tick accessDelta; 616 617 /** 618 * Level of the cache hierachy where this request was responded to 619 * (e.g. 0 = L1; 1 = L2). 620 */ 621 mutable int depth; 622 623 /** 624 * Accessor for size. 625 */ 626 bool 627 hasSize() const 628 { 629 return privateFlags.isSet(VALID_SIZE); 630 } 631 632 unsigned 633 getSize() const 634 { 635 assert(privateFlags.isSet(VALID_SIZE)); 636 return _size; 637 } 638 639 const std::vector<bool>& 640 getByteEnable() const 641 { 642 return _byteEnable; 643 } 644 645 void 646 setByteEnable(const std::vector<bool>& be) 647 { 648 assert(be.empty() || be.size() == _size); 649 _byteEnable = be; 650 } 651 652 /** Accessor for time. */ 653 Tick 654 time() const 655 { 656 assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR)); 657 return _time; 658 } 659 660 /** 661 * Accessor for atomic-op functor. 662 */ 663 bool 664 hasAtomicOpFunctor() 665 { 666 return (bool)atomicOpFunctor; 667 } 668 669 AtomicOpFunctor * 670 getAtomicOpFunctor() 671 { 672 assert(atomicOpFunctor); 673 return atomicOpFunctor.get(); 674 } 675 676 /** Accessor for flags. */ 677 Flags 678 getFlags() 679 { 680 assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR)); 681 return _flags; 682 } 683 684 /** Note that unlike other accessors, this function sets *specific 685 flags* (ORs them in); it does not assign its argument to the 686 _flags field. Thus this method should rightly be called 687 setFlags() and not just flags(). */ 688 void 689 setFlags(Flags flags) 690 { 691 assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR)); 692 _flags.set(flags); 693 } 694 695 void 696 setMemSpaceConfigFlags(MemSpaceConfigFlags extraFlags) 697 { 698 assert(privateFlags.isSet(VALID_PADDR | VALID_VADDR)); 699 _memSpaceConfigFlags.set(extraFlags); 700 } 701 702 /** Accessor function for vaddr.*/ 703 bool 704 hasVaddr() const 705 { 706 return privateFlags.isSet(VALID_VADDR); 707 } 708 709 Addr 710 getVaddr() const 711 { 712 assert(privateFlags.isSet(VALID_VADDR)); 713 return _vaddr; 714 } 715 716 /** Accesssor for the requestor id. */ 717 MasterID 718 masterId() const 719 { 720 return _masterId; 721 } 722 723 uint32_t 724 taskId() const 725 { 726 return _taskId; 727 } 728 729 void 730 taskId(uint32_t id) { 731 _taskId = id; 732 } 733 734 /** Accessor function for asid.*/ 735 uint64_t 736 getAsid() const 737 { 738 assert(privateFlags.isSet(VALID_VADDR)); 739 return _asid; 740 } 741 742 /** Accessor function for asid.*/ 743 void 744 setAsid(uint64_t asid) 745 { 746 _asid = asid; 747 } 748 749 /** Accessor function for architecture-specific flags.*/ 750 ArchFlagsType 751 getArchFlags() const 752 { 753 assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR)); 754 return _flags & ARCH_BITS; 755 } 756 757 /** Accessor function to check if sc result is valid. */ 758 bool 759 extraDataValid() const 760 { 761 return privateFlags.isSet(VALID_EXTRA_DATA); 762 } 763 764 /** Accessor function for store conditional return value.*/ 765 uint64_t 766 getExtraData() const 767 { 768 assert(privateFlags.isSet(VALID_EXTRA_DATA)); 769 return _extraData; 770 } 771 772 /** Accessor function for store conditional return value.*/ 773 void 774 setExtraData(uint64_t extraData) 775 { 776 _extraData = extraData; 777 privateFlags.set(VALID_EXTRA_DATA); 778 } 779 780 bool 781 hasContextId() const 782 { 783 return privateFlags.isSet(VALID_CONTEXT_ID); 784 } 785 786 /** Accessor function for context ID.*/ 787 ContextID 788 contextId() const 789 { 790 assert(privateFlags.isSet(VALID_CONTEXT_ID)); 791 return _contextId; 792 } 793 794 uint32_t 795 streamId() const 796 { 797 assert(privateFlags.isSet(VALID_STREAM_ID)); 798 return _streamId; 799 } 800 801 bool 802 hasSubstreamId() const 803 { 804 return privateFlags.isSet(VALID_SUBSTREAM_ID); 805 } 806 807 uint32_t 808 substreamId() const 809 { 810 assert(privateFlags.isSet(VALID_SUBSTREAM_ID)); 811 return _substreamId; 812 } 813 814 void 815 setPC(Addr pc) 816 { 817 privateFlags.set(VALID_PC); 818 _pc = pc; 819 } 820 821 bool 822 hasPC() const 823 { 824 return privateFlags.isSet(VALID_PC); 825 } 826 827 /** Accessor function for pc.*/ 828 Addr 829 getPC() const 830 { 831 assert(privateFlags.isSet(VALID_PC)); 832 return _pc; 833 } 834 835 /** 836 * Increment/Get the depth at which this request is responded to. 837 * This currently happens when the request misses in any cache level. 838 */ 839 void incAccessDepth() const { depth++; } 840 int getAccessDepth() const { return depth; } 841 842 /** 843 * Set/Get the time taken for this request to be successfully translated. 844 */ 845 void setTranslateLatency() { translateDelta = curTick() - _time; } 846 Tick getTranslateLatency() const { return translateDelta; } 847 848 /** 849 * Set/Get the time taken to complete this request's access, not including 850 * the time to successfully translate the request. 851 */ 852 void setAccessLatency() { accessDelta = curTick() - _time - translateDelta; } 853 Tick getAccessLatency() const { return accessDelta; } 854 855 /** 856 * Accessor for the sequence number of instruction that creates the 857 * request. 858 */ 859 bool 860 hasInstSeqNum() const 861 { 862 return privateFlags.isSet(VALID_INST_SEQ_NUM); 863 } 864 865 InstSeqNum 866 getReqInstSeqNum() const 867 { 868 assert(privateFlags.isSet(VALID_INST_SEQ_NUM)); 869 return _reqInstSeqNum; 870 } 871 872 void 873 setReqInstSeqNum(const InstSeqNum seq_num) 874 { 875 privateFlags.set(VALID_INST_SEQ_NUM); 876 _reqInstSeqNum = seq_num; 877 } 878 879 /** Accessor functions for flags. Note that these are for testing 880 only; setting flags should be done via setFlags(). */ 881 bool isUncacheable() const { return _flags.isSet(UNCACHEABLE); } 882 bool isStrictlyOrdered() const { return _flags.isSet(STRICT_ORDER); } 883 bool isInstFetch() const { return _flags.isSet(INST_FETCH); } 884 bool isPrefetch() const { return (_flags.isSet(PREFETCH) || 885 _flags.isSet(PF_EXCLUSIVE)); } 886 bool isPrefetchEx() const { return _flags.isSet(PF_EXCLUSIVE); } 887 bool isLLSC() const { return _flags.isSet(LLSC); } 888 bool isPriv() const { return _flags.isSet(PRIVILEGED); } 889 bool isLockedRMW() const { return _flags.isSet(LOCKED_RMW); } 890 bool isSwap() const { return _flags.isSet(MEM_SWAP|MEM_SWAP_COND); } 891 bool isCondSwap() const { return _flags.isSet(MEM_SWAP_COND); } 892 bool isMmappedIpr() const { return _flags.isSet(MMAPPED_IPR); } 893 bool isSecure() const { return _flags.isSet(SECURE); } 894 bool isPTWalk() const { return _flags.isSet(PT_WALK); } 895 bool isAcquire() const { return _flags.isSet(ACQUIRE); } 896 bool isRelease() const { return _flags.isSet(RELEASE); } 897 bool isKernel() const { return _flags.isSet(KERNEL); } 898 bool isAtomicReturn() const { return _flags.isSet(ATOMIC_RETURN_OP); } 899 bool isAtomicNoReturn() const { return _flags.isSet(ATOMIC_NO_RETURN_OP); } 900 901 bool 902 isAtomic() const 903 { 904 return _flags.isSet(ATOMIC_RETURN_OP) || 905 _flags.isSet(ATOMIC_NO_RETURN_OP); 906 } 907 908 /** 909 * Accessor functions for the destination of a memory request. The 910 * destination flag can specify a point of reference for the 911 * operation (e.g. a cache block clean to the the point of 912 * unification). At the moment the destination is only used by the 913 * cache maintenance operations. 914 */ 915 bool isToPOU() const { return _flags.isSet(DST_POU); } 916 bool isToPOC() const { return _flags.isSet(DST_POC); } 917 Flags getDest() const { return _flags & DST_BITS; } 918 919 /** 920 * Accessor functions for the memory space configuration flags and used by 921 * GPU ISAs such as the Heterogeneous System Architecture (HSA). Note that 922 * these are for testing only; setting extraFlags should be done via 923 * setMemSpaceConfigFlags(). 924 */ 925 bool isScoped() const { return _memSpaceConfigFlags.isSet(SCOPE_VALID); } 926 927 bool 928 isWavefrontScope() const 929 { 930 assert(isScoped()); 931 return _memSpaceConfigFlags.isSet(WAVEFRONT_SCOPE); 932 } 933 934 bool 935 isWorkgroupScope() const 936 { 937 assert(isScoped()); 938 return _memSpaceConfigFlags.isSet(WORKGROUP_SCOPE); 939 } 940 941 bool 942 isDeviceScope() const 943 { 944 assert(isScoped()); 945 return _memSpaceConfigFlags.isSet(DEVICE_SCOPE); 946 } 947 948 bool 949 isSystemScope() const 950 { 951 assert(isScoped()); 952 return _memSpaceConfigFlags.isSet(SYSTEM_SCOPE); 953 } 954 955 bool 956 isGlobalSegment() const 957 { 958 return _memSpaceConfigFlags.isSet(GLOBAL_SEGMENT) || 959 (!isGroupSegment() && !isPrivateSegment() && 960 !isKernargSegment() && !isReadonlySegment() && 961 !isSpillSegment() && !isArgSegment()); 962 } 963 964 bool 965 isGroupSegment() const 966 { 967 return _memSpaceConfigFlags.isSet(GROUP_SEGMENT); 968 } 969 970 bool 971 isPrivateSegment() const 972 { 973 return _memSpaceConfigFlags.isSet(PRIVATE_SEGMENT); 974 } 975 976 bool 977 isKernargSegment() const 978 { 979 return _memSpaceConfigFlags.isSet(KERNARG_SEGMENT); 980 } 981 982 bool 983 isReadonlySegment() const 984 { 985 return _memSpaceConfigFlags.isSet(READONLY_SEGMENT); 986 } 987 988 bool 989 isSpillSegment() const 990 { 991 return _memSpaceConfigFlags.isSet(SPILL_SEGMENT); 992 } 993 994 bool 995 isArgSegment() const 996 { 997 return _memSpaceConfigFlags.isSet(ARG_SEGMENT); 998 } 999 1000 /** 1001 * Accessor functions to determine whether this request is part of 1002 * a cache maintenance operation. At the moment three operations 1003 * are supported: 1004 1005 * 1) A cache clean operation updates all copies of a memory 1006 * location to the point of reference, 1007 * 2) A cache invalidate operation invalidates all copies of the 1008 * specified block in the memory above the point of reference, 1009 * 3) A clean and invalidate operation is a combination of the two 1010 * operations. 1011 * @{ */ 1012 bool isCacheClean() const { return _flags.isSet(CLEAN); } 1013 bool isCacheInvalidate() const { return _flags.isSet(INVALIDATE); } 1014 bool isCacheMaintenance() const { return _flags.isSet(CLEAN|INVALIDATE); } 1015 /** @} */ 1016}; 1017 1018#endif // __MEM_REQUEST_HH__ 1019