request.hh revision 12346:9b1144d046ca
1/*
2 * Copyright (c) 2012-2013,2017 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 *          Steve Reinhardt
43 *          Ali Saidi
44 */
45
46/**
47 * @file
48 * Declaration of a request, the overall memory request consisting of
49 the parts of the request that are persistent throughout the transaction.
50 */
51
52#ifndef __MEM_REQUEST_HH__
53#define __MEM_REQUEST_HH__
54
55#include <cassert>
56#include <climits>
57
58#include "base/flags.hh"
59#include "base/logging.hh"
60#include "base/types.hh"
61#include "cpu/inst_seq.hh"
62#include "sim/core.hh"
63
64/**
65 * Special TaskIds that are used for per-context-switch stats dumps
66 * and Cache Occupancy. Having too many tasks seems to be a problem
67 * with vector stats. 1024 seems to be a reasonable number that
68 * doesn't cause a problem with stats and is large enough to realistic
69 * benchmarks (Linux/Android boot, BBench, etc.)
70 */
71
72namespace ContextSwitchTaskId {
73    enum TaskId {
74        MaxNormalTaskId = 1021, /* Maximum number of normal tasks */
75        Prefetcher = 1022, /* For cache lines brought in by prefetcher */
76        DMA = 1023, /* Mostly Table Walker */
77        Unknown = 1024,
78        NumTaskId
79    };
80}
81
82class Request;
83
84typedef Request* RequestPtr;
85typedef uint16_t MasterID;
86
87class Request
88{
89  public:
90    typedef uint64_t FlagsType;
91    typedef uint8_t ArchFlagsType;
92    typedef ::Flags<FlagsType> Flags;
93
94    enum : FlagsType {
95        /**
96         * Architecture specific flags.
97         *
98         * These bits int the flag field are reserved for
99         * architecture-specific code. For example, SPARC uses them to
100         * represent ASIs.
101         */
102        ARCH_BITS                   = 0x000000FF,
103        /** The request was an instruction fetch. */
104        INST_FETCH                  = 0x00000100,
105        /** The virtual address is also the physical address. */
106        PHYSICAL                    = 0x00000200,
107        /**
108         * The request is to an uncacheable address.
109         *
110         * @note Uncacheable accesses may be reordered by CPU models. The
111         * STRICT_ORDER flag should be set if such reordering is
112         * undesirable.
113         */
114        UNCACHEABLE                = 0x00000400,
115        /**
116         * The request is required to be strictly ordered by <i>CPU
117         * models</i> and is non-speculative.
118         *
119         * A strictly ordered request is guaranteed to never be
120         * re-ordered or executed speculatively by a CPU model. The
121         * memory system may still reorder requests in caches unless
122         * the UNCACHEABLE flag is set as well.
123         */
124        STRICT_ORDER                = 0x00000800,
125        /** This request is to a memory mapped register. */
126        MMAPPED_IPR                 = 0x00002000,
127        /** This request is made in privileged mode. */
128        PRIVILEGED                  = 0x00008000,
129
130        /**
131         * This is a write that is targeted and zeroing an entire
132         * cache block.  There is no need for a read/modify/write
133         */
134        CACHE_BLOCK_ZERO            = 0x00010000,
135
136        /** The request should not cause a memory access. */
137        NO_ACCESS                   = 0x00080000,
138        /**
139         * This request will lock or unlock the accessed memory. When
140         * used with a load, the access locks the particular chunk of
141         * memory. When used with a store, it unlocks. The rule is
142         * that locked accesses have to be made up of a locked load,
143         * some operation on the data, and then a locked store.
144         */
145        LOCKED_RMW                  = 0x00100000,
146        /** The request is a Load locked/store conditional. */
147        LLSC                        = 0x00200000,
148        /** This request is for a memory swap. */
149        MEM_SWAP                    = 0x00400000,
150        MEM_SWAP_COND               = 0x00800000,
151
152        /** The request is a prefetch. */
153        PREFETCH                    = 0x01000000,
154        /** The request should be prefetched into the exclusive state. */
155        PF_EXCLUSIVE                = 0x02000000,
156        /** The request should be marked as LRU. */
157        EVICT_NEXT                  = 0x04000000,
158        /** The request should be marked with ACQUIRE. */
159        ACQUIRE                     = 0x00020000,
160        /** The request should be marked with RELEASE. */
161        RELEASE                     = 0x00040000,
162
163        /** The request is an atomic that returns data. */
164        ATOMIC_RETURN_OP            = 0x40000000,
165        /** The request is an atomic that does not return data. */
166        ATOMIC_NO_RETURN_OP         = 0x80000000,
167
168        /** The request should be marked with KERNEL.
169          * Used to indicate the synchronization associated with a GPU kernel
170          * launch or completion.
171          */
172        KERNEL                      = 0x00001000,
173
174        /**
175         * The request should be handled by the generic IPR code (only
176         * valid together with MMAPPED_IPR)
177         */
178        GENERIC_IPR                 = 0x08000000,
179
180        /** The request targets the secure memory space. */
181        SECURE                      = 0x10000000,
182        /** The request is a page table walk */
183        PT_WALK                     = 0x20000000,
184
185        /** The request targets the point of unification */
186        DST_POU                     = 0x0000001000000000,
187
188        /** The request targets the point of coherence */
189        DST_POC                     = 0x0000002000000000,
190
191        /** Bits to define the destination of a request */
192        DST_BITS                    = 0x0000003000000000,
193
194        /**
195         * These flags are *not* cleared when a Request object is
196         * reused (assigned a new address).
197         */
198        STICKY_FLAGS = INST_FETCH
199    };
200
201    /** Master Ids that are statically allocated
202     * @{*/
203    enum : MasterID {
204        /** This master id is used for writeback requests by the caches */
205        wbMasterId = 0,
206        /**
207         * This master id is used for functional requests that
208         * don't come from a particular device
209         */
210        funcMasterId = 1,
211        /** This master id is used for message signaled interrupts */
212        intMasterId = 2,
213        /**
214         * Invalid master id for assertion checking only. It is
215         * invalid behavior to ever send this id as part of a request.
216         */
217        invldMasterId = std::numeric_limits<MasterID>::max()
218    };
219    /** @} */
220
221    typedef uint32_t MemSpaceConfigFlagsType;
222    typedef ::Flags<MemSpaceConfigFlagsType> MemSpaceConfigFlags;
223
224    enum : MemSpaceConfigFlagsType {
225        /** Has a synchronization scope been set? */
226        SCOPE_VALID            = 0x00000001,
227        /** Access has Wavefront scope visibility */
228        WAVEFRONT_SCOPE        = 0x00000002,
229        /** Access has Workgroup scope visibility */
230        WORKGROUP_SCOPE        = 0x00000004,
231        /** Access has Device (e.g., GPU) scope visibility */
232        DEVICE_SCOPE           = 0x00000008,
233        /** Access has System (e.g., CPU + GPU) scope visibility */
234        SYSTEM_SCOPE           = 0x00000010,
235
236        /** Global Segment */
237        GLOBAL_SEGMENT         = 0x00000020,
238        /** Group Segment */
239        GROUP_SEGMENT          = 0x00000040,
240        /** Private Segment */
241        PRIVATE_SEGMENT        = 0x00000080,
242        /** Kergarg Segment */
243        KERNARG_SEGMENT        = 0x00000100,
244        /** Readonly Segment */
245        READONLY_SEGMENT       = 0x00000200,
246        /** Spill Segment */
247        SPILL_SEGMENT          = 0x00000400,
248        /** Arg Segment */
249        ARG_SEGMENT            = 0x00000800,
250    };
251
252  private:
253    typedef uint8_t PrivateFlagsType;
254    typedef ::Flags<PrivateFlagsType> PrivateFlags;
255
256    enum : PrivateFlagsType {
257        /** Whether or not the size is valid. */
258        VALID_SIZE           = 0x00000001,
259        /** Whether or not paddr is valid (has been written yet). */
260        VALID_PADDR          = 0x00000002,
261        /** Whether or not the vaddr & asid are valid. */
262        VALID_VADDR          = 0x00000004,
263        /** Whether or not the instruction sequence number is valid. */
264        VALID_INST_SEQ_NUM   = 0x00000008,
265        /** Whether or not the pc is valid. */
266        VALID_PC             = 0x00000010,
267        /** Whether or not the context ID is valid. */
268        VALID_CONTEXT_ID     = 0x00000020,
269        /** Whether or not the sc result is valid. */
270        VALID_EXTRA_DATA     = 0x00000080,
271        /**
272         * These flags are *not* cleared when a Request object is reused
273         * (assigned a new address).
274         */
275        STICKY_PRIVATE_FLAGS = VALID_CONTEXT_ID
276    };
277
278  private:
279
280    /**
281     * Set up a physical (e.g. device) request in a previously
282     * allocated Request object.
283     */
284    void
285    setPhys(Addr paddr, unsigned size, Flags flags, MasterID mid, Tick time)
286    {
287        _paddr = paddr;
288        _size = size;
289        _time = time;
290        _masterId = mid;
291        _flags.clear(~STICKY_FLAGS);
292        _flags.set(flags);
293        privateFlags.clear(~STICKY_PRIVATE_FLAGS);
294        privateFlags.set(VALID_PADDR|VALID_SIZE);
295        depth = 0;
296        accessDelta = 0;
297        //translateDelta = 0;
298    }
299
300    /**
301     * The physical address of the request. Valid only if validPaddr
302     * is set.
303     */
304    Addr _paddr;
305
306    /**
307     * The size of the request. This field must be set when vaddr or
308     * paddr is written via setVirt() or setPhys(), so it is always
309     * valid as long as one of the address fields is valid.
310     */
311    unsigned _size;
312
313    /** The requestor ID which is unique in the system for all ports
314     * that are capable of issuing a transaction
315     */
316    MasterID _masterId;
317
318    /** Flag structure for the request. */
319    Flags _flags;
320
321    /** Memory space configuraiton flag structure for the request. */
322    MemSpaceConfigFlags _memSpaceConfigFlags;
323
324    /** Private flags for field validity checking. */
325    PrivateFlags privateFlags;
326
327    /**
328     * The time this request was started. Used to calculate
329     * latencies. This field is set to curTick() any time paddr or vaddr
330     * is written.
331     */
332    Tick _time;
333
334    /**
335     * The task id associated with this request
336     */
337    uint32_t _taskId;
338
339    /** The address space ID. */
340    int _asid;
341
342    /** The virtual address of the request. */
343    Addr _vaddr;
344
345    /**
346     * Extra data for the request, such as the return value of
347     * store conditional or the compare value for a CAS. */
348    uint64_t _extraData;
349
350    /** The context ID (for statistics, locks, and wakeups). */
351    ContextID _contextId;
352
353    /** program counter of initiating access; for tracing/debugging */
354    Addr _pc;
355
356    /** Sequence number of the instruction that creates the request */
357    InstSeqNum _reqInstSeqNum;
358
359    /** A pointer to an atomic operation */
360    AtomicOpFunctor *atomicOpFunctor;
361
362  public:
363
364    /**
365     * Minimal constructor. No fields are initialized. (Note that
366     *  _flags and privateFlags are cleared by Flags default
367     *  constructor.)
368     */
369    Request()
370        : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
371          _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
372          _extraData(0), _contextId(0), _pc(0),
373          _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0),
374          accessDelta(0), depth(0)
375    {}
376
377    Request(Addr paddr, unsigned size, Flags flags, MasterID mid,
378            InstSeqNum seq_num, ContextID cid)
379        : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
380          _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
381          _extraData(0), _contextId(0), _pc(0),
382          _reqInstSeqNum(seq_num), atomicOpFunctor(nullptr), translateDelta(0),
383          accessDelta(0), depth(0)
384    {
385        setPhys(paddr, size, flags, mid, curTick());
386        setContext(cid);
387        privateFlags.set(VALID_INST_SEQ_NUM);
388    }
389
390    /**
391     * Constructor for physical (e.g. device) requests.  Initializes
392     * just physical address, size, flags, and timestamp (to curTick()).
393     * These fields are adequate to perform a request.
394     */
395    Request(Addr paddr, unsigned size, Flags flags, MasterID mid)
396        : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
397          _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
398          _extraData(0), _contextId(0), _pc(0),
399          _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0),
400          accessDelta(0), depth(0)
401    {
402        setPhys(paddr, size, flags, mid, curTick());
403    }
404
405    Request(Addr paddr, unsigned size, Flags flags, MasterID mid, Tick time)
406        : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
407          _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
408          _extraData(0), _contextId(0), _pc(0),
409          _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0),
410          accessDelta(0), depth(0)
411    {
412        setPhys(paddr, size, flags, mid, time);
413    }
414
415    Request(Addr paddr, unsigned size, Flags flags, MasterID mid, Tick time,
416            Addr pc)
417        : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
418          _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
419          _extraData(0), _contextId(0), _pc(pc),
420          _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0),
421          accessDelta(0), depth(0)
422    {
423        setPhys(paddr, size, flags, mid, time);
424        privateFlags.set(VALID_PC);
425    }
426
427    Request(int asid, Addr vaddr, unsigned size, Flags flags, MasterID mid,
428            Addr pc, ContextID cid)
429        : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
430          _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
431          _extraData(0), _contextId(0), _pc(0),
432          _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0),
433          accessDelta(0), depth(0)
434    {
435        setVirt(asid, vaddr, size, flags, mid, pc);
436        setContext(cid);
437    }
438
439    Request(int asid, Addr vaddr, unsigned size, Flags flags, MasterID mid,
440            Addr pc, ContextID cid, AtomicOpFunctor *atomic_op)
441        : atomicOpFunctor(atomic_op)
442    {
443        setVirt(asid, vaddr, size, flags, mid, pc);
444        setContext(cid);
445    }
446
447    ~Request()
448    {
449        if (hasAtomicOpFunctor()) {
450            delete atomicOpFunctor;
451        }
452    }
453
454    /**
455     * Set up Context numbers.
456     */
457    void
458    setContext(ContextID context_id)
459    {
460        _contextId = context_id;
461        privateFlags.set(VALID_CONTEXT_ID);
462    }
463
464    /**
465     * Set up a virtual (e.g., CPU) request in a previously
466     * allocated Request object.
467     */
468    void
469    setVirt(int asid, Addr vaddr, unsigned size, Flags flags, MasterID mid,
470            Addr pc)
471    {
472        _asid = asid;
473        _vaddr = vaddr;
474        _size = size;
475        _masterId = mid;
476        _pc = pc;
477        _time = curTick();
478
479        _flags.clear(~STICKY_FLAGS);
480        _flags.set(flags);
481        privateFlags.clear(~STICKY_PRIVATE_FLAGS);
482        privateFlags.set(VALID_VADDR|VALID_SIZE|VALID_PC);
483        depth = 0;
484        accessDelta = 0;
485        translateDelta = 0;
486    }
487
488    /**
489     * Set just the physical address.  This usually used to record the
490     * result of a translation. However, when using virtualized CPUs
491     * setPhys() is sometimes called to finalize a physical address
492     * without a virtual address, so we can't check if the virtual
493     * address is valid.
494     */
495    void
496    setPaddr(Addr paddr)
497    {
498        _paddr = paddr;
499        privateFlags.set(VALID_PADDR);
500    }
501
502    /**
503     * Generate two requests as if this request had been split into two
504     * pieces. The original request can't have been translated already.
505     */
506    void splitOnVaddr(Addr split_addr, RequestPtr &req1, RequestPtr &req2)
507    {
508        assert(privateFlags.isSet(VALID_VADDR));
509        assert(privateFlags.noneSet(VALID_PADDR));
510        assert(split_addr > _vaddr && split_addr < _vaddr + _size);
511        req1 = new Request(*this);
512        req2 = new Request(*this);
513        req1->_size = split_addr - _vaddr;
514        req2->_vaddr = split_addr;
515        req2->_size = _size - req1->_size;
516    }
517
518    /**
519     * Accessor for paddr.
520     */
521    bool
522    hasPaddr() const
523    {
524        return privateFlags.isSet(VALID_PADDR);
525    }
526
527    Addr
528    getPaddr() const
529    {
530        assert(privateFlags.isSet(VALID_PADDR));
531        return _paddr;
532    }
533
534    /**
535     * Time for the TLB/table walker to successfully translate this request.
536     */
537    Tick translateDelta;
538
539    /**
540     * Access latency to complete this memory transaction not including
541     * translation time.
542     */
543    Tick accessDelta;
544
545    /**
546     * Level of the cache hierachy where this request was responded to
547     * (e.g. 0 = L1; 1 = L2).
548     */
549    mutable int depth;
550
551    /**
552     *  Accessor for size.
553     */
554    bool
555    hasSize() const
556    {
557        return privateFlags.isSet(VALID_SIZE);
558    }
559
560    unsigned
561    getSize() const
562    {
563        assert(privateFlags.isSet(VALID_SIZE));
564        return _size;
565    }
566
567    /** Accessor for time. */
568    Tick
569    time() const
570    {
571        assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
572        return _time;
573    }
574
575    /**
576     * Accessor for atomic-op functor.
577     */
578    bool
579    hasAtomicOpFunctor()
580    {
581        return atomicOpFunctor != NULL;
582    }
583
584    AtomicOpFunctor *
585    getAtomicOpFunctor()
586    {
587        assert(atomicOpFunctor != NULL);
588        return atomicOpFunctor;
589    }
590
591    /** Accessor for flags. */
592    Flags
593    getFlags()
594    {
595        assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
596        return _flags;
597    }
598
599    /** Note that unlike other accessors, this function sets *specific
600        flags* (ORs them in); it does not assign its argument to the
601        _flags field.  Thus this method should rightly be called
602        setFlags() and not just flags(). */
603    void
604    setFlags(Flags flags)
605    {
606        assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
607        _flags.set(flags);
608    }
609
610    void
611    setMemSpaceConfigFlags(MemSpaceConfigFlags extraFlags)
612    {
613        assert(privateFlags.isSet(VALID_PADDR | VALID_VADDR));
614        _memSpaceConfigFlags.set(extraFlags);
615    }
616
617    /** Accessor function for vaddr.*/
618    bool
619    hasVaddr() const
620    {
621        return privateFlags.isSet(VALID_VADDR);
622    }
623
624    Addr
625    getVaddr() const
626    {
627        assert(privateFlags.isSet(VALID_VADDR));
628        return _vaddr;
629    }
630
631    /** Accesssor for the requestor id. */
632    MasterID
633    masterId() const
634    {
635        return _masterId;
636    }
637
638    uint32_t
639    taskId() const
640    {
641        return _taskId;
642    }
643
644    void
645    taskId(uint32_t id) {
646        _taskId = id;
647    }
648
649    /** Accessor function for asid.*/
650    int
651    getAsid() const
652    {
653        assert(privateFlags.isSet(VALID_VADDR));
654        return _asid;
655    }
656
657    /** Accessor function for asid.*/
658    void
659    setAsid(int asid)
660    {
661        _asid = asid;
662    }
663
664    /** Accessor function for architecture-specific flags.*/
665    ArchFlagsType
666    getArchFlags() const
667    {
668        assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
669        return _flags & ARCH_BITS;
670    }
671
672    /** Accessor function to check if sc result is valid. */
673    bool
674    extraDataValid() const
675    {
676        return privateFlags.isSet(VALID_EXTRA_DATA);
677    }
678
679    /** Accessor function for store conditional return value.*/
680    uint64_t
681    getExtraData() const
682    {
683        assert(privateFlags.isSet(VALID_EXTRA_DATA));
684        return _extraData;
685    }
686
687    /** Accessor function for store conditional return value.*/
688    void
689    setExtraData(uint64_t extraData)
690    {
691        _extraData = extraData;
692        privateFlags.set(VALID_EXTRA_DATA);
693    }
694
695    bool
696    hasContextId() const
697    {
698        return privateFlags.isSet(VALID_CONTEXT_ID);
699    }
700
701    /** Accessor function for context ID.*/
702    ContextID
703    contextId() const
704    {
705        assert(privateFlags.isSet(VALID_CONTEXT_ID));
706        return _contextId;
707    }
708
709    void
710    setPC(Addr pc)
711    {
712        privateFlags.set(VALID_PC);
713        _pc = pc;
714    }
715
716    bool
717    hasPC() const
718    {
719        return privateFlags.isSet(VALID_PC);
720    }
721
722    /** Accessor function for pc.*/
723    Addr
724    getPC() const
725    {
726        assert(privateFlags.isSet(VALID_PC));
727        return _pc;
728    }
729
730    /**
731     * Increment/Get the depth at which this request is responded to.
732     * This currently happens when the request misses in any cache level.
733     */
734    void incAccessDepth() const { depth++; }
735    int getAccessDepth() const { return depth; }
736
737    /**
738     * Set/Get the time taken for this request to be successfully translated.
739     */
740    void setTranslateLatency() { translateDelta = curTick() - _time; }
741    Tick getTranslateLatency() const { return translateDelta; }
742
743    /**
744     * Set/Get the time taken to complete this request's access, not including
745     *  the time to successfully translate the request.
746     */
747    void setAccessLatency() { accessDelta = curTick() - _time - translateDelta; }
748    Tick getAccessLatency() const { return accessDelta; }
749
750    /**
751     * Accessor for the sequence number of instruction that creates the
752     * request.
753     */
754    bool
755    hasInstSeqNum() const
756    {
757        return privateFlags.isSet(VALID_INST_SEQ_NUM);
758    }
759
760    InstSeqNum
761    getReqInstSeqNum() const
762    {
763        assert(privateFlags.isSet(VALID_INST_SEQ_NUM));
764        return _reqInstSeqNum;
765    }
766
767    void
768    setReqInstSeqNum(const InstSeqNum seq_num)
769    {
770        privateFlags.set(VALID_INST_SEQ_NUM);
771        _reqInstSeqNum = seq_num;
772    }
773
774    /** Accessor functions for flags. Note that these are for testing
775        only; setting flags should be done via setFlags(). */
776    bool isUncacheable() const { return _flags.isSet(UNCACHEABLE); }
777    bool isStrictlyOrdered() const { return _flags.isSet(STRICT_ORDER); }
778    bool isInstFetch() const { return _flags.isSet(INST_FETCH); }
779    bool isPrefetch() const { return _flags.isSet(PREFETCH); }
780    bool isLLSC() const { return _flags.isSet(LLSC); }
781    bool isPriv() const { return _flags.isSet(PRIVILEGED); }
782    bool isLockedRMW() const { return _flags.isSet(LOCKED_RMW); }
783    bool isSwap() const { return _flags.isSet(MEM_SWAP|MEM_SWAP_COND); }
784    bool isCondSwap() const { return _flags.isSet(MEM_SWAP_COND); }
785    bool isMmappedIpr() const { return _flags.isSet(MMAPPED_IPR); }
786    bool isSecure() const { return _flags.isSet(SECURE); }
787    bool isPTWalk() const { return _flags.isSet(PT_WALK); }
788    bool isAcquire() const { return _flags.isSet(ACQUIRE); }
789    bool isRelease() const { return _flags.isSet(RELEASE); }
790    bool isKernel() const { return _flags.isSet(KERNEL); }
791    bool isAtomicReturn() const { return _flags.isSet(ATOMIC_RETURN_OP); }
792    bool isAtomicNoReturn() const { return _flags.isSet(ATOMIC_NO_RETURN_OP); }
793
794    bool
795    isAtomic() const
796    {
797        return _flags.isSet(ATOMIC_RETURN_OP) ||
798               _flags.isSet(ATOMIC_NO_RETURN_OP);
799    }
800
801    /**
802     * Accessor functions for the destination of a memory request. The
803     * destination flag can specify a point of reference for the
804     * operation (e.g. a cache block clean to the the point of
805     * unification). At the moment the destination is only used by the
806     * cache maintenance operations.
807     */
808    bool isToPOU() const { return _flags.isSet(DST_POU); }
809    bool isToPOC() const { return _flags.isSet(DST_POC); }
810    Flags getDest() const { return _flags & DST_BITS; }
811
812    /**
813     * Accessor functions for the memory space configuration flags and used by
814     * GPU ISAs such as the Heterogeneous System Architecture (HSA). Note that
815     * these are for testing only; setting extraFlags should be done via
816     * setMemSpaceConfigFlags().
817     */
818    bool isScoped() const { return _memSpaceConfigFlags.isSet(SCOPE_VALID); }
819
820    bool
821    isWavefrontScope() const
822    {
823        assert(isScoped());
824        return _memSpaceConfigFlags.isSet(WAVEFRONT_SCOPE);
825    }
826
827    bool
828    isWorkgroupScope() const
829    {
830        assert(isScoped());
831        return _memSpaceConfigFlags.isSet(WORKGROUP_SCOPE);
832    }
833
834    bool
835    isDeviceScope() const
836    {
837        assert(isScoped());
838        return _memSpaceConfigFlags.isSet(DEVICE_SCOPE);
839    }
840
841    bool
842    isSystemScope() const
843    {
844        assert(isScoped());
845        return _memSpaceConfigFlags.isSet(SYSTEM_SCOPE);
846    }
847
848    bool
849    isGlobalSegment() const
850    {
851        return _memSpaceConfigFlags.isSet(GLOBAL_SEGMENT) ||
852               (!isGroupSegment() && !isPrivateSegment() &&
853                !isKernargSegment() && !isReadonlySegment() &&
854                !isSpillSegment() && !isArgSegment());
855    }
856
857    bool
858    isGroupSegment() const
859    {
860        return _memSpaceConfigFlags.isSet(GROUP_SEGMENT);
861    }
862
863    bool
864    isPrivateSegment() const
865    {
866        return _memSpaceConfigFlags.isSet(PRIVATE_SEGMENT);
867    }
868
869    bool
870    isKernargSegment() const
871    {
872        return _memSpaceConfigFlags.isSet(KERNARG_SEGMENT);
873    }
874
875    bool
876    isReadonlySegment() const
877    {
878        return _memSpaceConfigFlags.isSet(READONLY_SEGMENT);
879    }
880
881    bool
882    isSpillSegment() const
883    {
884        return _memSpaceConfigFlags.isSet(SPILL_SEGMENT);
885    }
886
887    bool
888    isArgSegment() const
889    {
890        return _memSpaceConfigFlags.isSet(ARG_SEGMENT);
891    }
892};
893
894#endif // __MEM_REQUEST_HH__
895