request.hh revision 12749:223c83ed9979
1/*
2 * Copyright (c) 2012-2013,2017 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 *          Steve Reinhardt
43 *          Ali Saidi
44 */
45
46/**
47 * @file
48 * Declaration of a request, the overall memory request consisting of
49 the parts of the request that are persistent throughout the transaction.
50 */
51
52#ifndef __MEM_REQUEST_HH__
53#define __MEM_REQUEST_HH__
54
55#include <cassert>
56#include <climits>
57
58#include "base/flags.hh"
59#include "base/logging.hh"
60#include "base/types.hh"
61#include "cpu/inst_seq.hh"
62#include "sim/core.hh"
63
64/**
65 * Special TaskIds that are used for per-context-switch stats dumps
66 * and Cache Occupancy. Having too many tasks seems to be a problem
67 * with vector stats. 1024 seems to be a reasonable number that
68 * doesn't cause a problem with stats and is large enough to realistic
69 * benchmarks (Linux/Android boot, BBench, etc.)
70 */
71
72namespace ContextSwitchTaskId {
73    enum TaskId {
74        MaxNormalTaskId = 1021, /* Maximum number of normal tasks */
75        Prefetcher = 1022, /* For cache lines brought in by prefetcher */
76        DMA = 1023, /* Mostly Table Walker */
77        Unknown = 1024,
78        NumTaskId
79    };
80}
81
82class Request;
83
84typedef std::shared_ptr<Request> RequestPtr;
85typedef uint16_t MasterID;
86
87class Request
88{
89  public:
90    typedef uint64_t FlagsType;
91    typedef uint8_t ArchFlagsType;
92    typedef ::Flags<FlagsType> Flags;
93
94    enum : FlagsType {
95        /**
96         * Architecture specific flags.
97         *
98         * These bits int the flag field are reserved for
99         * architecture-specific code. For example, SPARC uses them to
100         * represent ASIs.
101         */
102        ARCH_BITS                   = 0x000000FF,
103        /** The request was an instruction fetch. */
104        INST_FETCH                  = 0x00000100,
105        /** The virtual address is also the physical address. */
106        PHYSICAL                    = 0x00000200,
107        /**
108         * The request is to an uncacheable address.
109         *
110         * @note Uncacheable accesses may be reordered by CPU models. The
111         * STRICT_ORDER flag should be set if such reordering is
112         * undesirable.
113         */
114        UNCACHEABLE                = 0x00000400,
115        /**
116         * The request is required to be strictly ordered by <i>CPU
117         * models</i> and is non-speculative.
118         *
119         * A strictly ordered request is guaranteed to never be
120         * re-ordered or executed speculatively by a CPU model. The
121         * memory system may still reorder requests in caches unless
122         * the UNCACHEABLE flag is set as well.
123         */
124        STRICT_ORDER                = 0x00000800,
125        /** This request is to a memory mapped register. */
126        MMAPPED_IPR                 = 0x00002000,
127        /** This request is made in privileged mode. */
128        PRIVILEGED                  = 0x00008000,
129
130        /**
131         * This is a write that is targeted and zeroing an entire
132         * cache block.  There is no need for a read/modify/write
133         */
134        CACHE_BLOCK_ZERO            = 0x00010000,
135
136        /** The request should not cause a memory access. */
137        NO_ACCESS                   = 0x00080000,
138        /**
139         * This request will lock or unlock the accessed memory. When
140         * used with a load, the access locks the particular chunk of
141         * memory. When used with a store, it unlocks. The rule is
142         * that locked accesses have to be made up of a locked load,
143         * some operation on the data, and then a locked store.
144         */
145        LOCKED_RMW                  = 0x00100000,
146        /** The request is a Load locked/store conditional. */
147        LLSC                        = 0x00200000,
148        /** This request is for a memory swap. */
149        MEM_SWAP                    = 0x00400000,
150        MEM_SWAP_COND               = 0x00800000,
151
152        /** The request is a prefetch. */
153        PREFETCH                    = 0x01000000,
154        /** The request should be prefetched into the exclusive state. */
155        PF_EXCLUSIVE                = 0x02000000,
156        /** The request should be marked as LRU. */
157        EVICT_NEXT                  = 0x04000000,
158        /** The request should be marked with ACQUIRE. */
159        ACQUIRE                     = 0x00020000,
160        /** The request should be marked with RELEASE. */
161        RELEASE                     = 0x00040000,
162
163        /** The request is an atomic that returns data. */
164        ATOMIC_RETURN_OP            = 0x40000000,
165        /** The request is an atomic that does not return data. */
166        ATOMIC_NO_RETURN_OP         = 0x80000000,
167
168        /** The request should be marked with KERNEL.
169          * Used to indicate the synchronization associated with a GPU kernel
170          * launch or completion.
171          */
172        KERNEL                      = 0x00001000,
173
174        /**
175         * The request should be handled by the generic IPR code (only
176         * valid together with MMAPPED_IPR)
177         */
178        GENERIC_IPR                 = 0x08000000,
179
180        /** The request targets the secure memory space. */
181        SECURE                      = 0x10000000,
182        /** The request is a page table walk */
183        PT_WALK                     = 0x20000000,
184
185        /** The request invalidates a memory location */
186        INVALIDATE                  = 0x0000000100000000,
187        /** The request cleans a memory location */
188        CLEAN                       = 0x0000000200000000,
189
190        /** The request targets the point of unification */
191        DST_POU                     = 0x0000001000000000,
192
193        /** The request targets the point of coherence */
194        DST_POC                     = 0x0000002000000000,
195
196        /** Bits to define the destination of a request */
197        DST_BITS                    = 0x0000003000000000,
198
199        /**
200         * These flags are *not* cleared when a Request object is
201         * reused (assigned a new address).
202         */
203        STICKY_FLAGS = INST_FETCH
204    };
205    static const FlagsType STORE_NO_DATA = CACHE_BLOCK_ZERO |
206        CLEAN | INVALIDATE;
207
208    /** Master Ids that are statically allocated
209     * @{*/
210    enum : MasterID {
211        /** This master id is used for writeback requests by the caches */
212        wbMasterId = 0,
213        /**
214         * This master id is used for functional requests that
215         * don't come from a particular device
216         */
217        funcMasterId = 1,
218        /** This master id is used for message signaled interrupts */
219        intMasterId = 2,
220        /**
221         * Invalid master id for assertion checking only. It is
222         * invalid behavior to ever send this id as part of a request.
223         */
224        invldMasterId = std::numeric_limits<MasterID>::max()
225    };
226    /** @} */
227
228    typedef uint32_t MemSpaceConfigFlagsType;
229    typedef ::Flags<MemSpaceConfigFlagsType> MemSpaceConfigFlags;
230
231    enum : MemSpaceConfigFlagsType {
232        /** Has a synchronization scope been set? */
233        SCOPE_VALID            = 0x00000001,
234        /** Access has Wavefront scope visibility */
235        WAVEFRONT_SCOPE        = 0x00000002,
236        /** Access has Workgroup scope visibility */
237        WORKGROUP_SCOPE        = 0x00000004,
238        /** Access has Device (e.g., GPU) scope visibility */
239        DEVICE_SCOPE           = 0x00000008,
240        /** Access has System (e.g., CPU + GPU) scope visibility */
241        SYSTEM_SCOPE           = 0x00000010,
242
243        /** Global Segment */
244        GLOBAL_SEGMENT         = 0x00000020,
245        /** Group Segment */
246        GROUP_SEGMENT          = 0x00000040,
247        /** Private Segment */
248        PRIVATE_SEGMENT        = 0x00000080,
249        /** Kergarg Segment */
250        KERNARG_SEGMENT        = 0x00000100,
251        /** Readonly Segment */
252        READONLY_SEGMENT       = 0x00000200,
253        /** Spill Segment */
254        SPILL_SEGMENT          = 0x00000400,
255        /** Arg Segment */
256        ARG_SEGMENT            = 0x00000800,
257    };
258
259  private:
260    typedef uint8_t PrivateFlagsType;
261    typedef ::Flags<PrivateFlagsType> PrivateFlags;
262
263    enum : PrivateFlagsType {
264        /** Whether or not the size is valid. */
265        VALID_SIZE           = 0x00000001,
266        /** Whether or not paddr is valid (has been written yet). */
267        VALID_PADDR          = 0x00000002,
268        /** Whether or not the vaddr & asid are valid. */
269        VALID_VADDR          = 0x00000004,
270        /** Whether or not the instruction sequence number is valid. */
271        VALID_INST_SEQ_NUM   = 0x00000008,
272        /** Whether or not the pc is valid. */
273        VALID_PC             = 0x00000010,
274        /** Whether or not the context ID is valid. */
275        VALID_CONTEXT_ID     = 0x00000020,
276        /** Whether or not the sc result is valid. */
277        VALID_EXTRA_DATA     = 0x00000080,
278        /**
279         * These flags are *not* cleared when a Request object is reused
280         * (assigned a new address).
281         */
282        STICKY_PRIVATE_FLAGS = VALID_CONTEXT_ID
283    };
284
285  private:
286
287    /**
288     * Set up a physical (e.g. device) request in a previously
289     * allocated Request object.
290     */
291    void
292    setPhys(Addr paddr, unsigned size, Flags flags, MasterID mid, Tick time)
293    {
294        _paddr = paddr;
295        _size = size;
296        _time = time;
297        _masterId = mid;
298        _flags.clear(~STICKY_FLAGS);
299        _flags.set(flags);
300        privateFlags.clear(~STICKY_PRIVATE_FLAGS);
301        privateFlags.set(VALID_PADDR|VALID_SIZE);
302        depth = 0;
303        accessDelta = 0;
304        //translateDelta = 0;
305    }
306
307    /**
308     * The physical address of the request. Valid only if validPaddr
309     * is set.
310     */
311    Addr _paddr;
312
313    /**
314     * The size of the request. This field must be set when vaddr or
315     * paddr is written via setVirt() or setPhys(), so it is always
316     * valid as long as one of the address fields is valid.
317     */
318    unsigned _size;
319
320    /** The requestor ID which is unique in the system for all ports
321     * that are capable of issuing a transaction
322     */
323    MasterID _masterId;
324
325    /** Flag structure for the request. */
326    Flags _flags;
327
328    /** Memory space configuraiton flag structure for the request. */
329    MemSpaceConfigFlags _memSpaceConfigFlags;
330
331    /** Private flags for field validity checking. */
332    PrivateFlags privateFlags;
333
334    /**
335     * The time this request was started. Used to calculate
336     * latencies. This field is set to curTick() any time paddr or vaddr
337     * is written.
338     */
339    Tick _time;
340
341    /**
342     * The task id associated with this request
343     */
344    uint32_t _taskId;
345
346    /** The address space ID. */
347    int _asid;
348
349    /** The virtual address of the request. */
350    Addr _vaddr;
351
352    /**
353     * Extra data for the request, such as the return value of
354     * store conditional or the compare value for a CAS. */
355    uint64_t _extraData;
356
357    /** The context ID (for statistics, locks, and wakeups). */
358    ContextID _contextId;
359
360    /** program counter of initiating access; for tracing/debugging */
361    Addr _pc;
362
363    /** Sequence number of the instruction that creates the request */
364    InstSeqNum _reqInstSeqNum;
365
366    /** A pointer to an atomic operation */
367    AtomicOpFunctor *atomicOpFunctor;
368
369  public:
370
371    /**
372     * Minimal constructor. No fields are initialized. (Note that
373     *  _flags and privateFlags are cleared by Flags default
374     *  constructor.)
375     */
376    Request()
377        : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
378          _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
379          _extraData(0), _contextId(0), _pc(0),
380          _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0),
381          accessDelta(0), depth(0)
382    {}
383
384    Request(Addr paddr, unsigned size, Flags flags, MasterID mid,
385            InstSeqNum seq_num, ContextID cid)
386        : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
387          _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
388          _extraData(0), _contextId(0), _pc(0),
389          _reqInstSeqNum(seq_num), atomicOpFunctor(nullptr), translateDelta(0),
390          accessDelta(0), depth(0)
391    {
392        setPhys(paddr, size, flags, mid, curTick());
393        setContext(cid);
394        privateFlags.set(VALID_INST_SEQ_NUM);
395    }
396
397    /**
398     * Constructor for physical (e.g. device) requests.  Initializes
399     * just physical address, size, flags, and timestamp (to curTick()).
400     * These fields are adequate to perform a request.
401     */
402    Request(Addr paddr, unsigned size, Flags flags, MasterID mid)
403        : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
404          _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
405          _extraData(0), _contextId(0), _pc(0),
406          _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0),
407          accessDelta(0), depth(0)
408    {
409        setPhys(paddr, size, flags, mid, curTick());
410    }
411
412    Request(Addr paddr, unsigned size, Flags flags, MasterID mid, Tick time)
413        : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
414          _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
415          _extraData(0), _contextId(0), _pc(0),
416          _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0),
417          accessDelta(0), depth(0)
418    {
419        setPhys(paddr, size, flags, mid, time);
420    }
421
422    Request(Addr paddr, unsigned size, Flags flags, MasterID mid, Tick time,
423            Addr pc)
424        : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
425          _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
426          _extraData(0), _contextId(0), _pc(pc),
427          _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0),
428          accessDelta(0), depth(0)
429    {
430        setPhys(paddr, size, flags, mid, time);
431        privateFlags.set(VALID_PC);
432    }
433
434    Request(int asid, Addr vaddr, unsigned size, Flags flags, MasterID mid,
435            Addr pc, ContextID cid)
436        : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
437          _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
438          _extraData(0), _contextId(0), _pc(0),
439          _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0),
440          accessDelta(0), depth(0)
441    {
442        setVirt(asid, vaddr, size, flags, mid, pc);
443        setContext(cid);
444    }
445
446    Request(int asid, Addr vaddr, unsigned size, Flags flags, MasterID mid,
447            Addr pc, ContextID cid, AtomicOpFunctor *atomic_op)
448        : atomicOpFunctor(atomic_op)
449    {
450        setVirt(asid, vaddr, size, flags, mid, pc);
451        setContext(cid);
452    }
453
454    ~Request()
455    {
456        if (hasAtomicOpFunctor()) {
457            delete atomicOpFunctor;
458        }
459    }
460
461    /**
462     * Set up Context numbers.
463     */
464    void
465    setContext(ContextID context_id)
466    {
467        _contextId = context_id;
468        privateFlags.set(VALID_CONTEXT_ID);
469    }
470
471    /**
472     * Set up a virtual (e.g., CPU) request in a previously
473     * allocated Request object.
474     */
475    void
476    setVirt(int asid, Addr vaddr, unsigned size, Flags flags, MasterID mid,
477            Addr pc)
478    {
479        _asid = asid;
480        _vaddr = vaddr;
481        _size = size;
482        _masterId = mid;
483        _pc = pc;
484        _time = curTick();
485
486        _flags.clear(~STICKY_FLAGS);
487        _flags.set(flags);
488        privateFlags.clear(~STICKY_PRIVATE_FLAGS);
489        privateFlags.set(VALID_VADDR|VALID_SIZE|VALID_PC);
490        depth = 0;
491        accessDelta = 0;
492        translateDelta = 0;
493    }
494
495    /**
496     * Set just the physical address.  This usually used to record the
497     * result of a translation. However, when using virtualized CPUs
498     * setPhys() is sometimes called to finalize a physical address
499     * without a virtual address, so we can't check if the virtual
500     * address is valid.
501     */
502    void
503    setPaddr(Addr paddr)
504    {
505        _paddr = paddr;
506        privateFlags.set(VALID_PADDR);
507    }
508
509    /**
510     * Generate two requests as if this request had been split into two
511     * pieces. The original request can't have been translated already.
512     */
513    void splitOnVaddr(Addr split_addr, RequestPtr &req1, RequestPtr &req2)
514    {
515        assert(privateFlags.isSet(VALID_VADDR));
516        assert(privateFlags.noneSet(VALID_PADDR));
517        assert(split_addr > _vaddr && split_addr < _vaddr + _size);
518        req1 = std::make_shared<Request>(*this);
519        req2 = std::make_shared<Request>(*this);
520        req1->_size = split_addr - _vaddr;
521        req2->_vaddr = split_addr;
522        req2->_size = _size - req1->_size;
523    }
524
525    /**
526     * Accessor for paddr.
527     */
528    bool
529    hasPaddr() const
530    {
531        return privateFlags.isSet(VALID_PADDR);
532    }
533
534    Addr
535    getPaddr() const
536    {
537        assert(privateFlags.isSet(VALID_PADDR));
538        return _paddr;
539    }
540
541    /**
542     * Time for the TLB/table walker to successfully translate this request.
543     */
544    Tick translateDelta;
545
546    /**
547     * Access latency to complete this memory transaction not including
548     * translation time.
549     */
550    Tick accessDelta;
551
552    /**
553     * Level of the cache hierachy where this request was responded to
554     * (e.g. 0 = L1; 1 = L2).
555     */
556    mutable int depth;
557
558    /**
559     *  Accessor for size.
560     */
561    bool
562    hasSize() const
563    {
564        return privateFlags.isSet(VALID_SIZE);
565    }
566
567    unsigned
568    getSize() const
569    {
570        assert(privateFlags.isSet(VALID_SIZE));
571        return _size;
572    }
573
574    /** Accessor for time. */
575    Tick
576    time() const
577    {
578        assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
579        return _time;
580    }
581
582    /**
583     * Accessor for atomic-op functor.
584     */
585    bool
586    hasAtomicOpFunctor()
587    {
588        return atomicOpFunctor != NULL;
589    }
590
591    AtomicOpFunctor *
592    getAtomicOpFunctor()
593    {
594        assert(atomicOpFunctor != NULL);
595        return atomicOpFunctor;
596    }
597
598    /** Accessor for flags. */
599    Flags
600    getFlags()
601    {
602        assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
603        return _flags;
604    }
605
606    /** Note that unlike other accessors, this function sets *specific
607        flags* (ORs them in); it does not assign its argument to the
608        _flags field.  Thus this method should rightly be called
609        setFlags() and not just flags(). */
610    void
611    setFlags(Flags flags)
612    {
613        assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
614        _flags.set(flags);
615    }
616
617    void
618    setMemSpaceConfigFlags(MemSpaceConfigFlags extraFlags)
619    {
620        assert(privateFlags.isSet(VALID_PADDR | VALID_VADDR));
621        _memSpaceConfigFlags.set(extraFlags);
622    }
623
624    /** Accessor function for vaddr.*/
625    bool
626    hasVaddr() const
627    {
628        return privateFlags.isSet(VALID_VADDR);
629    }
630
631    Addr
632    getVaddr() const
633    {
634        assert(privateFlags.isSet(VALID_VADDR));
635        return _vaddr;
636    }
637
638    /** Accesssor for the requestor id. */
639    MasterID
640    masterId() const
641    {
642        return _masterId;
643    }
644
645    uint32_t
646    taskId() const
647    {
648        return _taskId;
649    }
650
651    void
652    taskId(uint32_t id) {
653        _taskId = id;
654    }
655
656    /** Accessor function for asid.*/
657    int
658    getAsid() const
659    {
660        assert(privateFlags.isSet(VALID_VADDR));
661        return _asid;
662    }
663
664    /** Accessor function for asid.*/
665    void
666    setAsid(int asid)
667    {
668        _asid = asid;
669    }
670
671    /** Accessor function for architecture-specific flags.*/
672    ArchFlagsType
673    getArchFlags() const
674    {
675        assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
676        return _flags & ARCH_BITS;
677    }
678
679    /** Accessor function to check if sc result is valid. */
680    bool
681    extraDataValid() const
682    {
683        return privateFlags.isSet(VALID_EXTRA_DATA);
684    }
685
686    /** Accessor function for store conditional return value.*/
687    uint64_t
688    getExtraData() const
689    {
690        assert(privateFlags.isSet(VALID_EXTRA_DATA));
691        return _extraData;
692    }
693
694    /** Accessor function for store conditional return value.*/
695    void
696    setExtraData(uint64_t extraData)
697    {
698        _extraData = extraData;
699        privateFlags.set(VALID_EXTRA_DATA);
700    }
701
702    bool
703    hasContextId() const
704    {
705        return privateFlags.isSet(VALID_CONTEXT_ID);
706    }
707
708    /** Accessor function for context ID.*/
709    ContextID
710    contextId() const
711    {
712        assert(privateFlags.isSet(VALID_CONTEXT_ID));
713        return _contextId;
714    }
715
716    void
717    setPC(Addr pc)
718    {
719        privateFlags.set(VALID_PC);
720        _pc = pc;
721    }
722
723    bool
724    hasPC() const
725    {
726        return privateFlags.isSet(VALID_PC);
727    }
728
729    /** Accessor function for pc.*/
730    Addr
731    getPC() const
732    {
733        assert(privateFlags.isSet(VALID_PC));
734        return _pc;
735    }
736
737    /**
738     * Increment/Get the depth at which this request is responded to.
739     * This currently happens when the request misses in any cache level.
740     */
741    void incAccessDepth() const { depth++; }
742    int getAccessDepth() const { return depth; }
743
744    /**
745     * Set/Get the time taken for this request to be successfully translated.
746     */
747    void setTranslateLatency() { translateDelta = curTick() - _time; }
748    Tick getTranslateLatency() const { return translateDelta; }
749
750    /**
751     * Set/Get the time taken to complete this request's access, not including
752     *  the time to successfully translate the request.
753     */
754    void setAccessLatency() { accessDelta = curTick() - _time - translateDelta; }
755    Tick getAccessLatency() const { return accessDelta; }
756
757    /**
758     * Accessor for the sequence number of instruction that creates the
759     * request.
760     */
761    bool
762    hasInstSeqNum() const
763    {
764        return privateFlags.isSet(VALID_INST_SEQ_NUM);
765    }
766
767    InstSeqNum
768    getReqInstSeqNum() const
769    {
770        assert(privateFlags.isSet(VALID_INST_SEQ_NUM));
771        return _reqInstSeqNum;
772    }
773
774    void
775    setReqInstSeqNum(const InstSeqNum seq_num)
776    {
777        privateFlags.set(VALID_INST_SEQ_NUM);
778        _reqInstSeqNum = seq_num;
779    }
780
781    /** Accessor functions for flags. Note that these are for testing
782        only; setting flags should be done via setFlags(). */
783    bool isUncacheable() const { return _flags.isSet(UNCACHEABLE); }
784    bool isStrictlyOrdered() const { return _flags.isSet(STRICT_ORDER); }
785    bool isInstFetch() const { return _flags.isSet(INST_FETCH); }
786    bool isPrefetch() const { return _flags.isSet(PREFETCH); }
787    bool isLLSC() const { return _flags.isSet(LLSC); }
788    bool isPriv() const { return _flags.isSet(PRIVILEGED); }
789    bool isLockedRMW() const { return _flags.isSet(LOCKED_RMW); }
790    bool isSwap() const { return _flags.isSet(MEM_SWAP|MEM_SWAP_COND); }
791    bool isCondSwap() const { return _flags.isSet(MEM_SWAP_COND); }
792    bool isMmappedIpr() const { return _flags.isSet(MMAPPED_IPR); }
793    bool isSecure() const { return _flags.isSet(SECURE); }
794    bool isPTWalk() const { return _flags.isSet(PT_WALK); }
795    bool isAcquire() const { return _flags.isSet(ACQUIRE); }
796    bool isRelease() const { return _flags.isSet(RELEASE); }
797    bool isKernel() const { return _flags.isSet(KERNEL); }
798    bool isAtomicReturn() const { return _flags.isSet(ATOMIC_RETURN_OP); }
799    bool isAtomicNoReturn() const { return _flags.isSet(ATOMIC_NO_RETURN_OP); }
800
801    bool
802    isAtomic() const
803    {
804        return _flags.isSet(ATOMIC_RETURN_OP) ||
805               _flags.isSet(ATOMIC_NO_RETURN_OP);
806    }
807
808    /**
809     * Accessor functions for the destination of a memory request. The
810     * destination flag can specify a point of reference for the
811     * operation (e.g. a cache block clean to the the point of
812     * unification). At the moment the destination is only used by the
813     * cache maintenance operations.
814     */
815    bool isToPOU() const { return _flags.isSet(DST_POU); }
816    bool isToPOC() const { return _flags.isSet(DST_POC); }
817    Flags getDest() const { return _flags & DST_BITS; }
818
819    /**
820     * Accessor functions for the memory space configuration flags and used by
821     * GPU ISAs such as the Heterogeneous System Architecture (HSA). Note that
822     * these are for testing only; setting extraFlags should be done via
823     * setMemSpaceConfigFlags().
824     */
825    bool isScoped() const { return _memSpaceConfigFlags.isSet(SCOPE_VALID); }
826
827    bool
828    isWavefrontScope() const
829    {
830        assert(isScoped());
831        return _memSpaceConfigFlags.isSet(WAVEFRONT_SCOPE);
832    }
833
834    bool
835    isWorkgroupScope() const
836    {
837        assert(isScoped());
838        return _memSpaceConfigFlags.isSet(WORKGROUP_SCOPE);
839    }
840
841    bool
842    isDeviceScope() const
843    {
844        assert(isScoped());
845        return _memSpaceConfigFlags.isSet(DEVICE_SCOPE);
846    }
847
848    bool
849    isSystemScope() const
850    {
851        assert(isScoped());
852        return _memSpaceConfigFlags.isSet(SYSTEM_SCOPE);
853    }
854
855    bool
856    isGlobalSegment() const
857    {
858        return _memSpaceConfigFlags.isSet(GLOBAL_SEGMENT) ||
859               (!isGroupSegment() && !isPrivateSegment() &&
860                !isKernargSegment() && !isReadonlySegment() &&
861                !isSpillSegment() && !isArgSegment());
862    }
863
864    bool
865    isGroupSegment() const
866    {
867        return _memSpaceConfigFlags.isSet(GROUP_SEGMENT);
868    }
869
870    bool
871    isPrivateSegment() const
872    {
873        return _memSpaceConfigFlags.isSet(PRIVATE_SEGMENT);
874    }
875
876    bool
877    isKernargSegment() const
878    {
879        return _memSpaceConfigFlags.isSet(KERNARG_SEGMENT);
880    }
881
882    bool
883    isReadonlySegment() const
884    {
885        return _memSpaceConfigFlags.isSet(READONLY_SEGMENT);
886    }
887
888    bool
889    isSpillSegment() const
890    {
891        return _memSpaceConfigFlags.isSet(SPILL_SEGMENT);
892    }
893
894    bool
895    isArgSegment() const
896    {
897        return _memSpaceConfigFlags.isSet(ARG_SEGMENT);
898    }
899
900    /**
901     * Accessor functions to determine whether this request is part of
902     * a cache maintenance operation. At the moment three operations
903     * are supported:
904
905     * 1) A cache clean operation updates all copies of a memory
906     * location to the point of reference,
907     * 2) A cache invalidate operation invalidates all copies of the
908     * specified block in the memory above the point of reference,
909     * 3) A clean and invalidate operation is a combination of the two
910     * operations.
911     * @{ */
912    bool isCacheClean() const { return _flags.isSet(CLEAN); }
913    bool isCacheInvalidate() const { return _flags.isSet(INVALIDATE); }
914    bool isCacheMaintenance() const { return _flags.isSet(CLEAN|INVALIDATE); }
915    /** @} */
916};
917
918#endif // __MEM_REQUEST_HH__
919