dram_ctrl.cc revision 10211
19243SN/A/*
210206Sandreas.hansson@arm.com * Copyright (c) 2010-2014 ARM Limited
39243SN/A * All rights reserved
49243SN/A *
59243SN/A * The license below extends only to copyright in the software and shall
69243SN/A * not be construed as granting a license to any other intellectual
79243SN/A * property including but not limited to intellectual property relating
89243SN/A * to a hardware implementation of the functionality of the software
99243SN/A * licensed hereunder.  You may use the software subject to the license
109243SN/A * terms below provided that you ensure that this notice is replicated
119243SN/A * unmodified and in its entirety in all distributions of the software,
129243SN/A * modified or unmodified, in source code or in binary form.
139243SN/A *
149831SN/A * Copyright (c) 2013 Amin Farmahini-Farahani
159831SN/A * All rights reserved.
169831SN/A *
179243SN/A * Redistribution and use in source and binary forms, with or without
189243SN/A * modification, are permitted provided that the following conditions are
199243SN/A * met: redistributions of source code must retain the above copyright
209243SN/A * notice, this list of conditions and the following disclaimer;
219243SN/A * redistributions in binary form must reproduce the above copyright
229243SN/A * notice, this list of conditions and the following disclaimer in the
239243SN/A * documentation and/or other materials provided with the distribution;
249243SN/A * neither the name of the copyright holders nor the names of its
259243SN/A * contributors may be used to endorse or promote products derived from
269243SN/A * this software without specific prior written permission.
279243SN/A *
289243SN/A * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
299243SN/A * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
309243SN/A * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
319243SN/A * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
329243SN/A * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
339243SN/A * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
349243SN/A * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
359243SN/A * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
369243SN/A * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
379243SN/A * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
389243SN/A * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
399243SN/A *
409243SN/A * Authors: Andreas Hansson
419243SN/A *          Ani Udipi
429967SN/A *          Neha Agarwal
439243SN/A */
449243SN/A
4510146Sandreas.hansson@arm.com#include "base/bitfield.hh"
469356SN/A#include "base/trace.hh"
4710146Sandreas.hansson@arm.com#include "debug/DRAM.hh"
4810208Sandreas.hansson@arm.com#include "debug/DRAMState.hh"
499352SN/A#include "debug/Drain.hh"
5010146Sandreas.hansson@arm.com#include "mem/dram_ctrl.hh"
519814SN/A#include "sim/system.hh"
529243SN/A
539243SN/Ausing namespace std;
549243SN/A
5510146Sandreas.hansson@arm.comDRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
569243SN/A    AbstractMemory(p),
579243SN/A    port(name() + ".port", *this),
589243SN/A    retryRdReq(false), retryWrReq(false),
5910211Sandreas.hansson@arm.com    busState(READ),
6010208Sandreas.hansson@arm.com    nextReqEvent(this), respondEvent(this), activateEvent(this),
6110208Sandreas.hansson@arm.com    prechargeEvent(this), refreshEvent(this), powerEvent(this),
6210208Sandreas.hansson@arm.com    drainManager(NULL),
639831SN/A    deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
649831SN/A    deviceRowBufferSize(p->device_rowbuffer_size),
659831SN/A    devicesPerRank(p->devices_per_rank),
669831SN/A    burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
679831SN/A    rowBufferSize(devicesPerRank * deviceRowBufferSize),
6810140SN/A    columnsPerRowBuffer(rowBufferSize / burstSize),
699243SN/A    ranksPerChannel(p->ranks_per_channel),
709566SN/A    banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
719243SN/A    readBufferSize(p->read_buffer_size),
729243SN/A    writeBufferSize(p->write_buffer_size),
7310140SN/A    writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
7410140SN/A    writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
7510147Sandreas.hansson@arm.com    minWritesPerSwitch(p->min_writes_per_switch),
7610147Sandreas.hansson@arm.com    writesThisTime(0), readsThisTime(0),
7710206Sandreas.hansson@arm.com    tWTR(p->tWTR), tRTW(p->tRTW), tBURST(p->tBURST),
7810210Sandreas.hansson@arm.com    tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), tWR(p->tWR),
799971SN/A    tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
809488SN/A    tXAW(p->tXAW), activationLimit(p->activation_limit),
819243SN/A    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
829243SN/A    pageMgmt(p->page_policy),
8310141SN/A    maxAccessesPerRow(p->max_accesses_per_row),
849726SN/A    frontendLatency(p->static_frontend_latency),
859726SN/A    backendLatency(p->static_backend_latency),
8610208Sandreas.hansson@arm.com    busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE),
8710208Sandreas.hansson@arm.com    pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0),
8810208Sandreas.hansson@arm.com    nextReqTime(0), pwrStateTick(0), numBanksActive(0)
899243SN/A{
909243SN/A    // create the bank states based on the dimensions of the ranks and
919243SN/A    // banks
929243SN/A    banks.resize(ranksPerChannel);
939969SN/A    actTicks.resize(ranksPerChannel);
949243SN/A    for (size_t c = 0; c < ranksPerChannel; ++c) {
959243SN/A        banks[c].resize(banksPerRank);
969969SN/A        actTicks[c].resize(activationLimit, 0);
979243SN/A    }
989243SN/A
9910140SN/A    // perform a basic check of the write thresholds
10010140SN/A    if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
10110140SN/A        fatal("Write buffer low threshold %d must be smaller than the "
10210140SN/A              "high threshold %d\n", p->write_low_thresh_perc,
10310140SN/A              p->write_high_thresh_perc);
1049243SN/A
1059243SN/A    // determine the rows per bank by looking at the total capacity
1069567SN/A    uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
1079243SN/A
1089243SN/A    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
1099243SN/A            AbstractMemory::size());
1109831SN/A
1119831SN/A    DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
1129831SN/A            rowBufferSize, columnsPerRowBuffer);
1139831SN/A
1149831SN/A    rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
1159243SN/A
1169566SN/A    if (range.interleaved()) {
1179566SN/A        if (channels != range.stripes())
11810143SN/A            fatal("%s has %d interleaved address stripes but %d channel(s)\n",
1199566SN/A                  name(), range.stripes(), channels);
1209566SN/A
12110136SN/A        if (addrMapping == Enums::RoRaBaChCo) {
1229831SN/A            if (rowBufferSize != range.granularity()) {
12310143SN/A                fatal("Interleaving of %s doesn't match RoRaBaChCo "
12410136SN/A                      "address map\n", name());
1259566SN/A            }
12610136SN/A        } else if (addrMapping == Enums::RoRaBaCoCh) {
12710136SN/A            if (system()->cacheLineSize() != range.granularity()) {
12810143SN/A                fatal("Interleaving of %s doesn't match RoRaBaCoCh "
12910136SN/A                      "address map\n", name());
1309669SN/A            }
13110136SN/A        } else if (addrMapping == Enums::RoCoRaBaCh) {
13210136SN/A            if (system()->cacheLineSize() != range.granularity())
13310143SN/A                fatal("Interleaving of %s doesn't match RoCoRaBaCh "
13410136SN/A                      "address map\n", name());
1359566SN/A        }
1369566SN/A    }
13710207Sandreas.hansson@arm.com
13810207Sandreas.hansson@arm.com    // some basic sanity checks
13910207Sandreas.hansson@arm.com    if (tREFI <= tRP || tREFI <= tRFC) {
14010207Sandreas.hansson@arm.com        fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
14110207Sandreas.hansson@arm.com              tREFI, tRP, tRFC);
14210207Sandreas.hansson@arm.com    }
1439243SN/A}
1449243SN/A
1459243SN/Avoid
14610146Sandreas.hansson@arm.comDRAMCtrl::init()
14710140SN/A{
14810140SN/A    if (!port.isConnected()) {
14910146Sandreas.hansson@arm.com        fatal("DRAMCtrl %s is unconnected!\n", name());
15010140SN/A    } else {
15110140SN/A        port.sendRangeChange();
15210140SN/A    }
15310140SN/A}
15410140SN/A
15510140SN/Avoid
15610146Sandreas.hansson@arm.comDRAMCtrl::startup()
1579243SN/A{
15810143SN/A    // update the start tick for the precharge accounting to the
15910143SN/A    // current tick
16010208Sandreas.hansson@arm.com    pwrStateTick = curTick();
16110143SN/A
16210206Sandreas.hansson@arm.com    // shift the bus busy time sufficiently far ahead that we never
16310206Sandreas.hansson@arm.com    // have to worry about negative values when computing the time for
16410206Sandreas.hansson@arm.com    // the next request, this will add an insignificant bubble at the
16510206Sandreas.hansson@arm.com    // start of simulation
16610206Sandreas.hansson@arm.com    busBusyUntil = curTick() + tRP + tRCD + tCL;
16710206Sandreas.hansson@arm.com
1689243SN/A    // print the configuration of the controller
1699243SN/A    printParams();
1709243SN/A
17110207Sandreas.hansson@arm.com    // kick off the refresh, and give ourselves enough time to
17210207Sandreas.hansson@arm.com    // precharge
17310207Sandreas.hansson@arm.com    schedule(refreshEvent, curTick() + tREFI - tRP);
1749243SN/A}
1759243SN/A
1769243SN/ATick
17710146Sandreas.hansson@arm.comDRAMCtrl::recvAtomic(PacketPtr pkt)
1789243SN/A{
1799243SN/A    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
1809243SN/A
1819243SN/A    // do the actual memory access and turn the packet into a response
1829243SN/A    access(pkt);
1839243SN/A
1849243SN/A    Tick latency = 0;
1859243SN/A    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
1869243SN/A        // this value is not supposed to be accurate, just enough to
1879243SN/A        // keep things going, mimic a closed page
1889243SN/A        latency = tRP + tRCD + tCL;
1899243SN/A    }
1909243SN/A    return latency;
1919243SN/A}
1929243SN/A
1939243SN/Abool
19410146Sandreas.hansson@arm.comDRAMCtrl::readQueueFull(unsigned int neededEntries) const
1959243SN/A{
1969831SN/A    DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
1979831SN/A            readBufferSize, readQueue.size() + respQueue.size(),
1989831SN/A            neededEntries);
1999243SN/A
2009831SN/A    return
2019831SN/A        (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
2029243SN/A}
2039243SN/A
2049243SN/Abool
20510146Sandreas.hansson@arm.comDRAMCtrl::writeQueueFull(unsigned int neededEntries) const
2069243SN/A{
2079831SN/A    DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
2089831SN/A            writeBufferSize, writeQueue.size(), neededEntries);
2099831SN/A    return (writeQueue.size() + neededEntries) > writeBufferSize;
2109243SN/A}
2119243SN/A
21210146Sandreas.hansson@arm.comDRAMCtrl::DRAMPacket*
21310146Sandreas.hansson@arm.comDRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
21410143SN/A                       bool isRead)
2159243SN/A{
2169669SN/A    // decode the address based on the address mapping scheme, with
21710136SN/A    // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
21810136SN/A    // channel, respectively
2199243SN/A    uint8_t rank;
2209967SN/A    uint8_t bank;
2219243SN/A    uint16_t row;
2229243SN/A
2239243SN/A    // truncate the address to the access granularity
2249831SN/A    Addr addr = dramPktAddr / burstSize;
2259243SN/A
2269491SN/A    // we have removed the lowest order address bits that denote the
2279831SN/A    // position within the column
22810136SN/A    if (addrMapping == Enums::RoRaBaChCo) {
2299491SN/A        // the lowest order bits denote the column to ensure that
2309491SN/A        // sequential cache lines occupy the same row
2319831SN/A        addr = addr / columnsPerRowBuffer;
2329243SN/A
2339669SN/A        // take out the channel part of the address
2349566SN/A        addr = addr / channels;
2359566SN/A
2369669SN/A        // after the channel bits, get the bank bits to interleave
2379669SN/A        // over the banks
2389669SN/A        bank = addr % banksPerRank;
2399669SN/A        addr = addr / banksPerRank;
2409669SN/A
2419669SN/A        // after the bank, we get the rank bits which thus interleaves
2429669SN/A        // over the ranks
2439669SN/A        rank = addr % ranksPerChannel;
2449669SN/A        addr = addr / ranksPerChannel;
2459669SN/A
2469669SN/A        // lastly, get the row bits
2479669SN/A        row = addr % rowsPerBank;
2489669SN/A        addr = addr / rowsPerBank;
24910136SN/A    } else if (addrMapping == Enums::RoRaBaCoCh) {
2509669SN/A        // take out the channel part of the address
2519669SN/A        addr = addr / channels;
2529669SN/A
2539669SN/A        // next, the column
2549831SN/A        addr = addr / columnsPerRowBuffer;
2559669SN/A
2569669SN/A        // after the column bits, we get the bank bits to interleave
2579491SN/A        // over the banks
2589243SN/A        bank = addr % banksPerRank;
2599243SN/A        addr = addr / banksPerRank;
2609243SN/A
2619491SN/A        // after the bank, we get the rank bits which thus interleaves
2629491SN/A        // over the ranks
2639243SN/A        rank = addr % ranksPerChannel;
2649243SN/A        addr = addr / ranksPerChannel;
2659243SN/A
2669491SN/A        // lastly, get the row bits
2679243SN/A        row = addr % rowsPerBank;
2689243SN/A        addr = addr / rowsPerBank;
26910136SN/A    } else if (addrMapping == Enums::RoCoRaBaCh) {
2709491SN/A        // optimise for closed page mode and utilise maximum
2719491SN/A        // parallelism of the DRAM (at the cost of power)
2729491SN/A
2739566SN/A        // take out the channel part of the address, not that this has
2749566SN/A        // to match with how accesses are interleaved between the
2759566SN/A        // controllers in the address mapping
2769566SN/A        addr = addr / channels;
2779566SN/A
2789491SN/A        // start with the bank bits, as this provides the maximum
2799491SN/A        // opportunity for parallelism between requests
2809243SN/A        bank = addr % banksPerRank;
2819243SN/A        addr = addr / banksPerRank;
2829243SN/A
2839491SN/A        // next get the rank bits
2849243SN/A        rank = addr % ranksPerChannel;
2859243SN/A        addr = addr / ranksPerChannel;
2869243SN/A
2879491SN/A        // next the column bits which we do not need to keep track of
2889491SN/A        // and simply skip past
2899831SN/A        addr = addr / columnsPerRowBuffer;
2909243SN/A
2919491SN/A        // lastly, get the row bits
2929243SN/A        row = addr % rowsPerBank;
2939243SN/A        addr = addr / rowsPerBank;
2949243SN/A    } else
2959243SN/A        panic("Unknown address mapping policy chosen!");
2969243SN/A
2979243SN/A    assert(rank < ranksPerChannel);
2989243SN/A    assert(bank < banksPerRank);
2999243SN/A    assert(row < rowsPerBank);
3009243SN/A
3019243SN/A    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
3029831SN/A            dramPktAddr, rank, bank, row);
3039243SN/A
3049243SN/A    // create the corresponding DRAM packet with the entry time and
3059567SN/A    // ready time set to the current tick, the latter will be updated
3069567SN/A    // later
3079967SN/A    uint16_t bank_id = banksPerRank * rank + bank;
3089967SN/A    return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
3099967SN/A                          size, banks[rank][bank]);
3109243SN/A}
3119243SN/A
3129243SN/Avoid
31310146Sandreas.hansson@arm.comDRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
3149243SN/A{
3159243SN/A    // only add to the read queue here. whenever the request is
3169243SN/A    // eventually done, set the readyTime, and call schedule()
3179243SN/A    assert(!pkt->isWrite());
3189243SN/A
3199831SN/A    assert(pktCount != 0);
3209831SN/A
3219831SN/A    // if the request size is larger than burst size, the pkt is split into
3229831SN/A    // multiple DRAM packets
3239831SN/A    // Note if the pkt starting address is not aligened to burst size, the
3249831SN/A    // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
3259831SN/A    // are aligned to burst size boundaries. This is to ensure we accurately
3269831SN/A    // check read packets against packets in write queue.
3279243SN/A    Addr addr = pkt->getAddr();
3289831SN/A    unsigned pktsServicedByWrQ = 0;
3299831SN/A    BurstHelper* burst_helper = NULL;
3309831SN/A    for (int cnt = 0; cnt < pktCount; ++cnt) {
3319831SN/A        unsigned size = std::min((addr | (burstSize - 1)) + 1,
3329831SN/A                        pkt->getAddr() + pkt->getSize()) - addr;
3339831SN/A        readPktSize[ceilLog2(size)]++;
3349831SN/A        readBursts++;
3359243SN/A
3369831SN/A        // First check write buffer to see if the data is already at
3379831SN/A        // the controller
3389831SN/A        bool foundInWrQ = false;
3399833SN/A        for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
3409832SN/A            // check if the read is subsumed in the write entry we are
3419832SN/A            // looking at
3429832SN/A            if ((*i)->addr <= addr &&
3439832SN/A                (addr + size) <= ((*i)->addr + (*i)->size)) {
3449831SN/A                foundInWrQ = true;
3459831SN/A                servicedByWrQ++;
3469831SN/A                pktsServicedByWrQ++;
3479831SN/A                DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
3489831SN/A                        "write queue\n", addr, size);
3499975SN/A                bytesReadWrQ += burstSize;
3509831SN/A                break;
3519831SN/A            }
3529243SN/A        }
3539831SN/A
3549831SN/A        // If not found in the write q, make a DRAM packet and
3559831SN/A        // push it onto the read queue
3569831SN/A        if (!foundInWrQ) {
3579831SN/A
3589831SN/A            // Make the burst helper for split packets
3599831SN/A            if (pktCount > 1 && burst_helper == NULL) {
3609831SN/A                DPRINTF(DRAM, "Read to addr %lld translates to %d "
3619831SN/A                        "dram requests\n", pkt->getAddr(), pktCount);
3629831SN/A                burst_helper = new BurstHelper(pktCount);
3639831SN/A            }
3649831SN/A
3659966SN/A            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
3669831SN/A            dram_pkt->burstHelper = burst_helper;
3679831SN/A
3689831SN/A            assert(!readQueueFull(1));
3699831SN/A            rdQLenPdf[readQueue.size() + respQueue.size()]++;
3709831SN/A
3719831SN/A            DPRINTF(DRAM, "Adding to read queue\n");
3729831SN/A
3739831SN/A            readQueue.push_back(dram_pkt);
3749831SN/A
3759831SN/A            // Update stats
3769831SN/A            avgRdQLen = readQueue.size() + respQueue.size();
3779831SN/A        }
3789831SN/A
3799831SN/A        // Starting address of next dram pkt (aligend to burstSize boundary)
3809831SN/A        addr = (addr | (burstSize - 1)) + 1;
3819243SN/A    }
3829243SN/A
3839831SN/A    // If all packets are serviced by write queue, we send the repsonse back
3849831SN/A    if (pktsServicedByWrQ == pktCount) {
3859831SN/A        accessAndRespond(pkt, frontendLatency);
3869831SN/A        return;
3879831SN/A    }
3889243SN/A
3899831SN/A    // Update how many split packets are serviced by write queue
3909831SN/A    if (burst_helper != NULL)
3919831SN/A        burst_helper->burstsServiced = pktsServicedByWrQ;
3929243SN/A
39310206Sandreas.hansson@arm.com    // If we are not already scheduled to get a request out of the
39410206Sandreas.hansson@arm.com    // queue, do so now
39510206Sandreas.hansson@arm.com    if (!nextReqEvent.scheduled()) {
3969567SN/A        DPRINTF(DRAM, "Request scheduled immediately\n");
3979567SN/A        schedule(nextReqEvent, curTick());
3989243SN/A    }
3999243SN/A}
4009243SN/A
4019243SN/Avoid
40210146Sandreas.hansson@arm.comDRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
4039243SN/A{
4049243SN/A    // only add to the write queue here. whenever the request is
4059243SN/A    // eventually done, set the readyTime, and call schedule()
4069243SN/A    assert(pkt->isWrite());
4079243SN/A
4089831SN/A    // if the request size is larger than burst size, the pkt is split into
4099831SN/A    // multiple DRAM packets
4109831SN/A    Addr addr = pkt->getAddr();
4119831SN/A    for (int cnt = 0; cnt < pktCount; ++cnt) {
4129831SN/A        unsigned size = std::min((addr | (burstSize - 1)) + 1,
4139831SN/A                        pkt->getAddr() + pkt->getSize()) - addr;
4149831SN/A        writePktSize[ceilLog2(size)]++;
4159831SN/A        writeBursts++;
4169243SN/A
4179832SN/A        // see if we can merge with an existing item in the write
4189838SN/A        // queue and keep track of whether we have merged or not so we
4199838SN/A        // can stop at that point and also avoid enqueueing a new
4209838SN/A        // request
4219832SN/A        bool merged = false;
4229832SN/A        auto w = writeQueue.begin();
4239243SN/A
4249832SN/A        while(!merged && w != writeQueue.end()) {
4259832SN/A            // either of the two could be first, if they are the same
4269832SN/A            // it does not matter which way we go
4279832SN/A            if ((*w)->addr >= addr) {
4289838SN/A                // the existing one starts after the new one, figure
4299838SN/A                // out where the new one ends with respect to the
4309838SN/A                // existing one
4319832SN/A                if ((addr + size) >= ((*w)->addr + (*w)->size)) {
4329832SN/A                    // check if the existing one is completely
4339832SN/A                    // subsumed in the new one
4349832SN/A                    DPRINTF(DRAM, "Merging write covering existing burst\n");
4359832SN/A                    merged = true;
4369832SN/A                    // update both the address and the size
4379832SN/A                    (*w)->addr = addr;
4389832SN/A                    (*w)->size = size;
4399832SN/A                } else if ((addr + size) >= (*w)->addr &&
4409832SN/A                           ((*w)->addr + (*w)->size - addr) <= burstSize) {
4419832SN/A                    // the new one is just before or partially
4429832SN/A                    // overlapping with the existing one, and together
4439832SN/A                    // they fit within a burst
4449832SN/A                    DPRINTF(DRAM, "Merging write before existing burst\n");
4459832SN/A                    merged = true;
4469832SN/A                    // the existing queue item needs to be adjusted with
4479832SN/A                    // respect to both address and size
44810047SN/A                    (*w)->size = (*w)->addr + (*w)->size - addr;
4499832SN/A                    (*w)->addr = addr;
4509832SN/A                }
4519832SN/A            } else {
4529838SN/A                // the new one starts after the current one, figure
4539838SN/A                // out where the existing one ends with respect to the
4549838SN/A                // new one
4559832SN/A                if (((*w)->addr + (*w)->size) >= (addr + size)) {
4569832SN/A                    // check if the new one is completely subsumed in the
4579832SN/A                    // existing one
4589832SN/A                    DPRINTF(DRAM, "Merging write into existing burst\n");
4599832SN/A                    merged = true;
4609832SN/A                    // no adjustments necessary
4619832SN/A                } else if (((*w)->addr + (*w)->size) >= addr &&
4629832SN/A                           (addr + size - (*w)->addr) <= burstSize) {
4639832SN/A                    // the existing one is just before or partially
4649832SN/A                    // overlapping with the new one, and together
4659832SN/A                    // they fit within a burst
4669832SN/A                    DPRINTF(DRAM, "Merging write after existing burst\n");
4679832SN/A                    merged = true;
4689832SN/A                    // the address is right, and only the size has
4699832SN/A                    // to be adjusted
4709832SN/A                    (*w)->size = addr + size - (*w)->addr;
4719832SN/A                }
4729832SN/A            }
4739832SN/A            ++w;
4749832SN/A        }
4759243SN/A
4769832SN/A        // if the item was not merged we need to create a new write
4779832SN/A        // and enqueue it
4789832SN/A        if (!merged) {
4799966SN/A            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
4809243SN/A
4819832SN/A            assert(writeQueue.size() < writeBufferSize);
4829832SN/A            wrQLenPdf[writeQueue.size()]++;
4839243SN/A
4849832SN/A            DPRINTF(DRAM, "Adding to write queue\n");
4859831SN/A
4869832SN/A            writeQueue.push_back(dram_pkt);
4879831SN/A
4889832SN/A            // Update stats
4899832SN/A            avgWrQLen = writeQueue.size();
4909977SN/A        } else {
4919977SN/A            // keep track of the fact that this burst effectively
4929977SN/A            // disappeared as it was merged with an existing one
4939977SN/A            mergedWrBursts++;
4949832SN/A        }
4959832SN/A
4969831SN/A        // Starting address of next dram pkt (aligend to burstSize boundary)
4979831SN/A        addr = (addr | (burstSize - 1)) + 1;
4989831SN/A    }
4999243SN/A
5009243SN/A    // we do not wait for the writes to be send to the actual memory,
5019243SN/A    // but instead take responsibility for the consistency here and
5029243SN/A    // snoop the write queue for any upcoming reads
5039831SN/A    // @todo, if a pkt size is larger than burst size, we might need a
5049831SN/A    // different front end latency
5059726SN/A    accessAndRespond(pkt, frontendLatency);
5069243SN/A
50710206Sandreas.hansson@arm.com    // If we are not already scheduled to get a request out of the
50810206Sandreas.hansson@arm.com    // queue, do so now
50910206Sandreas.hansson@arm.com    if (!nextReqEvent.scheduled()) {
51010206Sandreas.hansson@arm.com        DPRINTF(DRAM, "Request scheduled immediately\n");
51110206Sandreas.hansson@arm.com        schedule(nextReqEvent, curTick());
5129243SN/A    }
5139243SN/A}
5149243SN/A
5159243SN/Avoid
51610146Sandreas.hansson@arm.comDRAMCtrl::printParams() const
5179243SN/A{
5189243SN/A    // Sanity check print of important parameters
5199243SN/A    DPRINTF(DRAM,
5209243SN/A            "Memory controller %s physical organization\n"      \
5219831SN/A            "Number of devices per rank   %d\n"                 \
5229831SN/A            "Device bus width (in bits)   %d\n"                 \
52310143SN/A            "DRAM data bus burst (bytes)  %d\n"                 \
52410143SN/A            "Row buffer size (bytes)      %d\n"                 \
5259831SN/A            "Columns per row buffer       %d\n"                 \
5269831SN/A            "Rows    per bank             %d\n"                 \
5279831SN/A            "Banks   per rank             %d\n"                 \
5289831SN/A            "Ranks   per channel          %d\n"                 \
52910143SN/A            "Total mem capacity (bytes)   %u\n",
5309831SN/A            name(), devicesPerRank, deviceBusWidth, burstSize, rowBufferSize,
5319831SN/A            columnsPerRowBuffer, rowsPerBank, banksPerRank, ranksPerChannel,
5329831SN/A            rowBufferSize * rowsPerBank * banksPerRank * ranksPerChannel);
5339243SN/A
5349243SN/A    string scheduler =  memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS";
53510136SN/A    string address_mapping = addrMapping == Enums::RoRaBaChCo ? "RoRaBaChCo" :
53610136SN/A        (addrMapping == Enums::RoRaBaCoCh ? "RoRaBaCoCh" : "RoCoRaBaCh");
5379973SN/A    string page_policy = pageMgmt == Enums::open ? "OPEN" :
53810144SN/A        (pageMgmt == Enums::open_adaptive ? "OPEN (adaptive)" :
53910144SN/A        (pageMgmt == Enums::close_adaptive ? "CLOSE (adaptive)" : "CLOSE"));
5409243SN/A
5419243SN/A    DPRINTF(DRAM,
5429243SN/A            "Memory controller %s characteristics\n"    \
5439243SN/A            "Read buffer size     %d\n"                 \
5449243SN/A            "Write buffer size    %d\n"                 \
54510140SN/A            "Write high thresh    %d\n"                 \
54610140SN/A            "Write low thresh     %d\n"                 \
5479243SN/A            "Scheduler            %s\n"                 \
5489243SN/A            "Address mapping      %s\n"                 \
5499243SN/A            "Page policy          %s\n",
5509972SN/A            name(), readBufferSize, writeBufferSize, writeHighThreshold,
55110140SN/A            writeLowThreshold, scheduler, address_mapping, page_policy);
5529243SN/A
5539243SN/A    DPRINTF(DRAM, "Memory controller %s timing specs\n" \
5549567SN/A            "tRCD      %d ticks\n"                        \
5559567SN/A            "tCL       %d ticks\n"                        \
5569567SN/A            "tRP       %d ticks\n"                        \
5579567SN/A            "tBURST    %d ticks\n"                        \
5589567SN/A            "tRFC      %d ticks\n"                        \
5599567SN/A            "tREFI     %d ticks\n"                        \
5609567SN/A            "tWTR      %d ticks\n"                        \
56110206Sandreas.hansson@arm.com            "tRTW      %d ticks\n"                        \
56210210Sandreas.hansson@arm.com            "tWR       %d ticks\n"                        \
5639567SN/A            "tXAW (%d) %d ticks\n",
5649567SN/A            name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR,
56510210Sandreas.hansson@arm.com            tRTW, tWR, activationLimit, tXAW);
5669243SN/A}
5679243SN/A
5689243SN/Avoid
56910146Sandreas.hansson@arm.comDRAMCtrl::printQs() const {
5709243SN/A    DPRINTF(DRAM, "===READ QUEUE===\n\n");
5719833SN/A    for (auto i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
5729243SN/A        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
5739243SN/A    }
5749243SN/A    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
5759833SN/A    for (auto i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
5769243SN/A        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
5779243SN/A    }
5789243SN/A    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
5799833SN/A    for (auto i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
5809243SN/A        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
5819243SN/A    }
5829243SN/A}
5839243SN/A
5849243SN/Abool
58510146Sandreas.hansson@arm.comDRAMCtrl::recvTimingReq(PacketPtr pkt)
5869243SN/A{
5879349SN/A    /// @todo temporary hack to deal with memory corruption issues until
5889349SN/A    /// 4-phase transactions are complete
5899349SN/A    for (int x = 0; x < pendingDelete.size(); x++)
5909349SN/A        delete pendingDelete[x];
5919349SN/A    pendingDelete.clear();
5929349SN/A
5939243SN/A    // This is where we enter from the outside world
5949567SN/A    DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
5959831SN/A            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
5969243SN/A
5979567SN/A    // simply drop inhibited packets for now
5989567SN/A    if (pkt->memInhibitAsserted()) {
59910143SN/A        DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
6009567SN/A        pendingDelete.push_back(pkt);
6019567SN/A        return true;
6029567SN/A    }
6039243SN/A
6049243SN/A    // Calc avg gap between requests
6059243SN/A    if (prevArrival != 0) {
6069243SN/A        totGap += curTick() - prevArrival;
6079243SN/A    }
6089243SN/A    prevArrival = curTick();
6099243SN/A
6109831SN/A
6119831SN/A    // Find out how many dram packets a pkt translates to
6129831SN/A    // If the burst size is equal or larger than the pkt size, then a pkt
6139831SN/A    // translates to only one dram packet. Otherwise, a pkt translates to
6149831SN/A    // multiple dram packets
6159243SN/A    unsigned size = pkt->getSize();
6169831SN/A    unsigned offset = pkt->getAddr() & (burstSize - 1);
6179831SN/A    unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
6189243SN/A
6199243SN/A    // check local buffers and do not accept if full
6209243SN/A    if (pkt->isRead()) {
6219567SN/A        assert(size != 0);
6229831SN/A        if (readQueueFull(dram_pkt_count)) {
6239567SN/A            DPRINTF(DRAM, "Read queue full, not accepting\n");
6249243SN/A            // remember that we have to retry this port
6259243SN/A            retryRdReq = true;
6269243SN/A            numRdRetry++;
6279243SN/A            return false;
6289243SN/A        } else {
6299831SN/A            addToReadQueue(pkt, dram_pkt_count);
6309243SN/A            readReqs++;
6319977SN/A            bytesReadSys += size;
6329243SN/A        }
6339243SN/A    } else if (pkt->isWrite()) {
6349567SN/A        assert(size != 0);
6359831SN/A        if (writeQueueFull(dram_pkt_count)) {
6369567SN/A            DPRINTF(DRAM, "Write queue full, not accepting\n");
6379243SN/A            // remember that we have to retry this port
6389243SN/A            retryWrReq = true;
6399243SN/A            numWrRetry++;
6409243SN/A            return false;
6419243SN/A        } else {
6429831SN/A            addToWriteQueue(pkt, dram_pkt_count);
6439243SN/A            writeReqs++;
6449977SN/A            bytesWrittenSys += size;
6459243SN/A        }
6469243SN/A    } else {
6479243SN/A        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
6489243SN/A        neitherReadNorWrite++;
6499726SN/A        accessAndRespond(pkt, 1);
6509243SN/A    }
6519243SN/A
6529243SN/A    return true;
6539243SN/A}
6549243SN/A
6559243SN/Avoid
65610146Sandreas.hansson@arm.comDRAMCtrl::processRespondEvent()
6579243SN/A{
6589243SN/A    DPRINTF(DRAM,
6599243SN/A            "processRespondEvent(): Some req has reached its readyTime\n");
6609243SN/A
6619831SN/A    DRAMPacket* dram_pkt = respQueue.front();
6629243SN/A
6639831SN/A    if (dram_pkt->burstHelper) {
6649831SN/A        // it is a split packet
6659831SN/A        dram_pkt->burstHelper->burstsServiced++;
6669831SN/A        if (dram_pkt->burstHelper->burstsServiced ==
66710143SN/A            dram_pkt->burstHelper->burstCount) {
6689831SN/A            // we have now serviced all children packets of a system packet
6699831SN/A            // so we can now respond to the requester
6709831SN/A            // @todo we probably want to have a different front end and back
6719831SN/A            // end latency for split packets
6729831SN/A            accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
6739831SN/A            delete dram_pkt->burstHelper;
6749831SN/A            dram_pkt->burstHelper = NULL;
6759831SN/A        }
6769831SN/A    } else {
6779831SN/A        // it is not a split packet
6789831SN/A        accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
6799831SN/A    }
6809243SN/A
6819831SN/A    delete respQueue.front();
6829831SN/A    respQueue.pop_front();
6839243SN/A
6849831SN/A    if (!respQueue.empty()) {
6859831SN/A        assert(respQueue.front()->readyTime >= curTick());
6869831SN/A        assert(!respondEvent.scheduled());
6879831SN/A        schedule(respondEvent, respQueue.front()->readyTime);
6889831SN/A    } else {
6899831SN/A        // if there is nothing left in any queue, signal a drain
6909831SN/A        if (writeQueue.empty() && readQueue.empty() &&
6919831SN/A            drainManager) {
6929831SN/A            drainManager->signalDrainDone();
6939831SN/A            drainManager = NULL;
6949831SN/A        }
6959831SN/A    }
6969567SN/A
6979831SN/A    // We have made a location in the queue available at this point,
6989831SN/A    // so if there is a read that was forced to wait, retry now
6999831SN/A    if (retryRdReq) {
7009831SN/A        retryRdReq = false;
7019831SN/A        port.sendRetry();
7029831SN/A    }
7039243SN/A}
7049243SN/A
7059243SN/Avoid
70610206Sandreas.hansson@arm.comDRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue)
7079243SN/A{
70810206Sandreas.hansson@arm.com    // This method does the arbitration between requests. The chosen
70910206Sandreas.hansson@arm.com    // packet is simply moved to the head of the queue. The other
71010206Sandreas.hansson@arm.com    // methods know that this is the place to look. For example, with
71110206Sandreas.hansson@arm.com    // FCFS, this method does nothing
71210206Sandreas.hansson@arm.com    assert(!queue.empty());
7139243SN/A
71410206Sandreas.hansson@arm.com    if (queue.size() == 1) {
71510206Sandreas.hansson@arm.com        DPRINTF(DRAM, "Single request, nothing to do\n");
7169243SN/A        return;
7179243SN/A    }
7189243SN/A
7199243SN/A    if (memSchedPolicy == Enums::fcfs) {
7209243SN/A        // Do nothing, since the correct request is already head
7219243SN/A    } else if (memSchedPolicy == Enums::frfcfs) {
72210206Sandreas.hansson@arm.com        reorderQueue(queue);
7239243SN/A    } else
7249243SN/A        panic("No scheduling policy chosen\n");
7259243SN/A}
7269243SN/A
7279243SN/Avoid
72810146Sandreas.hansson@arm.comDRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue)
7299974SN/A{
7309974SN/A    // Only determine this when needed
7319974SN/A    uint64_t earliest_banks = 0;
7329974SN/A
7339974SN/A    // Search for row hits first, if no row hit is found then schedule the
7349974SN/A    // packet to one of the earliest banks available
7359974SN/A    bool found_earliest_pkt = false;
7369974SN/A    auto selected_pkt_it = queue.begin();
7379974SN/A
7389974SN/A    for (auto i = queue.begin(); i != queue.end() ; ++i) {
7399974SN/A        DRAMPacket* dram_pkt = *i;
7409974SN/A        const Bank& bank = dram_pkt->bankRef;
7419974SN/A        // Check if it is a row hit
7429974SN/A        if (bank.openRow == dram_pkt->row) {
74310211Sandreas.hansson@arm.com            // FCFS within the hits
7449974SN/A            DPRINTF(DRAM, "Row buffer hit\n");
7459974SN/A            selected_pkt_it = i;
7469974SN/A            break;
7479974SN/A        } else if (!found_earliest_pkt) {
7489974SN/A            // No row hit, go for first ready
7499974SN/A            if (earliest_banks == 0)
75010211Sandreas.hansson@arm.com                earliest_banks = minBankActAt(queue);
75110211Sandreas.hansson@arm.com
75210211Sandreas.hansson@arm.com            // simplistic approximation of when the bank can issue an
75310211Sandreas.hansson@arm.com            // activate, this is calculated in minBankActAt and could
75410211Sandreas.hansson@arm.com            // be cached
75510211Sandreas.hansson@arm.com            Tick act_at = bank.openRow == Bank::NO_ROW ?
75610211Sandreas.hansson@arm.com                bank.actAllowedAt :
75710211Sandreas.hansson@arm.com                std::max(bank.preAllowedAt, curTick()) + tRP;
7589974SN/A
7599974SN/A            // Bank is ready or is the first available bank
76010211Sandreas.hansson@arm.com            if (act_at <= curTick() ||
7619974SN/A                bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
7629974SN/A                // Remember the packet to be scheduled to one of the earliest
76310211Sandreas.hansson@arm.com                // banks available, FCFS amongst the earliest banks
7649974SN/A                selected_pkt_it = i;
7659974SN/A                found_earliest_pkt = true;
7669974SN/A            }
7679974SN/A        }
7689974SN/A    }
7699974SN/A
7709974SN/A    DRAMPacket* selected_pkt = *selected_pkt_it;
7719974SN/A    queue.erase(selected_pkt_it);
7729974SN/A    queue.push_front(selected_pkt);
7739974SN/A}
7749974SN/A
7759974SN/Avoid
77610146Sandreas.hansson@arm.comDRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
7779243SN/A{
7789243SN/A    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
7799243SN/A
7809243SN/A    bool needsResponse = pkt->needsResponse();
7819243SN/A    // do the actual memory access which also turns the packet into a
7829243SN/A    // response
7839243SN/A    access(pkt);
7849243SN/A
7859243SN/A    // turn packet around to go back to requester if response expected
7869243SN/A    if (needsResponse) {
7879243SN/A        // access already turned the packet into a response
7889243SN/A        assert(pkt->isResponse());
7899243SN/A
7909549SN/A        // @todo someone should pay for this
7919549SN/A        pkt->busFirstWordDelay = pkt->busLastWordDelay = 0;
7929549SN/A
7939726SN/A        // queue the packet in the response queue to be sent out after
7949726SN/A        // the static latency has passed
7959726SN/A        port.schedTimingResp(pkt, curTick() + static_latency);
7969243SN/A    } else {
7979587SN/A        // @todo the packet is going to be deleted, and the DRAMPacket
7989587SN/A        // is still having a pointer to it
7999587SN/A        pendingDelete.push_back(pkt);
8009243SN/A    }
8019243SN/A
8029243SN/A    DPRINTF(DRAM, "Done\n");
8039243SN/A
8049243SN/A    return;
8059243SN/A}
8069243SN/A
8079243SN/Avoid
80810210Sandreas.hansson@arm.comDRAMCtrl::activateBank(Tick act_tick, uint8_t rank, uint8_t bank,
80910210Sandreas.hansson@arm.com                       uint16_t row, Bank& bank_ref)
8109488SN/A{
8119969SN/A    assert(0 <= rank && rank < ranksPerChannel);
8129969SN/A    assert(actTicks[rank].size() == activationLimit);
8139488SN/A
8149488SN/A    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
8159488SN/A
81610207Sandreas.hansson@arm.com    // update the open row
81710210Sandreas.hansson@arm.com    assert(bank_ref.openRow == Bank::NO_ROW);
81810210Sandreas.hansson@arm.com    bank_ref.openRow = row;
81910207Sandreas.hansson@arm.com
82010207Sandreas.hansson@arm.com    // start counting anew, this covers both the case when we
82110207Sandreas.hansson@arm.com    // auto-precharged, and when this access is forced to
82210207Sandreas.hansson@arm.com    // precharge
82310210Sandreas.hansson@arm.com    bank_ref.bytesAccessed = 0;
82410210Sandreas.hansson@arm.com    bank_ref.rowAccesses = 0;
82510207Sandreas.hansson@arm.com
82610207Sandreas.hansson@arm.com    ++numBanksActive;
82710207Sandreas.hansson@arm.com    assert(numBanksActive <= banksPerRank * ranksPerChannel);
82810207Sandreas.hansson@arm.com
82910207Sandreas.hansson@arm.com    DPRINTF(DRAM, "Activate bank at tick %lld, now got %d active\n",
83010207Sandreas.hansson@arm.com            act_tick, numBanksActive);
8319975SN/A
83210211Sandreas.hansson@arm.com    // The next access has to respect tRAS for this bank
83310211Sandreas.hansson@arm.com    bank_ref.preAllowedAt = act_tick + tRAS;
83410211Sandreas.hansson@arm.com
83510211Sandreas.hansson@arm.com    // Respect the row-to-column command delay
83610211Sandreas.hansson@arm.com    bank_ref.colAllowedAt = act_tick + tRCD;
83710211Sandreas.hansson@arm.com
8389971SN/A    // start by enforcing tRRD
8399971SN/A    for(int i = 0; i < banksPerRank; i++) {
84010210Sandreas.hansson@arm.com        // next activate to any bank in this rank must not happen
84110210Sandreas.hansson@arm.com        // before tRRD
84210210Sandreas.hansson@arm.com        banks[rank][i].actAllowedAt = std::max(act_tick + tRRD,
84310210Sandreas.hansson@arm.com                                               banks[rank][i].actAllowedAt);
8449971SN/A    }
84510208Sandreas.hansson@arm.com
8469971SN/A    // next, we deal with tXAW, if the activation limit is disabled
8479971SN/A    // then we are done
8489969SN/A    if (actTicks[rank].empty())
8499824SN/A        return;
8509824SN/A
8519488SN/A    // sanity check
8529969SN/A    if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
85310210Sandreas.hansson@arm.com        panic("Got %d activates in window %d (%llu - %llu) which is smaller "
85410210Sandreas.hansson@arm.com              "than %llu\n", activationLimit, act_tick - actTicks[rank].back(),
85510210Sandreas.hansson@arm.com              act_tick, actTicks[rank].back(), tXAW);
8569488SN/A    }
8579488SN/A
8589488SN/A    // shift the times used for the book keeping, the last element
8599488SN/A    // (highest index) is the oldest one and hence the lowest value
8609969SN/A    actTicks[rank].pop_back();
8619488SN/A
8629488SN/A    // record an new activation (in the future)
8639969SN/A    actTicks[rank].push_front(act_tick);
8649488SN/A
8659488SN/A    // cannot activate more than X times in time window tXAW, push the
8669488SN/A    // next one (the X + 1'st activate) to be tXAW away from the
8679488SN/A    // oldest in our window of X
8689969SN/A    if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
8699488SN/A        DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier "
87010210Sandreas.hansson@arm.com                "than %llu\n", activationLimit, actTicks[rank].back() + tXAW);
8719488SN/A            for(int j = 0; j < banksPerRank; j++)
8729488SN/A                // next activate must not happen before end of window
87310210Sandreas.hansson@arm.com                banks[rank][j].actAllowedAt =
87410210Sandreas.hansson@arm.com                    std::max(actTicks[rank].back() + tXAW,
87510210Sandreas.hansson@arm.com                             banks[rank][j].actAllowedAt);
8769488SN/A    }
87710208Sandreas.hansson@arm.com
87810208Sandreas.hansson@arm.com    // at the point when this activate takes place, make sure we
87910208Sandreas.hansson@arm.com    // transition to the active power state
88010208Sandreas.hansson@arm.com    if (!activateEvent.scheduled())
88110208Sandreas.hansson@arm.com        schedule(activateEvent, act_tick);
88210208Sandreas.hansson@arm.com    else if (activateEvent.when() > act_tick)
88310208Sandreas.hansson@arm.com        // move it sooner in time
88410208Sandreas.hansson@arm.com        reschedule(activateEvent, act_tick);
88510208Sandreas.hansson@arm.com}
88610208Sandreas.hansson@arm.com
88710208Sandreas.hansson@arm.comvoid
88810208Sandreas.hansson@arm.comDRAMCtrl::processActivateEvent()
88910208Sandreas.hansson@arm.com{
89010208Sandreas.hansson@arm.com    // we should transition to the active state as soon as any bank is active
89110208Sandreas.hansson@arm.com    if (pwrState != PWR_ACT)
89210208Sandreas.hansson@arm.com        // note that at this point numBanksActive could be back at
89310208Sandreas.hansson@arm.com        // zero again due to a precharge scheduled in the future
89410208Sandreas.hansson@arm.com        schedulePowerEvent(PWR_ACT, curTick());
8959488SN/A}
8969488SN/A
8979488SN/Avoid
89810211Sandreas.hansson@arm.comDRAMCtrl::prechargeBank(Bank& bank, Tick pre_at)
89910207Sandreas.hansson@arm.com{
90010207Sandreas.hansson@arm.com    // make sure the bank has an open row
90110207Sandreas.hansson@arm.com    assert(bank.openRow != Bank::NO_ROW);
90210207Sandreas.hansson@arm.com
90310207Sandreas.hansson@arm.com    // sample the bytes per activate here since we are closing
90410207Sandreas.hansson@arm.com    // the page
90510207Sandreas.hansson@arm.com    bytesPerActivate.sample(bank.bytesAccessed);
90610207Sandreas.hansson@arm.com
90710207Sandreas.hansson@arm.com    bank.openRow = Bank::NO_ROW;
90810207Sandreas.hansson@arm.com
90910211Sandreas.hansson@arm.com    Tick pre_done_at = pre_at + tRP;
91010211Sandreas.hansson@arm.com
91110211Sandreas.hansson@arm.com    bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
91210207Sandreas.hansson@arm.com
91310207Sandreas.hansson@arm.com    assert(numBanksActive != 0);
91410207Sandreas.hansson@arm.com    --numBanksActive;
91510207Sandreas.hansson@arm.com
91610211Sandreas.hansson@arm.com    DPRINTF(DRAM, "Precharging bank at tick %lld, now got %d active\n",
91710211Sandreas.hansson@arm.com            pre_at, numBanksActive);
91810207Sandreas.hansson@arm.com
91910208Sandreas.hansson@arm.com    // if we look at the current number of active banks we might be
92010208Sandreas.hansson@arm.com    // tempted to think the DRAM is now idle, however this can be
92110208Sandreas.hansson@arm.com    // undone by an activate that is scheduled to happen before we
92210208Sandreas.hansson@arm.com    // would have reached the idle state, so schedule an event and
92310208Sandreas.hansson@arm.com    // rather check once we actually make it to the point in time when
92410208Sandreas.hansson@arm.com    // the (last) precharge takes place
92510208Sandreas.hansson@arm.com    if (!prechargeEvent.scheduled())
92610211Sandreas.hansson@arm.com        schedule(prechargeEvent, pre_done_at);
92710211Sandreas.hansson@arm.com    else if (prechargeEvent.when() < pre_done_at)
92810211Sandreas.hansson@arm.com        reschedule(prechargeEvent, pre_done_at);
92910208Sandreas.hansson@arm.com}
93010208Sandreas.hansson@arm.com
93110208Sandreas.hansson@arm.comvoid
93210208Sandreas.hansson@arm.comDRAMCtrl::processPrechargeEvent()
93310208Sandreas.hansson@arm.com{
93410207Sandreas.hansson@arm.com    // if we reached zero, then special conditions apply as we track
93510207Sandreas.hansson@arm.com    // if all banks are precharged for the power models
93610207Sandreas.hansson@arm.com    if (numBanksActive == 0) {
93710208Sandreas.hansson@arm.com        // we should transition to the idle state when the last bank
93810208Sandreas.hansson@arm.com        // is precharged
93910208Sandreas.hansson@arm.com        schedulePowerEvent(PWR_IDLE, curTick());
94010207Sandreas.hansson@arm.com    }
94110207Sandreas.hansson@arm.com}
94210207Sandreas.hansson@arm.com
94310207Sandreas.hansson@arm.comvoid
94410146Sandreas.hansson@arm.comDRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
9459243SN/A{
9469243SN/A    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
9479243SN/A            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
9489243SN/A
94910211Sandreas.hansson@arm.com    // get the bank
9509967SN/A    Bank& bank = dram_pkt->bankRef;
9519243SN/A
95210211Sandreas.hansson@arm.com    // for the state we need to track if it is a row hit or not
95310211Sandreas.hansson@arm.com    bool row_hit = true;
95410211Sandreas.hansson@arm.com
95510211Sandreas.hansson@arm.com    // respect any constraints on the command (e.g. tRCD or tCCD)
95610211Sandreas.hansson@arm.com    Tick cmd_at = std::max(bank.colAllowedAt, curTick());
95710211Sandreas.hansson@arm.com
95810211Sandreas.hansson@arm.com    // Determine the access latency and update the bank state
95910211Sandreas.hansson@arm.com    if (bank.openRow == dram_pkt->row) {
96010211Sandreas.hansson@arm.com        // nothing to do
96110209Sandreas.hansson@arm.com    } else {
96210211Sandreas.hansson@arm.com        row_hit = false;
96310211Sandreas.hansson@arm.com
96410209Sandreas.hansson@arm.com        // If there is a page open, precharge it.
96510209Sandreas.hansson@arm.com        if (bank.openRow != Bank::NO_ROW) {
96610211Sandreas.hansson@arm.com            prechargeBank(bank, std::max(bank.preAllowedAt, curTick()));
9679488SN/A        }
9689973SN/A
96910211Sandreas.hansson@arm.com        // next we need to account for the delay in activating the
97010211Sandreas.hansson@arm.com        // page
97110211Sandreas.hansson@arm.com        Tick act_tick = std::max(bank.actAllowedAt, curTick());
9729973SN/A
97310210Sandreas.hansson@arm.com        // Record the activation and deal with all the global timing
97410210Sandreas.hansson@arm.com        // constraints caused be a new activation (tRRD and tXAW)
97510211Sandreas.hansson@arm.com        activateBank(act_tick, dram_pkt->rank, dram_pkt->bank,
97610210Sandreas.hansson@arm.com                     dram_pkt->row, bank);
97710210Sandreas.hansson@arm.com
97810211Sandreas.hansson@arm.com        // issue the command as early as possible
97910211Sandreas.hansson@arm.com        cmd_at = bank.colAllowedAt;
98010209Sandreas.hansson@arm.com    }
98110209Sandreas.hansson@arm.com
98210211Sandreas.hansson@arm.com    // we need to wait until the bus is available before we can issue
98310211Sandreas.hansson@arm.com    // the command
98410211Sandreas.hansson@arm.com    cmd_at = std::max(cmd_at, busBusyUntil - tCL);
98510211Sandreas.hansson@arm.com
98610211Sandreas.hansson@arm.com    // update the packet ready time
98710211Sandreas.hansson@arm.com    dram_pkt->readyTime = cmd_at + tCL + tBURST;
98810211Sandreas.hansson@arm.com
98910211Sandreas.hansson@arm.com    // only one burst can use the bus at any one point in time
99010211Sandreas.hansson@arm.com    assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
99110211Sandreas.hansson@arm.com
99210211Sandreas.hansson@arm.com    // not strictly necessary, but update the time for the next
99310211Sandreas.hansson@arm.com    // read/write (add a max with tCCD here)
99410211Sandreas.hansson@arm.com    bank.colAllowedAt = cmd_at + tBURST;
99510211Sandreas.hansson@arm.com
99610210Sandreas.hansson@arm.com    // If this is a write, we also need to respect the write
99710210Sandreas.hansson@arm.com    // recovery time before a precharge
99810210Sandreas.hansson@arm.com    if (!dram_pkt->isRead) {
99910210Sandreas.hansson@arm.com        bank.preAllowedAt = std::max(bank.preAllowedAt,
100010210Sandreas.hansson@arm.com                                     dram_pkt->readyTime + tWR);
100110210Sandreas.hansson@arm.com    }
100210210Sandreas.hansson@arm.com
100310209Sandreas.hansson@arm.com    // increment the bytes accessed and the accesses per row
100410209Sandreas.hansson@arm.com    bank.bytesAccessed += burstSize;
100510209Sandreas.hansson@arm.com    ++bank.rowAccesses;
100610209Sandreas.hansson@arm.com
100710209Sandreas.hansson@arm.com    // if we reached the max, then issue with an auto-precharge
100810209Sandreas.hansson@arm.com    bool auto_precharge = pageMgmt == Enums::close ||
100910209Sandreas.hansson@arm.com        bank.rowAccesses == maxAccessesPerRow;
101010209Sandreas.hansson@arm.com
101110209Sandreas.hansson@arm.com    // if we did not hit the limit, we might still want to
101210209Sandreas.hansson@arm.com    // auto-precharge
101310209Sandreas.hansson@arm.com    if (!auto_precharge &&
101410209Sandreas.hansson@arm.com        (pageMgmt == Enums::open_adaptive ||
101510209Sandreas.hansson@arm.com         pageMgmt == Enums::close_adaptive)) {
101610209Sandreas.hansson@arm.com        // a twist on the open and close page policies:
101710209Sandreas.hansson@arm.com        // 1) open_adaptive page policy does not blindly keep the
101810209Sandreas.hansson@arm.com        // page open, but close it if there are no row hits, and there
101910209Sandreas.hansson@arm.com        // are bank conflicts in the queue
102010209Sandreas.hansson@arm.com        // 2) close_adaptive page policy does not blindly close the
102110209Sandreas.hansson@arm.com        // page, but closes it only if there are no row hits in the queue.
102210209Sandreas.hansson@arm.com        // In this case, only force an auto precharge when there
102310209Sandreas.hansson@arm.com        // are no same page hits in the queue
102410209Sandreas.hansson@arm.com        bool got_more_hits = false;
102510209Sandreas.hansson@arm.com        bool got_bank_conflict = false;
102610209Sandreas.hansson@arm.com
102710209Sandreas.hansson@arm.com        // either look at the read queue or write queue
102810209Sandreas.hansson@arm.com        const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
102910209Sandreas.hansson@arm.com            writeQueue;
103010209Sandreas.hansson@arm.com        auto p = queue.begin();
103110209Sandreas.hansson@arm.com        // make sure we are not considering the packet that we are
103210209Sandreas.hansson@arm.com        // currently dealing with (which is the head of the queue)
103310209Sandreas.hansson@arm.com        ++p;
103410209Sandreas.hansson@arm.com
103510209Sandreas.hansson@arm.com        // keep on looking until we have found required condition or
103610209Sandreas.hansson@arm.com        // reached the end
103710209Sandreas.hansson@arm.com        while (!(got_more_hits &&
103810209Sandreas.hansson@arm.com                 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) &&
103910209Sandreas.hansson@arm.com               p != queue.end()) {
104010209Sandreas.hansson@arm.com            bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
104110209Sandreas.hansson@arm.com                (dram_pkt->bank == (*p)->bank);
104210209Sandreas.hansson@arm.com            bool same_row = dram_pkt->row == (*p)->row;
104310209Sandreas.hansson@arm.com            got_more_hits |= same_rank_bank && same_row;
104410209Sandreas.hansson@arm.com            got_bank_conflict |= same_rank_bank && !same_row;
10459973SN/A            ++p;
104610141SN/A        }
104710141SN/A
104810209Sandreas.hansson@arm.com        // auto pre-charge when either
104910209Sandreas.hansson@arm.com        // 1) open_adaptive policy, we have not got any more hits, and
105010209Sandreas.hansson@arm.com        //    have a bank conflict
105110209Sandreas.hansson@arm.com        // 2) close_adaptive policy and we have not got any more hits
105210209Sandreas.hansson@arm.com        auto_precharge = !got_more_hits &&
105310209Sandreas.hansson@arm.com            (got_bank_conflict || pageMgmt == Enums::close_adaptive);
105410209Sandreas.hansson@arm.com    }
105510142SN/A
105610209Sandreas.hansson@arm.com    // if this access should use auto-precharge, then we are
105710209Sandreas.hansson@arm.com    // closing the row
105810209Sandreas.hansson@arm.com    if (auto_precharge) {
105910211Sandreas.hansson@arm.com        prechargeBank(bank, std::max(curTick(), bank.preAllowedAt));
10609973SN/A
106110209Sandreas.hansson@arm.com        DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
106210209Sandreas.hansson@arm.com    }
10639963SN/A
10649243SN/A    // Update bus state
10659243SN/A    busBusyUntil = dram_pkt->readyTime;
10669243SN/A
106710211Sandreas.hansson@arm.com    DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
106810211Sandreas.hansson@arm.com            dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
10699243SN/A
107010206Sandreas.hansson@arm.com    // Update the minimum timing between the requests, this is a
107110206Sandreas.hansson@arm.com    // conservative estimate of when we have to schedule the next
107210206Sandreas.hansson@arm.com    // request to not introduce any unecessary bubbles. In most cases
107310206Sandreas.hansson@arm.com    // we will wake up sooner than we have to.
107410206Sandreas.hansson@arm.com    nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
10759972SN/A
107610206Sandreas.hansson@arm.com    // Update the stats and schedule the next request
10779977SN/A    if (dram_pkt->isRead) {
107810147Sandreas.hansson@arm.com        ++readsThisTime;
107910211Sandreas.hansson@arm.com        if (row_hit)
10809977SN/A            readRowHits++;
10819977SN/A        bytesReadDRAM += burstSize;
10829977SN/A        perBankRdBursts[dram_pkt->bankId]++;
108310206Sandreas.hansson@arm.com
108410206Sandreas.hansson@arm.com        // Update latency stats
108510206Sandreas.hansson@arm.com        totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
108610206Sandreas.hansson@arm.com        totBusLat += tBURST;
108710211Sandreas.hansson@arm.com        totQLat += cmd_at - dram_pkt->entryTime;
10889977SN/A    } else {
108910147Sandreas.hansson@arm.com        ++writesThisTime;
109010211Sandreas.hansson@arm.com        if (row_hit)
10919977SN/A            writeRowHits++;
10929977SN/A        bytesWritten += burstSize;
10939977SN/A        perBankWrBursts[dram_pkt->bankId]++;
10949243SN/A    }
10959243SN/A}
10969243SN/A
10979243SN/Avoid
109810146Sandreas.hansson@arm.comDRAMCtrl::moveToRespQ()
10999243SN/A{
11009243SN/A    // Remove from read queue
11019567SN/A    DRAMPacket* dram_pkt = readQueue.front();
11029567SN/A    readQueue.pop_front();
11039243SN/A
11049832SN/A    // sanity check
11059832SN/A    assert(dram_pkt->size <= burstSize);
11069832SN/A
11079243SN/A    // Insert into response queue sorted by readyTime
11089243SN/A    // It will be sent back to the requestor at its
11099243SN/A    // readyTime
11109567SN/A    if (respQueue.empty()) {
11119567SN/A        respQueue.push_front(dram_pkt);
11129243SN/A        assert(!respondEvent.scheduled());
11139243SN/A        assert(dram_pkt->readyTime >= curTick());
11149567SN/A        schedule(respondEvent, dram_pkt->readyTime);
11159243SN/A    } else {
11169243SN/A        bool done = false;
11179833SN/A        auto i = respQueue.begin();
11189567SN/A        while (!done && i != respQueue.end()) {
11199243SN/A            if ((*i)->readyTime > dram_pkt->readyTime) {
11209567SN/A                respQueue.insert(i, dram_pkt);
11219243SN/A                done = true;
11229243SN/A            }
11239243SN/A            ++i;
11249243SN/A        }
11259243SN/A
11269243SN/A        if (!done)
11279567SN/A            respQueue.push_back(dram_pkt);
11289243SN/A
11299243SN/A        assert(respondEvent.scheduled());
11309243SN/A
11319567SN/A        if (respQueue.front()->readyTime < respondEvent.when()) {
11329567SN/A            assert(respQueue.front()->readyTime >= curTick());
11339567SN/A            reschedule(respondEvent, respQueue.front()->readyTime);
11349243SN/A        }
11359243SN/A    }
11369243SN/A}
11379243SN/A
11389243SN/Avoid
113910206Sandreas.hansson@arm.comDRAMCtrl::processNextReqEvent()
11409243SN/A{
114110206Sandreas.hansson@arm.com    if (busState == READ_TO_WRITE) {
114210206Sandreas.hansson@arm.com        DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
114310206Sandreas.hansson@arm.com                "waiting\n", readsThisTime, readQueue.size());
11449243SN/A
114510206Sandreas.hansson@arm.com        // sample and reset the read-related stats as we are now
114610206Sandreas.hansson@arm.com        // transitioning to writes, and all reads are done
114710206Sandreas.hansson@arm.com        rdPerTurnAround.sample(readsThisTime);
114810206Sandreas.hansson@arm.com        readsThisTime = 0;
114910206Sandreas.hansson@arm.com
115010206Sandreas.hansson@arm.com        // now proceed to do the actual writes
115110206Sandreas.hansson@arm.com        busState = WRITE;
115210206Sandreas.hansson@arm.com    } else if (busState == WRITE_TO_READ) {
115310206Sandreas.hansson@arm.com        DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
115410206Sandreas.hansson@arm.com                "waiting\n", writesThisTime, writeQueue.size());
115510206Sandreas.hansson@arm.com
115610206Sandreas.hansson@arm.com        wrPerTurnAround.sample(writesThisTime);
115710206Sandreas.hansson@arm.com        writesThisTime = 0;
115810206Sandreas.hansson@arm.com
115910206Sandreas.hansson@arm.com        busState = READ;
116010206Sandreas.hansson@arm.com    }
116110206Sandreas.hansson@arm.com
116210207Sandreas.hansson@arm.com    if (refreshState != REF_IDLE) {
116310207Sandreas.hansson@arm.com        // if a refresh waiting for this event loop to finish, then hand
116410207Sandreas.hansson@arm.com        // over now, and do not schedule a new nextReqEvent
116510207Sandreas.hansson@arm.com        if (refreshState == REF_DRAIN) {
116610207Sandreas.hansson@arm.com            DPRINTF(DRAM, "Refresh drain done, now precharging\n");
116710207Sandreas.hansson@arm.com
116810207Sandreas.hansson@arm.com            refreshState = REF_PRE;
116910207Sandreas.hansson@arm.com
117010207Sandreas.hansson@arm.com            // hand control back to the refresh event loop
117110207Sandreas.hansson@arm.com            schedule(refreshEvent, curTick());
117210207Sandreas.hansson@arm.com        }
117310207Sandreas.hansson@arm.com
117410207Sandreas.hansson@arm.com        // let the refresh finish before issuing any further requests
117510207Sandreas.hansson@arm.com        return;
117610207Sandreas.hansson@arm.com    }
117710207Sandreas.hansson@arm.com
117810206Sandreas.hansson@arm.com    // when we get here it is either a read or a write
117910206Sandreas.hansson@arm.com    if (busState == READ) {
118010206Sandreas.hansson@arm.com
118110206Sandreas.hansson@arm.com        // track if we should switch or not
118210206Sandreas.hansson@arm.com        bool switch_to_writes = false;
118310206Sandreas.hansson@arm.com
118410206Sandreas.hansson@arm.com        if (readQueue.empty()) {
118510206Sandreas.hansson@arm.com            // In the case there is no read request to go next,
118610206Sandreas.hansson@arm.com            // trigger writes if we have passed the low threshold (or
118710206Sandreas.hansson@arm.com            // if we are draining)
118810206Sandreas.hansson@arm.com            if (!writeQueue.empty() &&
118910206Sandreas.hansson@arm.com                (drainManager || writeQueue.size() > writeLowThreshold)) {
119010206Sandreas.hansson@arm.com
119110206Sandreas.hansson@arm.com                switch_to_writes = true;
119210206Sandreas.hansson@arm.com            } else {
119310206Sandreas.hansson@arm.com                // check if we are drained
119410206Sandreas.hansson@arm.com                if (respQueue.empty () && drainManager) {
119510206Sandreas.hansson@arm.com                    drainManager->signalDrainDone();
119610206Sandreas.hansson@arm.com                    drainManager = NULL;
119710206Sandreas.hansson@arm.com                }
119810206Sandreas.hansson@arm.com
119910206Sandreas.hansson@arm.com                // nothing to do, not even any point in scheduling an
120010206Sandreas.hansson@arm.com                // event for the next request
120110206Sandreas.hansson@arm.com                return;
120210206Sandreas.hansson@arm.com            }
120310206Sandreas.hansson@arm.com        } else {
120410206Sandreas.hansson@arm.com            // Figure out which read request goes next, and move it to the
120510206Sandreas.hansson@arm.com            // front of the read queue
120610206Sandreas.hansson@arm.com            chooseNext(readQueue);
120710206Sandreas.hansson@arm.com
120810206Sandreas.hansson@arm.com            doDRAMAccess(readQueue.front());
120910206Sandreas.hansson@arm.com
121010206Sandreas.hansson@arm.com            // At this point we're done dealing with the request
121110206Sandreas.hansson@arm.com            // It will be moved to a separate response queue with a
121210206Sandreas.hansson@arm.com            // correct readyTime, and eventually be sent back at that
121310206Sandreas.hansson@arm.com            // time
121410206Sandreas.hansson@arm.com            moveToRespQ();
121510206Sandreas.hansson@arm.com
121610206Sandreas.hansson@arm.com            // we have so many writes that we have to transition
121710206Sandreas.hansson@arm.com            if (writeQueue.size() > writeHighThreshold) {
121810206Sandreas.hansson@arm.com                switch_to_writes = true;
121910206Sandreas.hansson@arm.com            }
122010206Sandreas.hansson@arm.com        }
122110206Sandreas.hansson@arm.com
122210206Sandreas.hansson@arm.com        // switching to writes, either because the read queue is empty
122310206Sandreas.hansson@arm.com        // and the writes have passed the low threshold (or we are
122410206Sandreas.hansson@arm.com        // draining), or because the writes hit the hight threshold
122510206Sandreas.hansson@arm.com        if (switch_to_writes) {
122610206Sandreas.hansson@arm.com            // transition to writing
122710206Sandreas.hansson@arm.com            busState = READ_TO_WRITE;
122810206Sandreas.hansson@arm.com
122910206Sandreas.hansson@arm.com            // add a bubble to the data bus, as defined by the
123010206Sandreas.hansson@arm.com            // tRTW parameter
123110206Sandreas.hansson@arm.com            busBusyUntil += tRTW;
123210206Sandreas.hansson@arm.com
123310206Sandreas.hansson@arm.com            // update the minimum timing between the requests,
123410206Sandreas.hansson@arm.com            // this shifts us back in time far enough to do any
123510206Sandreas.hansson@arm.com            // bank preparation
123610206Sandreas.hansson@arm.com            nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
123710206Sandreas.hansson@arm.com        }
12389352SN/A    } else {
123910206Sandreas.hansson@arm.com        chooseNext(writeQueue);
124010206Sandreas.hansson@arm.com        DRAMPacket* dram_pkt = writeQueue.front();
124110206Sandreas.hansson@arm.com        // sanity check
124210206Sandreas.hansson@arm.com        assert(dram_pkt->size <= burstSize);
124310206Sandreas.hansson@arm.com        doDRAMAccess(dram_pkt);
124410206Sandreas.hansson@arm.com
124510206Sandreas.hansson@arm.com        writeQueue.pop_front();
124610206Sandreas.hansson@arm.com        delete dram_pkt;
124710206Sandreas.hansson@arm.com
124810206Sandreas.hansson@arm.com        // If we emptied the write queue, or got sufficiently below the
124910206Sandreas.hansson@arm.com        // threshold (using the minWritesPerSwitch as the hysteresis) and
125010206Sandreas.hansson@arm.com        // are not draining, or we have reads waiting and have done enough
125110206Sandreas.hansson@arm.com        // writes, then switch to reads.
125210206Sandreas.hansson@arm.com        if (writeQueue.empty() ||
125310206Sandreas.hansson@arm.com            (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
125410206Sandreas.hansson@arm.com             !drainManager) ||
125510206Sandreas.hansson@arm.com            (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
125610206Sandreas.hansson@arm.com            // turn the bus back around for reads again
125710206Sandreas.hansson@arm.com            busState = WRITE_TO_READ;
125810206Sandreas.hansson@arm.com
125910206Sandreas.hansson@arm.com            // note that the we switch back to reads also in the idle
126010206Sandreas.hansson@arm.com            // case, which eventually will check for any draining and
126110206Sandreas.hansson@arm.com            // also pause any further scheduling if there is really
126210206Sandreas.hansson@arm.com            // nothing to do
126310206Sandreas.hansson@arm.com
126410206Sandreas.hansson@arm.com            // here we get a bit creative and shift the bus busy time not
126510206Sandreas.hansson@arm.com            // just the tWTR, but also a CAS latency to capture the fact
126610206Sandreas.hansson@arm.com            // that we are allowed to prepare a new bank, but not issue a
126710206Sandreas.hansson@arm.com            // read command until after tWTR, in essence we capture a
126810206Sandreas.hansson@arm.com            // bubble on the data bus that is tWTR + tCL
126910206Sandreas.hansson@arm.com            busBusyUntil += tWTR + tCL;
127010206Sandreas.hansson@arm.com
127110206Sandreas.hansson@arm.com            // update the minimum timing between the requests, this shifts
127210206Sandreas.hansson@arm.com            // us back in time far enough to do any bank preparation
127310206Sandreas.hansson@arm.com            nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
127410206Sandreas.hansson@arm.com        }
127510206Sandreas.hansson@arm.com    }
127610206Sandreas.hansson@arm.com
127710206Sandreas.hansson@arm.com    schedule(nextReqEvent, std::max(nextReqTime, curTick()));
127810206Sandreas.hansson@arm.com
127910206Sandreas.hansson@arm.com    // If there is space available and we have writes waiting then let
128010206Sandreas.hansson@arm.com    // them retry. This is done here to ensure that the retry does not
128110206Sandreas.hansson@arm.com    // cause a nextReqEvent to be scheduled before we do so as part of
128210206Sandreas.hansson@arm.com    // the next request processing
128310206Sandreas.hansson@arm.com    if (retryWrReq && writeQueue.size() < writeBufferSize) {
128410206Sandreas.hansson@arm.com        retryWrReq = false;
128510206Sandreas.hansson@arm.com        port.sendRetry();
12869352SN/A    }
12879243SN/A}
12889243SN/A
12899967SN/Auint64_t
129010211Sandreas.hansson@arm.comDRAMCtrl::minBankActAt(const deque<DRAMPacket*>& queue) const
12919967SN/A{
12929967SN/A    uint64_t bank_mask = 0;
129310211Sandreas.hansson@arm.com    Tick min_act_at = MaxTick;
12949967SN/A
129510211Sandreas.hansson@arm.com    // deterimne if we have queued transactions targetting a
12969967SN/A    // bank in question
12979967SN/A    vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
12989967SN/A    for (auto p = queue.begin(); p != queue.end(); ++p) {
12999967SN/A        got_waiting[(*p)->bankId] = true;
13009967SN/A    }
13019967SN/A
13029967SN/A    for (int i = 0; i < ranksPerChannel; i++) {
13039967SN/A        for (int j = 0; j < banksPerRank; j++) {
130410211Sandreas.hansson@arm.com            uint8_t bank_id = i * banksPerRank + j;
130510211Sandreas.hansson@arm.com
13069967SN/A            // if we have waiting requests for the bank, and it is
13079967SN/A            // amongst the first available, update the mask
130810211Sandreas.hansson@arm.com            if (got_waiting[bank_id]) {
130910211Sandreas.hansson@arm.com                // simplistic approximation of when the bank can issue
131010211Sandreas.hansson@arm.com                // an activate, ignoring any rank-to-rank switching
131110211Sandreas.hansson@arm.com                // cost
131210211Sandreas.hansson@arm.com                Tick act_at = banks[i][j].openRow == Bank::NO_ROW ?
131310211Sandreas.hansson@arm.com                    banks[i][j].actAllowedAt :
131410211Sandreas.hansson@arm.com                    std::max(banks[i][j].preAllowedAt, curTick()) + tRP;
131510211Sandreas.hansson@arm.com
131610211Sandreas.hansson@arm.com                if (act_at <= min_act_at) {
131710211Sandreas.hansson@arm.com                    // reset bank mask if new minimum is found
131810211Sandreas.hansson@arm.com                    if (act_at < min_act_at)
131910211Sandreas.hansson@arm.com                        bank_mask = 0;
132010211Sandreas.hansson@arm.com                    // set the bit corresponding to the available bank
132110211Sandreas.hansson@arm.com                    replaceBits(bank_mask, bank_id, bank_id, 1);
132210211Sandreas.hansson@arm.com                    min_act_at = act_at;
132310211Sandreas.hansson@arm.com                }
13249967SN/A            }
13259967SN/A        }
13269967SN/A    }
132710211Sandreas.hansson@arm.com
13289967SN/A    return bank_mask;
13299967SN/A}
13309967SN/A
13319243SN/Avoid
133210146Sandreas.hansson@arm.comDRAMCtrl::processRefreshEvent()
13339243SN/A{
133410207Sandreas.hansson@arm.com    // when first preparing the refresh, remember when it was due
133510207Sandreas.hansson@arm.com    if (refreshState == REF_IDLE) {
133610207Sandreas.hansson@arm.com        // remember when the refresh is due
133710207Sandreas.hansson@arm.com        refreshDueAt = curTick();
13389243SN/A
133910207Sandreas.hansson@arm.com        // proceed to drain
134010207Sandreas.hansson@arm.com        refreshState = REF_DRAIN;
13419243SN/A
134210207Sandreas.hansson@arm.com        DPRINTF(DRAM, "Refresh due\n");
134310207Sandreas.hansson@arm.com    }
134410207Sandreas.hansson@arm.com
134510207Sandreas.hansson@arm.com    // let any scheduled read or write go ahead, after which it will
134610207Sandreas.hansson@arm.com    // hand control back to this event loop
134710207Sandreas.hansson@arm.com    if (refreshState == REF_DRAIN) {
134810207Sandreas.hansson@arm.com        if (nextReqEvent.scheduled()) {
134910207Sandreas.hansson@arm.com            // hand control over to the request loop until it is
135010207Sandreas.hansson@arm.com            // evaluated next
135110207Sandreas.hansson@arm.com            DPRINTF(DRAM, "Refresh awaiting draining\n");
135210207Sandreas.hansson@arm.com
135310207Sandreas.hansson@arm.com            return;
135410207Sandreas.hansson@arm.com        } else {
135510207Sandreas.hansson@arm.com            refreshState = REF_PRE;
135610207Sandreas.hansson@arm.com        }
135710207Sandreas.hansson@arm.com    }
135810207Sandreas.hansson@arm.com
135910207Sandreas.hansson@arm.com    // at this point, ensure that all banks are precharged
136010207Sandreas.hansson@arm.com    if (refreshState == REF_PRE) {
136110208Sandreas.hansson@arm.com        // precharge any active bank if we are not already in the idle
136210208Sandreas.hansson@arm.com        // state
136310208Sandreas.hansson@arm.com        if (pwrState != PWR_IDLE) {
136410208Sandreas.hansson@arm.com            DPRINTF(DRAM, "Precharging all\n");
136510208Sandreas.hansson@arm.com            for (int i = 0; i < ranksPerChannel; i++) {
136610208Sandreas.hansson@arm.com                for (int j = 0; j < banksPerRank; j++) {
136710208Sandreas.hansson@arm.com                    if (banks[i][j].openRow != Bank::NO_ROW) {
136810208Sandreas.hansson@arm.com                        // respect both causality and any existing bank
136910208Sandreas.hansson@arm.com                        // constraints
137010211Sandreas.hansson@arm.com                        Tick pre_at = std::max(banks[i][j].preAllowedAt,
137110211Sandreas.hansson@arm.com                                                curTick());
137210207Sandreas.hansson@arm.com
137310211Sandreas.hansson@arm.com                        prechargeBank(banks[i][j], pre_at);
137410208Sandreas.hansson@arm.com                    }
137510207Sandreas.hansson@arm.com                }
137610207Sandreas.hansson@arm.com            }
137710208Sandreas.hansson@arm.com        } else {
137810208Sandreas.hansson@arm.com            DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
137910208Sandreas.hansson@arm.com
138010208Sandreas.hansson@arm.com            // go ahead and kick the power state machine into gear if
138110208Sandreas.hansson@arm.com            // we are already idle
138210208Sandreas.hansson@arm.com            schedulePowerEvent(PWR_REF, curTick());
13839975SN/A        }
13849975SN/A
138510208Sandreas.hansson@arm.com        refreshState = REF_RUN;
138610208Sandreas.hansson@arm.com        assert(numBanksActive == 0);
13879243SN/A
138810208Sandreas.hansson@arm.com        // wait for all banks to be precharged, at which point the
138910208Sandreas.hansson@arm.com        // power state machine will transition to the idle state, and
139010208Sandreas.hansson@arm.com        // automatically move to a refresh, at that point it will also
139110208Sandreas.hansson@arm.com        // call this method to get the refresh event loop going again
139210207Sandreas.hansson@arm.com        return;
139310207Sandreas.hansson@arm.com    }
139410207Sandreas.hansson@arm.com
139510207Sandreas.hansson@arm.com    // last but not least we perform the actual refresh
139610207Sandreas.hansson@arm.com    if (refreshState == REF_RUN) {
139710207Sandreas.hansson@arm.com        // should never get here with any banks active
139810207Sandreas.hansson@arm.com        assert(numBanksActive == 0);
139910208Sandreas.hansson@arm.com        assert(pwrState == PWR_REF);
140010207Sandreas.hansson@arm.com
140110211Sandreas.hansson@arm.com        Tick ref_done_at = curTick() + tRFC;
140210207Sandreas.hansson@arm.com
140310207Sandreas.hansson@arm.com        for (int i = 0; i < ranksPerChannel; i++) {
140410207Sandreas.hansson@arm.com            for (int j = 0; j < banksPerRank; j++) {
140510211Sandreas.hansson@arm.com                banks[i][j].actAllowedAt = ref_done_at;
140610207Sandreas.hansson@arm.com            }
140710207Sandreas.hansson@arm.com        }
140810207Sandreas.hansson@arm.com
140910207Sandreas.hansson@arm.com        // make sure we did not wait so long that we cannot make up
141010207Sandreas.hansson@arm.com        // for it
141110211Sandreas.hansson@arm.com        if (refreshDueAt + tREFI < ref_done_at) {
141210207Sandreas.hansson@arm.com            fatal("Refresh was delayed so long we cannot catch up\n");
141310207Sandreas.hansson@arm.com        }
141410207Sandreas.hansson@arm.com
141510207Sandreas.hansson@arm.com        // compensate for the delay in actually performing the refresh
141610207Sandreas.hansson@arm.com        // when scheduling the next one
141710207Sandreas.hansson@arm.com        schedule(refreshEvent, refreshDueAt + tREFI - tRP);
141810207Sandreas.hansson@arm.com
141910208Sandreas.hansson@arm.com        assert(!powerEvent.scheduled());
142010207Sandreas.hansson@arm.com
142110208Sandreas.hansson@arm.com        // move to the idle power state once the refresh is done, this
142210208Sandreas.hansson@arm.com        // will also move the refresh state machine to the refresh
142310208Sandreas.hansson@arm.com        // idle state
142410211Sandreas.hansson@arm.com        schedulePowerEvent(PWR_IDLE, ref_done_at);
142510207Sandreas.hansson@arm.com
142610208Sandreas.hansson@arm.com        DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
142710211Sandreas.hansson@arm.com                ref_done_at, refreshDueAt + tREFI);
142810208Sandreas.hansson@arm.com    }
142910208Sandreas.hansson@arm.com}
143010208Sandreas.hansson@arm.com
143110208Sandreas.hansson@arm.comvoid
143210208Sandreas.hansson@arm.comDRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick)
143310208Sandreas.hansson@arm.com{
143410208Sandreas.hansson@arm.com    // respect causality
143510208Sandreas.hansson@arm.com    assert(tick >= curTick());
143610208Sandreas.hansson@arm.com
143710208Sandreas.hansson@arm.com    if (!powerEvent.scheduled()) {
143810208Sandreas.hansson@arm.com        DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
143910208Sandreas.hansson@arm.com                tick, pwr_state);
144010208Sandreas.hansson@arm.com
144110208Sandreas.hansson@arm.com        // insert the new transition
144210208Sandreas.hansson@arm.com        pwrStateTrans = pwr_state;
144310208Sandreas.hansson@arm.com
144410208Sandreas.hansson@arm.com        schedule(powerEvent, tick);
144510208Sandreas.hansson@arm.com    } else {
144610208Sandreas.hansson@arm.com        panic("Scheduled power event at %llu to state %d, "
144710208Sandreas.hansson@arm.com              "with scheduled event at %llu to %d\n", tick, pwr_state,
144810208Sandreas.hansson@arm.com              powerEvent.when(), pwrStateTrans);
144910208Sandreas.hansson@arm.com    }
145010208Sandreas.hansson@arm.com}
145110208Sandreas.hansson@arm.com
145210208Sandreas.hansson@arm.comvoid
145310208Sandreas.hansson@arm.comDRAMCtrl::processPowerEvent()
145410208Sandreas.hansson@arm.com{
145510208Sandreas.hansson@arm.com    // remember where we were, and for how long
145610208Sandreas.hansson@arm.com    Tick duration = curTick() - pwrStateTick;
145710208Sandreas.hansson@arm.com    PowerState prev_state = pwrState;
145810208Sandreas.hansson@arm.com
145910208Sandreas.hansson@arm.com    // update the accounting
146010208Sandreas.hansson@arm.com    pwrStateTime[prev_state] += duration;
146110208Sandreas.hansson@arm.com
146210208Sandreas.hansson@arm.com    pwrState = pwrStateTrans;
146310208Sandreas.hansson@arm.com    pwrStateTick = curTick();
146410208Sandreas.hansson@arm.com
146510208Sandreas.hansson@arm.com    if (pwrState == PWR_IDLE) {
146610208Sandreas.hansson@arm.com        DPRINTF(DRAMState, "All banks precharged\n");
146710208Sandreas.hansson@arm.com
146810208Sandreas.hansson@arm.com        // if we were refreshing, make sure we start scheduling requests again
146910208Sandreas.hansson@arm.com        if (prev_state == PWR_REF) {
147010208Sandreas.hansson@arm.com            DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
147110208Sandreas.hansson@arm.com            assert(pwrState == PWR_IDLE);
147210208Sandreas.hansson@arm.com
147310208Sandreas.hansson@arm.com            // kick things into action again
147410208Sandreas.hansson@arm.com            refreshState = REF_IDLE;
147510208Sandreas.hansson@arm.com            assert(!nextReqEvent.scheduled());
147610208Sandreas.hansson@arm.com            schedule(nextReqEvent, curTick());
147710208Sandreas.hansson@arm.com        } else {
147810208Sandreas.hansson@arm.com            assert(prev_state == PWR_ACT);
147910208Sandreas.hansson@arm.com
148010208Sandreas.hansson@arm.com            // if we have a pending refresh, and are now moving to
148110208Sandreas.hansson@arm.com            // the idle state, direclty transition to a refresh
148210208Sandreas.hansson@arm.com            if (refreshState == REF_RUN) {
148310208Sandreas.hansson@arm.com                // there should be nothing waiting at this point
148410208Sandreas.hansson@arm.com                assert(!powerEvent.scheduled());
148510208Sandreas.hansson@arm.com
148610208Sandreas.hansson@arm.com                // update the state in zero time and proceed below
148710208Sandreas.hansson@arm.com                pwrState = PWR_REF;
148810208Sandreas.hansson@arm.com            }
148910208Sandreas.hansson@arm.com        }
149010208Sandreas.hansson@arm.com    }
149110208Sandreas.hansson@arm.com
149210208Sandreas.hansson@arm.com    // we transition to the refresh state, let the refresh state
149310208Sandreas.hansson@arm.com    // machine know of this state update and let it deal with the
149410208Sandreas.hansson@arm.com    // scheduling of the next power state transition as well as the
149510208Sandreas.hansson@arm.com    // following refresh
149610208Sandreas.hansson@arm.com    if (pwrState == PWR_REF) {
149710208Sandreas.hansson@arm.com        DPRINTF(DRAMState, "Refreshing\n");
149810208Sandreas.hansson@arm.com        // kick the refresh event loop into action again, and that
149910208Sandreas.hansson@arm.com        // in turn will schedule a transition to the idle power
150010208Sandreas.hansson@arm.com        // state once the refresh is done
150110208Sandreas.hansson@arm.com        assert(refreshState == REF_RUN);
150210208Sandreas.hansson@arm.com        processRefreshEvent();
150310207Sandreas.hansson@arm.com    }
15049243SN/A}
15059243SN/A
15069243SN/Avoid
150710146Sandreas.hansson@arm.comDRAMCtrl::regStats()
15089243SN/A{
15099243SN/A    using namespace Stats;
15109243SN/A
15119243SN/A    AbstractMemory::regStats();
15129243SN/A
15139243SN/A    readReqs
15149243SN/A        .name(name() + ".readReqs")
15159977SN/A        .desc("Number of read requests accepted");
15169243SN/A
15179243SN/A    writeReqs
15189243SN/A        .name(name() + ".writeReqs")
15199977SN/A        .desc("Number of write requests accepted");
15209831SN/A
15219831SN/A    readBursts
15229831SN/A        .name(name() + ".readBursts")
15239977SN/A        .desc("Number of DRAM read bursts, "
15249977SN/A              "including those serviced by the write queue");
15259831SN/A
15269831SN/A    writeBursts
15279831SN/A        .name(name() + ".writeBursts")
15289977SN/A        .desc("Number of DRAM write bursts, "
15299977SN/A              "including those merged in the write queue");
15309243SN/A
15319243SN/A    servicedByWrQ
15329243SN/A        .name(name() + ".servicedByWrQ")
15339977SN/A        .desc("Number of DRAM read bursts serviced by the write queue");
15349977SN/A
15359977SN/A    mergedWrBursts
15369977SN/A        .name(name() + ".mergedWrBursts")
15379977SN/A        .desc("Number of DRAM write bursts merged with an existing one");
15389243SN/A
15399243SN/A    neitherReadNorWrite
15409977SN/A        .name(name() + ".neitherReadNorWriteReqs")
15419977SN/A        .desc("Number of requests that are neither read nor write");
15429243SN/A
15439977SN/A    perBankRdBursts
15449243SN/A        .init(banksPerRank * ranksPerChannel)
15459977SN/A        .name(name() + ".perBankRdBursts")
15469977SN/A        .desc("Per bank write bursts");
15479243SN/A
15489977SN/A    perBankWrBursts
15499243SN/A        .init(banksPerRank * ranksPerChannel)
15509977SN/A        .name(name() + ".perBankWrBursts")
15519977SN/A        .desc("Per bank write bursts");
15529243SN/A
15539243SN/A    avgRdQLen
15549243SN/A        .name(name() + ".avgRdQLen")
15559977SN/A        .desc("Average read queue length when enqueuing")
15569243SN/A        .precision(2);
15579243SN/A
15589243SN/A    avgWrQLen
15599243SN/A        .name(name() + ".avgWrQLen")
15609977SN/A        .desc("Average write queue length when enqueuing")
15619243SN/A        .precision(2);
15629243SN/A
15639243SN/A    totQLat
15649243SN/A        .name(name() + ".totQLat")
15659977SN/A        .desc("Total ticks spent queuing");
15669243SN/A
15679243SN/A    totBusLat
15689243SN/A        .name(name() + ".totBusLat")
15699977SN/A        .desc("Total ticks spent in databus transfers");
15709243SN/A
15719243SN/A    totMemAccLat
15729243SN/A        .name(name() + ".totMemAccLat")
15739977SN/A        .desc("Total ticks spent from burst creation until serviced "
15749977SN/A              "by the DRAM");
15759243SN/A
15769243SN/A    avgQLat
15779243SN/A        .name(name() + ".avgQLat")
15789977SN/A        .desc("Average queueing delay per DRAM burst")
15799243SN/A        .precision(2);
15809243SN/A
15819831SN/A    avgQLat = totQLat / (readBursts - servicedByWrQ);
15829243SN/A
15839243SN/A    avgBusLat
15849243SN/A        .name(name() + ".avgBusLat")
15859977SN/A        .desc("Average bus latency per DRAM burst")
15869243SN/A        .precision(2);
15879243SN/A
15889831SN/A    avgBusLat = totBusLat / (readBursts - servicedByWrQ);
15899243SN/A
15909243SN/A    avgMemAccLat
15919243SN/A        .name(name() + ".avgMemAccLat")
15929977SN/A        .desc("Average memory access latency per DRAM burst")
15939243SN/A        .precision(2);
15949243SN/A
15959831SN/A    avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
15969243SN/A
15979243SN/A    numRdRetry
15989243SN/A        .name(name() + ".numRdRetry")
15999977SN/A        .desc("Number of times read queue was full causing retry");
16009243SN/A
16019243SN/A    numWrRetry
16029243SN/A        .name(name() + ".numWrRetry")
16039977SN/A        .desc("Number of times write queue was full causing retry");
16049243SN/A
16059243SN/A    readRowHits
16069243SN/A        .name(name() + ".readRowHits")
16079243SN/A        .desc("Number of row buffer hits during reads");
16089243SN/A
16099243SN/A    writeRowHits
16109243SN/A        .name(name() + ".writeRowHits")
16119243SN/A        .desc("Number of row buffer hits during writes");
16129243SN/A
16139243SN/A    readRowHitRate
16149243SN/A        .name(name() + ".readRowHitRate")
16159243SN/A        .desc("Row buffer hit rate for reads")
16169243SN/A        .precision(2);
16179243SN/A
16189831SN/A    readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
16199243SN/A
16209243SN/A    writeRowHitRate
16219243SN/A        .name(name() + ".writeRowHitRate")
16229243SN/A        .desc("Row buffer hit rate for writes")
16239243SN/A        .precision(2);
16249243SN/A
16259977SN/A    writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
16269243SN/A
16279243SN/A    readPktSize
16289831SN/A        .init(ceilLog2(burstSize) + 1)
16299243SN/A        .name(name() + ".readPktSize")
16309977SN/A        .desc("Read request sizes (log2)");
16319243SN/A
16329243SN/A     writePktSize
16339831SN/A        .init(ceilLog2(burstSize) + 1)
16349243SN/A        .name(name() + ".writePktSize")
16359977SN/A        .desc("Write request sizes (log2)");
16369243SN/A
16379243SN/A     rdQLenPdf
16389567SN/A        .init(readBufferSize)
16399243SN/A        .name(name() + ".rdQLenPdf")
16409243SN/A        .desc("What read queue length does an incoming req see");
16419243SN/A
16429243SN/A     wrQLenPdf
16439567SN/A        .init(writeBufferSize)
16449243SN/A        .name(name() + ".wrQLenPdf")
16459243SN/A        .desc("What write queue length does an incoming req see");
16469243SN/A
16479727SN/A     bytesPerActivate
164810141SN/A         .init(maxAccessesPerRow)
16499727SN/A         .name(name() + ".bytesPerActivate")
16509727SN/A         .desc("Bytes accessed per row activation")
16519727SN/A         .flags(nozero);
16529243SN/A
165310147Sandreas.hansson@arm.com     rdPerTurnAround
165410147Sandreas.hansson@arm.com         .init(readBufferSize)
165510147Sandreas.hansson@arm.com         .name(name() + ".rdPerTurnAround")
165610147Sandreas.hansson@arm.com         .desc("Reads before turning the bus around for writes")
165710147Sandreas.hansson@arm.com         .flags(nozero);
165810147Sandreas.hansson@arm.com
165910147Sandreas.hansson@arm.com     wrPerTurnAround
166010147Sandreas.hansson@arm.com         .init(writeBufferSize)
166110147Sandreas.hansson@arm.com         .name(name() + ".wrPerTurnAround")
166210147Sandreas.hansson@arm.com         .desc("Writes before turning the bus around for reads")
166310147Sandreas.hansson@arm.com         .flags(nozero);
166410147Sandreas.hansson@arm.com
16659975SN/A    bytesReadDRAM
16669975SN/A        .name(name() + ".bytesReadDRAM")
16679975SN/A        .desc("Total number of bytes read from DRAM");
16689975SN/A
16699975SN/A    bytesReadWrQ
16709975SN/A        .name(name() + ".bytesReadWrQ")
16719975SN/A        .desc("Total number of bytes read from write queue");
16729243SN/A
16739243SN/A    bytesWritten
16749243SN/A        .name(name() + ".bytesWritten")
16759977SN/A        .desc("Total number of bytes written to DRAM");
16769243SN/A
16779977SN/A    bytesReadSys
16789977SN/A        .name(name() + ".bytesReadSys")
16799977SN/A        .desc("Total read bytes from the system interface side");
16809243SN/A
16819977SN/A    bytesWrittenSys
16829977SN/A        .name(name() + ".bytesWrittenSys")
16839977SN/A        .desc("Total written bytes from the system interface side");
16849243SN/A
16859243SN/A    avgRdBW
16869243SN/A        .name(name() + ".avgRdBW")
16879977SN/A        .desc("Average DRAM read bandwidth in MiByte/s")
16889243SN/A        .precision(2);
16899243SN/A
16909977SN/A    avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
16919243SN/A
16929243SN/A    avgWrBW
16939243SN/A        .name(name() + ".avgWrBW")
16949977SN/A        .desc("Average achieved write bandwidth in MiByte/s")
16959243SN/A        .precision(2);
16969243SN/A
16979243SN/A    avgWrBW = (bytesWritten / 1000000) / simSeconds;
16989243SN/A
16999977SN/A    avgRdBWSys
17009977SN/A        .name(name() + ".avgRdBWSys")
17019977SN/A        .desc("Average system read bandwidth in MiByte/s")
17029243SN/A        .precision(2);
17039243SN/A
17049977SN/A    avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
17059243SN/A
17069977SN/A    avgWrBWSys
17079977SN/A        .name(name() + ".avgWrBWSys")
17089977SN/A        .desc("Average system write bandwidth in MiByte/s")
17099243SN/A        .precision(2);
17109243SN/A
17119977SN/A    avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
17129243SN/A
17139243SN/A    peakBW
17149243SN/A        .name(name() + ".peakBW")
17159977SN/A        .desc("Theoretical peak bandwidth in MiByte/s")
17169243SN/A        .precision(2);
17179243SN/A
17189831SN/A    peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
17199243SN/A
17209243SN/A    busUtil
17219243SN/A        .name(name() + ".busUtil")
17229243SN/A        .desc("Data bus utilization in percentage")
17239243SN/A        .precision(2);
17249243SN/A
17259243SN/A    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
17269243SN/A
17279243SN/A    totGap
17289243SN/A        .name(name() + ".totGap")
17299243SN/A        .desc("Total gap between requests");
17309243SN/A
17319243SN/A    avgGap
17329243SN/A        .name(name() + ".avgGap")
17339243SN/A        .desc("Average gap between requests")
17349243SN/A        .precision(2);
17359243SN/A
17369243SN/A    avgGap = totGap / (readReqs + writeReqs);
17379975SN/A
17389975SN/A    // Stats for DRAM Power calculation based on Micron datasheet
17399975SN/A    busUtilRead
17409975SN/A        .name(name() + ".busUtilRead")
17419975SN/A        .desc("Data bus utilization in percentage for reads")
17429975SN/A        .precision(2);
17439975SN/A
17449975SN/A    busUtilRead = avgRdBW / peakBW * 100;
17459975SN/A
17469975SN/A    busUtilWrite
17479975SN/A        .name(name() + ".busUtilWrite")
17489975SN/A        .desc("Data bus utilization in percentage for writes")
17499975SN/A        .precision(2);
17509975SN/A
17519975SN/A    busUtilWrite = avgWrBW / peakBW * 100;
17529975SN/A
17539975SN/A    pageHitRate
17549975SN/A        .name(name() + ".pageHitRate")
17559975SN/A        .desc("Row buffer hit rate, read and write combined")
17569975SN/A        .precision(2);
17579975SN/A
17589977SN/A    pageHitRate = (writeRowHits + readRowHits) /
17599977SN/A        (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
17609975SN/A
176110208Sandreas.hansson@arm.com    pwrStateTime
176210208Sandreas.hansson@arm.com        .init(5)
176310208Sandreas.hansson@arm.com        .name(name() + ".memoryStateTime")
176410208Sandreas.hansson@arm.com        .desc("Time in different power states");
176510208Sandreas.hansson@arm.com    pwrStateTime.subname(0, "IDLE");
176610208Sandreas.hansson@arm.com    pwrStateTime.subname(1, "REF");
176710208Sandreas.hansson@arm.com    pwrStateTime.subname(2, "PRE_PDN");
176810208Sandreas.hansson@arm.com    pwrStateTime.subname(3, "ACT");
176910208Sandreas.hansson@arm.com    pwrStateTime.subname(4, "ACT_PDN");
17709243SN/A}
17719243SN/A
17729243SN/Avoid
177310146Sandreas.hansson@arm.comDRAMCtrl::recvFunctional(PacketPtr pkt)
17749243SN/A{
17759243SN/A    // rely on the abstract memory
17769243SN/A    functionalAccess(pkt);
17779243SN/A}
17789243SN/A
17799294SN/ABaseSlavePort&
178010146Sandreas.hansson@arm.comDRAMCtrl::getSlavePort(const string &if_name, PortID idx)
17819243SN/A{
17829243SN/A    if (if_name != "port") {
17839243SN/A        return MemObject::getSlavePort(if_name, idx);
17849243SN/A    } else {
17859243SN/A        return port;
17869243SN/A    }
17879243SN/A}
17889243SN/A
17899243SN/Aunsigned int
179010146Sandreas.hansson@arm.comDRAMCtrl::drain(DrainManager *dm)
17919243SN/A{
17929342SN/A    unsigned int count = port.drain(dm);
17939243SN/A
17949243SN/A    // if there is anything in any of our internal queues, keep track
17959243SN/A    // of that as well
17969567SN/A    if (!(writeQueue.empty() && readQueue.empty() &&
17979567SN/A          respQueue.empty())) {
17989352SN/A        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
17999567SN/A                " resp: %d\n", writeQueue.size(), readQueue.size(),
18009567SN/A                respQueue.size());
18019243SN/A        ++count;
18029342SN/A        drainManager = dm;
180310206Sandreas.hansson@arm.com
18049352SN/A        // the only part that is not drained automatically over time
180510206Sandreas.hansson@arm.com        // is the write queue, thus kick things into action if needed
180610206Sandreas.hansson@arm.com        if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
180710206Sandreas.hansson@arm.com            schedule(nextReqEvent, curTick());
180810206Sandreas.hansson@arm.com        }
18099243SN/A    }
18109243SN/A
18119243SN/A    if (count)
18129342SN/A        setDrainState(Drainable::Draining);
18139243SN/A    else
18149342SN/A        setDrainState(Drainable::Drained);
18159243SN/A    return count;
18169243SN/A}
18179243SN/A
181810146Sandreas.hansson@arm.comDRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
18199243SN/A    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
18209243SN/A      memory(_memory)
18219243SN/A{ }
18229243SN/A
18239243SN/AAddrRangeList
182410146Sandreas.hansson@arm.comDRAMCtrl::MemoryPort::getAddrRanges() const
18259243SN/A{
18269243SN/A    AddrRangeList ranges;
18279243SN/A    ranges.push_back(memory.getAddrRange());
18289243SN/A    return ranges;
18299243SN/A}
18309243SN/A
18319243SN/Avoid
183210146Sandreas.hansson@arm.comDRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
18339243SN/A{
18349243SN/A    pkt->pushLabel(memory.name());
18359243SN/A
18369243SN/A    if (!queue.checkFunctional(pkt)) {
18379243SN/A        // Default implementation of SimpleTimingPort::recvFunctional()
18389243SN/A        // calls recvAtomic() and throws away the latency; we can save a
18399243SN/A        // little here by just not calculating the latency.
18409243SN/A        memory.recvFunctional(pkt);
18419243SN/A    }
18429243SN/A
18439243SN/A    pkt->popLabel();
18449243SN/A}
18459243SN/A
18469243SN/ATick
184710146Sandreas.hansson@arm.comDRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
18489243SN/A{
18499243SN/A    return memory.recvAtomic(pkt);
18509243SN/A}
18519243SN/A
18529243SN/Abool
185310146Sandreas.hansson@arm.comDRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
18549243SN/A{
18559243SN/A    // pass it to the memory controller
18569243SN/A    return memory.recvTimingReq(pkt);
18579243SN/A}
18589243SN/A
185910146Sandreas.hansson@arm.comDRAMCtrl*
186010146Sandreas.hansson@arm.comDRAMCtrlParams::create()
18619243SN/A{
186210146Sandreas.hansson@arm.com    return new DRAMCtrl(this);
18639243SN/A}
1864