i8254xGBe.cc revision 9198
1/*
2 * Copyright (c) 2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Ali Saidi
29 */
30
31/* @file
32 * Device model for Intel's 8254x line of gigabit ethernet controllers.
33 * In particular an 82547 revision 2 (82547GI) MAC because it seems to have the
34 * fewest workarounds in the driver. It will probably work with most of the
35 * other MACs with slight modifications.
36 */
37
38
39/*
40 * @todo really there are multiple dma engines.. we should implement them.
41 */
42
43#include <algorithm>
44
45#include "base/inet.hh"
46#include "base/trace.hh"
47#include "debug/Drain.hh"
48#include "debug/EthernetAll.hh"
49#include "dev/i8254xGBe.hh"
50#include "mem/packet.hh"
51#include "mem/packet_access.hh"
52#include "params/IGbE.hh"
53#include "sim/stats.hh"
54#include "sim/system.hh"
55
56using namespace iGbReg;
57using namespace Net;
58
59IGbE::IGbE(const Params *p)
60    : EtherDevice(p), etherInt(NULL),  drainEvent(NULL),
61      useFlowControl(p->use_flow_control),
62      rxFifo(p->rx_fifo_size), txFifo(p->tx_fifo_size), rxTick(false),
63      txTick(false), txFifoTick(false), rxDmaPacket(false), pktOffset(0),
64      fetchDelay(p->fetch_delay), wbDelay(p->wb_delay),
65      fetchCompDelay(p->fetch_comp_delay), wbCompDelay(p->wb_comp_delay),
66      rxWriteDelay(p->rx_write_delay), txReadDelay(p->tx_read_delay),
67      rdtrEvent(this), radvEvent(this),
68      tadvEvent(this), tidvEvent(this), tickEvent(this), interEvent(this),
69      rxDescCache(this, name()+".RxDesc", p->rx_desc_cache_size),
70      txDescCache(this, name()+".TxDesc", p->tx_desc_cache_size),
71      lastInterrupt(0)
72{
73    etherInt = new IGbEInt(name() + ".int", this);
74
75    // Initialized internal registers per Intel documentation
76    // All registers intialized to 0 by per register constructor
77    regs.ctrl.fd(1);
78    regs.ctrl.lrst(1);
79    regs.ctrl.speed(2);
80    regs.ctrl.frcspd(1);
81    regs.sts.speed(3); // Say we're 1000Mbps
82    regs.sts.fd(1); // full duplex
83    regs.sts.lu(1); // link up
84    regs.eecd.fwe(1);
85    regs.eecd.ee_type(1);
86    regs.imr = 0;
87    regs.iam = 0;
88    regs.rxdctl.gran(1);
89    regs.rxdctl.wthresh(1);
90    regs.fcrth(1);
91    regs.tdwba = 0;
92    regs.rlpml = 0;
93    regs.sw_fw_sync = 0;
94
95    regs.pba.rxa(0x30);
96    regs.pba.txa(0x10);
97
98    eeOpBits            = 0;
99    eeAddrBits          = 0;
100    eeDataBits          = 0;
101    eeOpcode            = 0;
102
103    // clear all 64 16 bit words of the eeprom
104    memset(&flash, 0, EEPROM_SIZE*2);
105
106    // Set the MAC address
107    memcpy(flash, p->hardware_address.bytes(), ETH_ADDR_LEN);
108    for (int x = 0; x < ETH_ADDR_LEN/2; x++)
109        flash[x] = htobe(flash[x]);
110
111    uint16_t csum = 0;
112    for (int x = 0; x < EEPROM_SIZE; x++)
113        csum += htobe(flash[x]);
114
115
116    // Magic happy checksum value
117    flash[EEPROM_SIZE-1] = htobe((uint16_t)(EEPROM_CSUM - csum));
118
119    // Store the MAC address as queue ID
120    macAddr = p->hardware_address;
121
122    rxFifo.clear();
123    txFifo.clear();
124}
125
126IGbE::~IGbE()
127{
128    delete etherInt;
129}
130
131void
132IGbE::init()
133{
134    cpa = CPA::cpa();
135    PciDev::init();
136}
137
138EtherInt*
139IGbE::getEthPort(const std::string &if_name, int idx)
140{
141
142    if (if_name == "interface") {
143        if (etherInt->getPeer())
144            panic("Port already connected to\n");
145        return etherInt;
146    }
147    return NULL;
148}
149
150Tick
151IGbE::writeConfig(PacketPtr pkt)
152{
153    int offset = pkt->getAddr() & PCI_CONFIG_SIZE;
154    if (offset < PCI_DEVICE_SPECIFIC)
155        PciDev::writeConfig(pkt);
156    else
157        panic("Device specific PCI config space not implemented.\n");
158
159    //
160    // Some work may need to be done here based for the pci COMMAND bits.
161    //
162
163    return configDelay;
164}
165
166// Handy macro for range-testing register access addresses
167#define IN_RANGE(val, base, len) (val >= base && val < (base + len))
168
169Tick
170IGbE::read(PacketPtr pkt)
171{
172    int bar;
173    Addr daddr;
174
175    if (!getBAR(pkt->getAddr(), bar, daddr))
176        panic("Invalid PCI memory access to unmapped memory.\n");
177
178    // Only Memory register BAR is allowed
179    assert(bar == 0);
180
181    // Only 32bit accesses allowed
182    assert(pkt->getSize() == 4);
183
184    DPRINTF(Ethernet, "Read device register %#X\n", daddr);
185
186    pkt->allocate();
187
188    //
189    // Handle read of register here
190    //
191
192
193    switch (daddr) {
194      case REG_CTRL:
195        pkt->set<uint32_t>(regs.ctrl());
196        break;
197      case REG_STATUS:
198        pkt->set<uint32_t>(regs.sts());
199        break;
200      case REG_EECD:
201        pkt->set<uint32_t>(regs.eecd());
202        break;
203      case REG_EERD:
204        pkt->set<uint32_t>(regs.eerd());
205        break;
206      case REG_CTRL_EXT:
207        pkt->set<uint32_t>(regs.ctrl_ext());
208        break;
209      case REG_MDIC:
210        pkt->set<uint32_t>(regs.mdic());
211        break;
212      case REG_ICR:
213        DPRINTF(Ethernet, "Reading ICR. ICR=%#x IMR=%#x IAM=%#x IAME=%d\n",
214                regs.icr(), regs.imr, regs.iam, regs.ctrl_ext.iame());
215        pkt->set<uint32_t>(regs.icr());
216        if (regs.icr.int_assert() || regs.imr == 0) {
217            regs.icr = regs.icr() & ~mask(30);
218            DPRINTF(Ethernet, "Cleared ICR. ICR=%#x\n", regs.icr());
219        }
220        if (regs.ctrl_ext.iame() && regs.icr.int_assert())
221            regs.imr &= ~regs.iam;
222        chkInterrupt();
223        break;
224      case REG_EICR:
225        // This is only useful for MSI, but the driver reads it every time
226        // Just don't do anything
227        pkt->set<uint32_t>(0);
228        break;
229      case REG_ITR:
230        pkt->set<uint32_t>(regs.itr());
231        break;
232      case REG_RCTL:
233        pkt->set<uint32_t>(regs.rctl());
234        break;
235      case REG_FCTTV:
236        pkt->set<uint32_t>(regs.fcttv());
237        break;
238      case REG_TCTL:
239        pkt->set<uint32_t>(regs.tctl());
240        break;
241      case REG_PBA:
242        pkt->set<uint32_t>(regs.pba());
243        break;
244      case REG_WUC:
245      case REG_LEDCTL:
246        pkt->set<uint32_t>(0); // We don't care, so just return 0
247        break;
248      case REG_FCRTL:
249        pkt->set<uint32_t>(regs.fcrtl());
250        break;
251      case REG_FCRTH:
252        pkt->set<uint32_t>(regs.fcrth());
253        break;
254      case REG_RDBAL:
255        pkt->set<uint32_t>(regs.rdba.rdbal());
256        break;
257      case REG_RDBAH:
258        pkt->set<uint32_t>(regs.rdba.rdbah());
259        break;
260      case REG_RDLEN:
261        pkt->set<uint32_t>(regs.rdlen());
262        break;
263      case REG_SRRCTL:
264        pkt->set<uint32_t>(regs.srrctl());
265        break;
266      case REG_RDH:
267        pkt->set<uint32_t>(regs.rdh());
268        break;
269      case REG_RDT:
270        pkt->set<uint32_t>(regs.rdt());
271        break;
272      case REG_RDTR:
273        pkt->set<uint32_t>(regs.rdtr());
274        if (regs.rdtr.fpd()) {
275            rxDescCache.writeback(0);
276            DPRINTF(EthernetIntr,
277                    "Posting interrupt because of RDTR.FPD write\n");
278            postInterrupt(IT_RXT);
279            regs.rdtr.fpd(0);
280        }
281        break;
282      case REG_RXDCTL:
283        pkt->set<uint32_t>(regs.rxdctl());
284        break;
285      case REG_RADV:
286        pkt->set<uint32_t>(regs.radv());
287        break;
288      case REG_TDBAL:
289        pkt->set<uint32_t>(regs.tdba.tdbal());
290        break;
291      case REG_TDBAH:
292        pkt->set<uint32_t>(regs.tdba.tdbah());
293        break;
294      case REG_TDLEN:
295        pkt->set<uint32_t>(regs.tdlen());
296        break;
297      case REG_TDH:
298        pkt->set<uint32_t>(regs.tdh());
299        break;
300      case REG_TXDCA_CTL:
301        pkt->set<uint32_t>(regs.txdca_ctl());
302        break;
303      case REG_TDT:
304        pkt->set<uint32_t>(regs.tdt());
305        break;
306      case REG_TIDV:
307        pkt->set<uint32_t>(regs.tidv());
308        break;
309      case REG_TXDCTL:
310        pkt->set<uint32_t>(regs.txdctl());
311        break;
312      case REG_TADV:
313        pkt->set<uint32_t>(regs.tadv());
314        break;
315      case REG_TDWBAL:
316        pkt->set<uint32_t>(regs.tdwba & mask(32));
317        break;
318      case REG_TDWBAH:
319        pkt->set<uint32_t>(regs.tdwba >> 32);
320        break;
321      case REG_RXCSUM:
322        pkt->set<uint32_t>(regs.rxcsum());
323        break;
324      case REG_RLPML:
325        pkt->set<uint32_t>(regs.rlpml);
326        break;
327      case REG_RFCTL:
328        pkt->set<uint32_t>(regs.rfctl());
329        break;
330      case REG_MANC:
331        pkt->set<uint32_t>(regs.manc());
332        break;
333      case REG_SWSM:
334        pkt->set<uint32_t>(regs.swsm());
335        regs.swsm.smbi(1);
336        break;
337      case REG_FWSM:
338        pkt->set<uint32_t>(regs.fwsm());
339        break;
340      case REG_SWFWSYNC:
341        pkt->set<uint32_t>(regs.sw_fw_sync);
342        break;
343      default:
344        if (!IN_RANGE(daddr, REG_VFTA, VLAN_FILTER_TABLE_SIZE*4) &&
345            !IN_RANGE(daddr, REG_RAL, RCV_ADDRESS_TABLE_SIZE*8) &&
346            !IN_RANGE(daddr, REG_MTA, MULTICAST_TABLE_SIZE*4) &&
347            !IN_RANGE(daddr, REG_CRCERRS, STATS_REGS_SIZE))
348            panic("Read request to unknown register number: %#x\n", daddr);
349        else
350            pkt->set<uint32_t>(0);
351    };
352
353    pkt->makeAtomicResponse();
354    return pioDelay;
355}
356
357Tick
358IGbE::write(PacketPtr pkt)
359{
360    int bar;
361    Addr daddr;
362
363
364    if (!getBAR(pkt->getAddr(), bar, daddr))
365        panic("Invalid PCI memory access to unmapped memory.\n");
366
367    // Only Memory register BAR is allowed
368    assert(bar == 0);
369
370    // Only 32bit accesses allowed
371    assert(pkt->getSize() == sizeof(uint32_t));
372
373    DPRINTF(Ethernet, "Wrote device register %#X value %#X\n",
374            daddr, pkt->get<uint32_t>());
375
376    //
377    // Handle write of register here
378    //
379    uint32_t val = pkt->get<uint32_t>();
380
381    Regs::RCTL oldrctl;
382    Regs::TCTL oldtctl;
383
384    switch (daddr) {
385      case REG_CTRL:
386        regs.ctrl = val;
387        if (regs.ctrl.tfce())
388            warn("TX Flow control enabled, should implement\n");
389        if (regs.ctrl.rfce())
390            warn("RX Flow control enabled, should implement\n");
391        break;
392      case REG_CTRL_EXT:
393        regs.ctrl_ext = val;
394        break;
395      case REG_STATUS:
396        regs.sts = val;
397        break;
398      case REG_EECD:
399        int oldClk;
400        oldClk = regs.eecd.sk();
401        regs.eecd = val;
402        // See if this is a eeprom access and emulate accordingly
403        if (!oldClk && regs.eecd.sk()) {
404            if (eeOpBits < 8) {
405                eeOpcode = eeOpcode << 1 | regs.eecd.din();
406                eeOpBits++;
407            } else if (eeAddrBits < 8 && eeOpcode == EEPROM_READ_OPCODE_SPI) {
408                eeAddr = eeAddr << 1 | regs.eecd.din();
409                eeAddrBits++;
410            } else if (eeDataBits < 16 && eeOpcode == EEPROM_READ_OPCODE_SPI) {
411                assert(eeAddr>>1 < EEPROM_SIZE);
412                DPRINTF(EthernetEEPROM, "EEPROM bit read: %d word: %#X\n",
413                        flash[eeAddr>>1] >> eeDataBits & 0x1,
414                        flash[eeAddr>>1]);
415                regs.eecd.dout((flash[eeAddr>>1] >> (15-eeDataBits)) & 0x1);
416                eeDataBits++;
417            } else if (eeDataBits < 8 && eeOpcode == EEPROM_RDSR_OPCODE_SPI) {
418                regs.eecd.dout(0);
419                eeDataBits++;
420            } else
421                panic("What's going on with eeprom interface? opcode:"
422                      " %#x:%d addr: %#x:%d, data: %d\n", (uint32_t)eeOpcode,
423                      (uint32_t)eeOpBits, (uint32_t)eeAddr,
424                      (uint32_t)eeAddrBits, (uint32_t)eeDataBits);
425
426            // Reset everything for the next command
427            if ((eeDataBits == 16 && eeOpcode == EEPROM_READ_OPCODE_SPI) ||
428                (eeDataBits == 8 && eeOpcode == EEPROM_RDSR_OPCODE_SPI)) {
429                eeOpBits = 0;
430                eeAddrBits = 0;
431                eeDataBits = 0;
432                eeOpcode = 0;
433                eeAddr = 0;
434            }
435
436            DPRINTF(EthernetEEPROM, "EEPROM: opcode: %#X:%d addr: %#X:%d\n",
437                    (uint32_t)eeOpcode, (uint32_t) eeOpBits,
438                    (uint32_t)eeAddr>>1, (uint32_t)eeAddrBits);
439            if (eeOpBits == 8 && !(eeOpcode == EEPROM_READ_OPCODE_SPI ||
440                                   eeOpcode == EEPROM_RDSR_OPCODE_SPI ))
441                panic("Unknown eeprom opcode: %#X:%d\n", (uint32_t)eeOpcode,
442                      (uint32_t)eeOpBits);
443
444
445        }
446        // If driver requests eeprom access, immediately give it to it
447        regs.eecd.ee_gnt(regs.eecd.ee_req());
448        break;
449      case REG_EERD:
450        regs.eerd = val;
451        if (regs.eerd.start()) {
452            regs.eerd.done(1);
453            assert(regs.eerd.addr() < EEPROM_SIZE);
454            regs.eerd.data(flash[regs.eerd.addr()]);
455            regs.eerd.start(0);
456            DPRINTF(EthernetEEPROM, "EEPROM: read addr: %#X data %#x\n",
457                    regs.eerd.addr(), regs.eerd.data());
458        }
459        break;
460      case REG_MDIC:
461        regs.mdic = val;
462        if (regs.mdic.i())
463            panic("No support for interrupt on mdic complete\n");
464        if (regs.mdic.phyadd() != 1)
465            panic("No support for reading anything but phy\n");
466        DPRINTF(Ethernet, "%s phy address %x\n",
467                regs.mdic.op() == 1 ? "Writing" : "Reading",
468                regs.mdic.regadd());
469        switch (regs.mdic.regadd()) {
470          case PHY_PSTATUS:
471            regs.mdic.data(0x796D); // link up
472            break;
473          case PHY_PID:
474            regs.mdic.data(params()->phy_pid);
475            break;
476          case PHY_EPID:
477            regs.mdic.data(params()->phy_epid);
478            break;
479          case PHY_GSTATUS:
480            regs.mdic.data(0x7C00);
481            break;
482          case PHY_EPSTATUS:
483            regs.mdic.data(0x3000);
484            break;
485          case PHY_AGC:
486            regs.mdic.data(0x180); // some random length
487            break;
488          default:
489            regs.mdic.data(0);
490        }
491        regs.mdic.r(1);
492        break;
493      case REG_ICR:
494        DPRINTF(Ethernet, "Writing ICR. ICR=%#x IMR=%#x IAM=%#x IAME=%d\n",
495                regs.icr(), regs.imr, regs.iam, regs.ctrl_ext.iame());
496        if (regs.ctrl_ext.iame())
497            regs.imr &= ~regs.iam;
498        regs.icr = ~bits(val,30,0) & regs.icr();
499        chkInterrupt();
500        break;
501      case REG_ITR:
502        regs.itr = val;
503        break;
504      case REG_ICS:
505        DPRINTF(EthernetIntr, "Posting interrupt because of ICS write\n");
506        postInterrupt((IntTypes)val);
507        break;
508      case REG_IMS:
509        regs.imr |= val;
510        chkInterrupt();
511        break;
512      case REG_IMC:
513        regs.imr &= ~val;
514        chkInterrupt();
515        break;
516      case REG_IAM:
517        regs.iam = val;
518        break;
519      case REG_RCTL:
520        oldrctl = regs.rctl;
521        regs.rctl = val;
522        if (regs.rctl.rst()) {
523            rxDescCache.reset();
524            DPRINTF(EthernetSM, "RXS: Got RESET!\n");
525            rxFifo.clear();
526            regs.rctl.rst(0);
527        }
528        if (regs.rctl.en())
529            rxTick = true;
530        restartClock();
531        break;
532      case REG_FCTTV:
533        regs.fcttv = val;
534        break;
535      case REG_TCTL:
536        regs.tctl = val;
537        oldtctl = regs.tctl;
538        regs.tctl = val;
539        if (regs.tctl.en())
540            txTick = true;
541        restartClock();
542        if (regs.tctl.en() && !oldtctl.en()) {
543            txDescCache.reset();
544        }
545        break;
546      case REG_PBA:
547        regs.pba.rxa(val);
548        regs.pba.txa(64 - regs.pba.rxa());
549        break;
550      case REG_WUC:
551      case REG_LEDCTL:
552      case REG_FCAL:
553      case REG_FCAH:
554      case REG_FCT:
555      case REG_VET:
556      case REG_AIFS:
557      case REG_TIPG:
558        ; // We don't care, so don't store anything
559        break;
560      case REG_IVAR0:
561        warn("Writing to IVAR0, ignoring...\n");
562        break;
563      case REG_FCRTL:
564        regs.fcrtl = val;
565        break;
566      case REG_FCRTH:
567        regs.fcrth = val;
568        break;
569      case REG_RDBAL:
570        regs.rdba.rdbal( val & ~mask(4));
571        rxDescCache.areaChanged();
572        break;
573      case REG_RDBAH:
574        regs.rdba.rdbah(val);
575        rxDescCache.areaChanged();
576        break;
577      case REG_RDLEN:
578        regs.rdlen = val & ~mask(7);
579        rxDescCache.areaChanged();
580        break;
581      case REG_SRRCTL:
582        regs.srrctl = val;
583        break;
584      case REG_RDH:
585        regs.rdh = val;
586        rxDescCache.areaChanged();
587        break;
588      case REG_RDT:
589        regs.rdt = val;
590        DPRINTF(EthernetSM, "RXS: RDT Updated.\n");
591        if (getState() == SimObject::Running) {
592            DPRINTF(EthernetSM, "RXS: RDT Fetching Descriptors!\n");
593            rxDescCache.fetchDescriptors();
594        } else {
595            DPRINTF(EthernetSM, "RXS: RDT NOT Fetching Desc b/c draining!\n");
596        }
597        break;
598      case REG_RDTR:
599        regs.rdtr = val;
600        break;
601      case REG_RADV:
602        regs.radv = val;
603        break;
604      case REG_RXDCTL:
605        regs.rxdctl = val;
606        break;
607      case REG_TDBAL:
608        regs.tdba.tdbal( val & ~mask(4));
609        txDescCache.areaChanged();
610        break;
611      case REG_TDBAH:
612        regs.tdba.tdbah(val);
613        txDescCache.areaChanged();
614        break;
615      case REG_TDLEN:
616        regs.tdlen = val & ~mask(7);
617        txDescCache.areaChanged();
618        break;
619      case REG_TDH:
620        regs.tdh = val;
621        txDescCache.areaChanged();
622        break;
623      case REG_TXDCA_CTL:
624        regs.txdca_ctl = val;
625        if (regs.txdca_ctl.enabled())
626            panic("No support for DCA\n");
627        break;
628      case REG_TDT:
629        regs.tdt = val;
630        DPRINTF(EthernetSM, "TXS: TX Tail pointer updated\n");
631        if (getState() == SimObject::Running) {
632            DPRINTF(EthernetSM, "TXS: TDT Fetching Descriptors!\n");
633            txDescCache.fetchDescriptors();
634        } else {
635            DPRINTF(EthernetSM, "TXS: TDT NOT Fetching Desc b/c draining!\n");
636        }
637        break;
638      case REG_TIDV:
639        regs.tidv = val;
640        break;
641      case REG_TXDCTL:
642        regs.txdctl = val;
643        break;
644      case REG_TADV:
645        regs.tadv = val;
646        break;
647      case REG_TDWBAL:
648        regs.tdwba &= ~mask(32);
649        regs.tdwba |= val;
650        txDescCache.completionWriteback(regs.tdwba & ~mask(1),
651                                        regs.tdwba & mask(1));
652        break;
653      case REG_TDWBAH:
654        regs.tdwba &= mask(32);
655        regs.tdwba |= (uint64_t)val << 32;
656        txDescCache.completionWriteback(regs.tdwba & ~mask(1),
657                                        regs.tdwba & mask(1));
658        break;
659      case REG_RXCSUM:
660        regs.rxcsum = val;
661        break;
662      case REG_RLPML:
663        regs.rlpml = val;
664        break;
665      case REG_RFCTL:
666        regs.rfctl = val;
667        if (regs.rfctl.exsten())
668            panic("Extended RX descriptors not implemented\n");
669        break;
670      case REG_MANC:
671        regs.manc = val;
672        break;
673      case REG_SWSM:
674        regs.swsm = val;
675        if (regs.fwsm.eep_fw_semaphore())
676            regs.swsm.swesmbi(0);
677        break;
678      case REG_SWFWSYNC:
679        regs.sw_fw_sync = val;
680        break;
681      default:
682        if (!IN_RANGE(daddr, REG_VFTA, VLAN_FILTER_TABLE_SIZE*4) &&
683            !IN_RANGE(daddr, REG_RAL, RCV_ADDRESS_TABLE_SIZE*8) &&
684            !IN_RANGE(daddr, REG_MTA, MULTICAST_TABLE_SIZE*4))
685            panic("Write request to unknown register number: %#x\n", daddr);
686    };
687
688    pkt->makeAtomicResponse();
689    return pioDelay;
690}
691
692void
693IGbE::postInterrupt(IntTypes t, bool now)
694{
695    assert(t);
696
697    // Interrupt is already pending
698    if (t & regs.icr() && !now)
699        return;
700
701    regs.icr = regs.icr() | t;
702
703    Tick itr_interval = SimClock::Int::ns * 256 * regs.itr.interval();
704    DPRINTF(EthernetIntr,
705            "EINT: postInterrupt() curTick(): %d itr: %d interval: %d\n",
706            curTick(), regs.itr.interval(), itr_interval);
707
708    if (regs.itr.interval() == 0 || now ||
709        lastInterrupt + itr_interval <= curTick()) {
710        if (interEvent.scheduled()) {
711            deschedule(interEvent);
712        }
713        cpuPostInt();
714    } else {
715        Tick int_time = lastInterrupt + itr_interval;
716        assert(int_time > 0);
717        DPRINTF(EthernetIntr, "EINT: Scheduling timer interrupt for tick %d\n",
718                int_time);
719        if (!interEvent.scheduled()) {
720            schedule(interEvent, int_time);
721        }
722    }
723}
724
725void
726IGbE::delayIntEvent()
727{
728    cpuPostInt();
729}
730
731
732void
733IGbE::cpuPostInt()
734{
735
736    postedInterrupts++;
737
738    if (!(regs.icr() & regs.imr)) {
739        DPRINTF(Ethernet, "Interrupt Masked. Not Posting\n");
740        return;
741    }
742
743    DPRINTF(Ethernet, "Posting Interrupt\n");
744
745
746    if (interEvent.scheduled()) {
747        deschedule(interEvent);
748    }
749
750    if (rdtrEvent.scheduled()) {
751        regs.icr.rxt0(1);
752        deschedule(rdtrEvent);
753    }
754    if (radvEvent.scheduled()) {
755        regs.icr.rxt0(1);
756        deschedule(radvEvent);
757    }
758    if (tadvEvent.scheduled()) {
759        regs.icr.txdw(1);
760        deschedule(tadvEvent);
761    }
762    if (tidvEvent.scheduled()) {
763        regs.icr.txdw(1);
764        deschedule(tidvEvent);
765    }
766
767    regs.icr.int_assert(1);
768    DPRINTF(EthernetIntr, "EINT: Posting interrupt to CPU now. Vector %#x\n",
769            regs.icr());
770
771    intrPost();
772
773    lastInterrupt = curTick();
774}
775
776void
777IGbE::cpuClearInt()
778{
779    if (regs.icr.int_assert()) {
780        regs.icr.int_assert(0);
781        DPRINTF(EthernetIntr,
782                "EINT: Clearing interrupt to CPU now. Vector %#x\n",
783                regs.icr());
784        intrClear();
785    }
786}
787
788void
789IGbE::chkInterrupt()
790{
791    DPRINTF(Ethernet, "Checking interrupts icr: %#x imr: %#x\n", regs.icr(),
792            regs.imr);
793    // Check if we need to clear the cpu interrupt
794    if (!(regs.icr() & regs.imr)) {
795        DPRINTF(Ethernet, "Mask cleaned all interrupts\n");
796        if (interEvent.scheduled())
797            deschedule(interEvent);
798        if (regs.icr.int_assert())
799            cpuClearInt();
800    }
801    DPRINTF(Ethernet, "ITR = %#X itr.interval = %#X\n",
802            regs.itr(), regs.itr.interval());
803
804    if (regs.icr() & regs.imr) {
805        if (regs.itr.interval() == 0)  {
806            cpuPostInt();
807        } else {
808            DPRINTF(Ethernet,
809                    "Possibly scheduling interrupt because of imr write\n");
810            if (!interEvent.scheduled()) {
811                Tick t = curTick() + SimClock::Int::ns * 256 * regs.itr.interval();
812                DPRINTF(Ethernet, "Scheduling for %d\n", t);
813                schedule(interEvent, t);
814            }
815        }
816    }
817}
818
819
820///////////////////////////// IGbE::DescCache //////////////////////////////
821
822template<class T>
823IGbE::DescCache<T>::DescCache(IGbE *i, const std::string n, int s)
824    : igbe(i), _name(n), cachePnt(0), size(s), curFetching(0),
825      wbOut(0), pktPtr(NULL), wbDelayEvent(this),
826      fetchDelayEvent(this), fetchEvent(this), wbEvent(this)
827{
828    fetchBuf = new T[size];
829    wbBuf = new T[size];
830}
831
832template<class T>
833IGbE::DescCache<T>::~DescCache()
834{
835    reset();
836    delete[] fetchBuf;
837    delete[] wbBuf;
838}
839
840template<class T>
841void
842IGbE::DescCache<T>::areaChanged()
843{
844    if (usedCache.size() > 0 || curFetching || wbOut)
845        panic("Descriptor Address, Length or Head changed. Bad\n");
846    reset();
847
848}
849
850template<class T>
851void
852IGbE::DescCache<T>::writeback(Addr aMask)
853{
854    int curHead = descHead();
855    int max_to_wb = usedCache.size();
856
857    // Check if this writeback is less restrictive that the previous
858    // and if so setup another one immediately following it
859    if (wbOut) {
860        if (aMask < wbAlignment) {
861            moreToWb = true;
862            wbAlignment = aMask;
863        }
864        DPRINTF(EthernetDesc,
865                "Writing back already in process, returning\n");
866        return;
867    }
868
869    moreToWb = false;
870    wbAlignment = aMask;
871
872
873    DPRINTF(EthernetDesc, "Writing back descriptors head: %d tail: "
874            "%d len: %d cachePnt: %d max_to_wb: %d descleft: %d\n",
875            curHead, descTail(), descLen(), cachePnt, max_to_wb,
876            descLeft());
877
878    if (max_to_wb + curHead >= descLen()) {
879        max_to_wb = descLen() - curHead;
880        moreToWb = true;
881        // this is by definition aligned correctly
882    } else if (wbAlignment != 0) {
883        // align the wb point to the mask
884        max_to_wb = max_to_wb & ~wbAlignment;
885    }
886
887    DPRINTF(EthernetDesc, "Writing back %d descriptors\n", max_to_wb);
888
889    if (max_to_wb <= 0) {
890        if (usedCache.size())
891            igbe->anBegin(annSmWb, "Wait Alignment", CPA::FL_WAIT);
892        else
893            igbe->anWe(annSmWb, annUsedCacheQ);
894        return;
895    }
896
897    wbOut = max_to_wb;
898
899    assert(!wbDelayEvent.scheduled());
900    igbe->schedule(wbDelayEvent, curTick() + igbe->wbDelay);
901    igbe->anBegin(annSmWb, "Prepare Writeback Desc");
902}
903
904template<class T>
905void
906IGbE::DescCache<T>::writeback1()
907{
908    // If we're draining delay issuing this DMA
909    if (igbe->getState() != SimObject::Running) {
910        igbe->schedule(wbDelayEvent, curTick() + igbe->wbDelay);
911        return;
912    }
913
914    DPRINTF(EthernetDesc, "Begining DMA of %d descriptors\n", wbOut);
915
916    for (int x = 0; x < wbOut; x++) {
917        assert(usedCache.size());
918        memcpy(&wbBuf[x], usedCache[x], sizeof(T));
919        igbe->anPq(annSmWb, annUsedCacheQ);
920        igbe->anPq(annSmWb, annDescQ);
921        igbe->anQ(annSmWb, annUsedDescQ);
922    }
923
924
925    igbe->anBegin(annSmWb, "Writeback Desc DMA");
926
927    assert(wbOut);
928    igbe->dmaWrite(pciToDma(descBase() + descHead() * sizeof(T)),
929                   wbOut * sizeof(T), &wbEvent, (uint8_t*)wbBuf,
930                   igbe->wbCompDelay);
931}
932
933template<class T>
934void
935IGbE::DescCache<T>::fetchDescriptors()
936{
937    size_t max_to_fetch;
938
939    if (curFetching) {
940        DPRINTF(EthernetDesc,
941                "Currently fetching %d descriptors, returning\n",
942                curFetching);
943        return;
944    }
945
946    if (descTail() >= cachePnt)
947        max_to_fetch = descTail() - cachePnt;
948    else
949        max_to_fetch = descLen() - cachePnt;
950
951    size_t free_cache = size - usedCache.size() - unusedCache.size();
952
953    if (!max_to_fetch)
954        igbe->anWe(annSmFetch, annUnusedDescQ);
955    else
956        igbe->anPq(annSmFetch, annUnusedDescQ, max_to_fetch);
957
958    if (max_to_fetch) {
959        if (!free_cache)
960            igbe->anWf(annSmFetch, annDescQ);
961        else
962            igbe->anRq(annSmFetch, annDescQ, free_cache);
963    }
964
965    max_to_fetch = std::min(max_to_fetch, free_cache);
966
967
968    DPRINTF(EthernetDesc, "Fetching descriptors head: %d tail: "
969            "%d len: %d cachePnt: %d max_to_fetch: %d descleft: %d\n",
970            descHead(), descTail(), descLen(), cachePnt,
971            max_to_fetch, descLeft());
972
973    // Nothing to do
974    if (max_to_fetch == 0)
975        return;
976
977    // So we don't have two descriptor fetches going on at once
978    curFetching = max_to_fetch;
979
980    assert(!fetchDelayEvent.scheduled());
981    igbe->schedule(fetchDelayEvent, curTick() + igbe->fetchDelay);
982    igbe->anBegin(annSmFetch, "Prepare Fetch Desc");
983}
984
985template<class T>
986void
987IGbE::DescCache<T>::fetchDescriptors1()
988{
989    // If we're draining delay issuing this DMA
990    if (igbe->getState() != SimObject::Running) {
991        igbe->schedule(fetchDelayEvent, curTick() + igbe->fetchDelay);
992        return;
993    }
994
995    igbe->anBegin(annSmFetch, "Fetch Desc");
996
997    DPRINTF(EthernetDesc, "Fetching descriptors at %#x (%#x), size: %#x\n",
998            descBase() + cachePnt * sizeof(T),
999            pciToDma(descBase() + cachePnt * sizeof(T)),
1000            curFetching * sizeof(T));
1001    assert(curFetching);
1002    igbe->dmaRead(pciToDma(descBase() + cachePnt * sizeof(T)),
1003                  curFetching * sizeof(T), &fetchEvent, (uint8_t*)fetchBuf,
1004                  igbe->fetchCompDelay);
1005}
1006
1007template<class T>
1008void
1009IGbE::DescCache<T>::fetchComplete()
1010{
1011    T *newDesc;
1012    igbe->anBegin(annSmFetch, "Fetch Complete");
1013    for (int x = 0; x < curFetching; x++) {
1014        newDesc = new T;
1015        memcpy(newDesc, &fetchBuf[x], sizeof(T));
1016        unusedCache.push_back(newDesc);
1017        igbe->anDq(annSmFetch, annUnusedDescQ);
1018        igbe->anQ(annSmFetch, annUnusedCacheQ);
1019        igbe->anQ(annSmFetch, annDescQ);
1020    }
1021
1022
1023#ifndef NDEBUG
1024    int oldCp = cachePnt;
1025#endif
1026
1027    cachePnt += curFetching;
1028    assert(cachePnt <= descLen());
1029    if (cachePnt == descLen())
1030        cachePnt = 0;
1031
1032    curFetching = 0;
1033
1034    DPRINTF(EthernetDesc, "Fetching complete cachePnt %d -> %d\n",
1035            oldCp, cachePnt);
1036
1037    if ((descTail() >= cachePnt ? (descTail() - cachePnt) : (descLen() -
1038                                                             cachePnt)) == 0)
1039    {
1040        igbe->anWe(annSmFetch, annUnusedDescQ);
1041    } else if (!(size - usedCache.size() - unusedCache.size())) {
1042        igbe->anWf(annSmFetch, annDescQ);
1043    } else {
1044        igbe->anBegin(annSmFetch, "Wait", CPA::FL_WAIT);
1045    }
1046
1047    enableSm();
1048    igbe->checkDrain();
1049}
1050
1051template<class T>
1052void
1053IGbE::DescCache<T>::wbComplete()
1054{
1055
1056    igbe->anBegin(annSmWb, "Finish Writeback");
1057
1058    long  curHead = descHead();
1059#ifndef NDEBUG
1060    long oldHead = curHead;
1061#endif
1062
1063    for (int x = 0; x < wbOut; x++) {
1064        assert(usedCache.size());
1065        delete usedCache[0];
1066        usedCache.pop_front();
1067
1068        igbe->anDq(annSmWb, annUsedCacheQ);
1069        igbe->anDq(annSmWb, annDescQ);
1070    }
1071
1072    curHead += wbOut;
1073    wbOut = 0;
1074
1075    if (curHead >= descLen())
1076        curHead -= descLen();
1077
1078    // Update the head
1079    updateHead(curHead);
1080
1081    DPRINTF(EthernetDesc, "Writeback complete curHead %d -> %d\n",
1082            oldHead, curHead);
1083
1084    // If we still have more to wb, call wb now
1085    actionAfterWb();
1086    if (moreToWb) {
1087        moreToWb = false;
1088        DPRINTF(EthernetDesc, "Writeback has more todo\n");
1089        writeback(wbAlignment);
1090    }
1091
1092    if (!wbOut) {
1093        igbe->checkDrain();
1094        if (usedCache.size())
1095            igbe->anBegin(annSmWb, "Wait", CPA::FL_WAIT);
1096        else
1097            igbe->anWe(annSmWb, annUsedCacheQ);
1098    }
1099    fetchAfterWb();
1100}
1101
1102template<class T>
1103void
1104IGbE::DescCache<T>::reset()
1105{
1106    DPRINTF(EthernetDesc, "Reseting descriptor cache\n");
1107    for (typename CacheType::size_type x = 0; x < usedCache.size(); x++)
1108        delete usedCache[x];
1109    for (typename CacheType::size_type x = 0; x < unusedCache.size(); x++)
1110        delete unusedCache[x];
1111
1112    usedCache.clear();
1113    unusedCache.clear();
1114
1115    cachePnt = 0;
1116
1117}
1118
1119template<class T>
1120void
1121IGbE::DescCache<T>::serialize(std::ostream &os)
1122{
1123    SERIALIZE_SCALAR(cachePnt);
1124    SERIALIZE_SCALAR(curFetching);
1125    SERIALIZE_SCALAR(wbOut);
1126    SERIALIZE_SCALAR(moreToWb);
1127    SERIALIZE_SCALAR(wbAlignment);
1128
1129    typename CacheType::size_type usedCacheSize = usedCache.size();
1130    SERIALIZE_SCALAR(usedCacheSize);
1131    for (typename CacheType::size_type x = 0; x < usedCacheSize; x++) {
1132        arrayParamOut(os, csprintf("usedCache_%d", x),
1133                      (uint8_t*)usedCache[x],sizeof(T));
1134    }
1135
1136    typename CacheType::size_type unusedCacheSize = unusedCache.size();
1137    SERIALIZE_SCALAR(unusedCacheSize);
1138    for (typename CacheType::size_type x = 0; x < unusedCacheSize; x++) {
1139        arrayParamOut(os, csprintf("unusedCache_%d", x),
1140                      (uint8_t*)unusedCache[x],sizeof(T));
1141    }
1142
1143    Tick fetch_delay = 0, wb_delay = 0;
1144    if (fetchDelayEvent.scheduled())
1145        fetch_delay = fetchDelayEvent.when();
1146    SERIALIZE_SCALAR(fetch_delay);
1147    if (wbDelayEvent.scheduled())
1148        wb_delay = wbDelayEvent.when();
1149    SERIALIZE_SCALAR(wb_delay);
1150
1151
1152}
1153
1154template<class T>
1155void
1156IGbE::DescCache<T>::unserialize(Checkpoint *cp, const std::string &section)
1157{
1158    UNSERIALIZE_SCALAR(cachePnt);
1159    UNSERIALIZE_SCALAR(curFetching);
1160    UNSERIALIZE_SCALAR(wbOut);
1161    UNSERIALIZE_SCALAR(moreToWb);
1162    UNSERIALIZE_SCALAR(wbAlignment);
1163
1164    typename CacheType::size_type usedCacheSize;
1165    UNSERIALIZE_SCALAR(usedCacheSize);
1166    T *temp;
1167    for (typename CacheType::size_type x = 0; x < usedCacheSize; x++) {
1168        temp = new T;
1169        arrayParamIn(cp, section, csprintf("usedCache_%d", x),
1170                     (uint8_t*)temp,sizeof(T));
1171        usedCache.push_back(temp);
1172    }
1173
1174    typename CacheType::size_type unusedCacheSize;
1175    UNSERIALIZE_SCALAR(unusedCacheSize);
1176    for (typename CacheType::size_type x = 0; x < unusedCacheSize; x++) {
1177        temp = new T;
1178        arrayParamIn(cp, section, csprintf("unusedCache_%d", x),
1179                     (uint8_t*)temp,sizeof(T));
1180        unusedCache.push_back(temp);
1181    }
1182    Tick fetch_delay = 0, wb_delay = 0;
1183    UNSERIALIZE_SCALAR(fetch_delay);
1184    UNSERIALIZE_SCALAR(wb_delay);
1185    if (fetch_delay)
1186        igbe->schedule(fetchDelayEvent, fetch_delay);
1187    if (wb_delay)
1188        igbe->schedule(wbDelayEvent, wb_delay);
1189
1190
1191}
1192
1193///////////////////////////// IGbE::RxDescCache //////////////////////////////
1194
1195IGbE::RxDescCache::RxDescCache(IGbE *i, const std::string n, int s)
1196    : DescCache<RxDesc>(i, n, s), pktDone(false), splitCount(0),
1197      pktEvent(this), pktHdrEvent(this), pktDataEvent(this)
1198
1199{
1200    annSmFetch = "RX Desc Fetch";
1201    annSmWb = "RX Desc Writeback";
1202    annUnusedDescQ = "RX Unused Descriptors";
1203    annUnusedCacheQ = "RX Unused Descriptor Cache";
1204    annUsedCacheQ = "RX Used Descriptor Cache";
1205    annUsedDescQ = "RX Used Descriptors";
1206    annDescQ = "RX Descriptors";
1207}
1208
1209void
1210IGbE::RxDescCache::pktSplitDone()
1211{
1212    splitCount++;
1213    DPRINTF(EthernetDesc,
1214            "Part of split packet done: splitcount now %d\n", splitCount);
1215    assert(splitCount <= 2);
1216    if (splitCount != 2)
1217        return;
1218    splitCount = 0;
1219    DPRINTF(EthernetDesc,
1220            "Part of split packet done: calling pktComplete()\n");
1221    pktComplete();
1222}
1223
1224int
1225IGbE::RxDescCache::writePacket(EthPacketPtr packet, int pkt_offset)
1226{
1227    assert(unusedCache.size());
1228    //if (!unusedCache.size())
1229    //    return false;
1230
1231    pktPtr = packet;
1232    pktDone = false;
1233    unsigned buf_len, hdr_len;
1234
1235    RxDesc *desc = unusedCache.front();
1236    switch (igbe->regs.srrctl.desctype()) {
1237      case RXDT_LEGACY:
1238        assert(pkt_offset == 0);
1239        bytesCopied = packet->length;
1240        DPRINTF(EthernetDesc, "Packet Length: %d Desc Size: %d\n",
1241                packet->length, igbe->regs.rctl.descSize());
1242        assert(packet->length < igbe->regs.rctl.descSize());
1243        igbe->dmaWrite(pciToDma(desc->legacy.buf),
1244                       packet->length, &pktEvent, packet->data,
1245                       igbe->rxWriteDelay);
1246        break;
1247      case RXDT_ADV_ONEBUF:
1248        assert(pkt_offset == 0);
1249        bytesCopied = packet->length;
1250        buf_len = igbe->regs.rctl.lpe() ? igbe->regs.srrctl.bufLen() :
1251            igbe->regs.rctl.descSize();
1252        DPRINTF(EthernetDesc, "Packet Length: %d srrctl: %#x Desc Size: %d\n",
1253                packet->length, igbe->regs.srrctl(), buf_len);
1254        assert(packet->length < buf_len);
1255        igbe->dmaWrite(pciToDma(desc->adv_read.pkt),
1256                       packet->length, &pktEvent, packet->data,
1257                       igbe->rxWriteDelay);
1258        desc->adv_wb.header_len = htole(0);
1259        desc->adv_wb.sph = htole(0);
1260        desc->adv_wb.pkt_len = htole((uint16_t)(pktPtr->length));
1261        break;
1262      case RXDT_ADV_SPLIT_A:
1263        int split_point;
1264
1265        buf_len = igbe->regs.rctl.lpe() ? igbe->regs.srrctl.bufLen() :
1266            igbe->regs.rctl.descSize();
1267        hdr_len = igbe->regs.rctl.lpe() ? igbe->regs.srrctl.hdrLen() : 0;
1268        DPRINTF(EthernetDesc,
1269                "lpe: %d Packet Length: %d offset: %d srrctl: %#x "
1270                "hdr addr: %#x Hdr Size: %d desc addr: %#x Desc Size: %d\n",
1271                igbe->regs.rctl.lpe(), packet->length, pkt_offset,
1272                igbe->regs.srrctl(), desc->adv_read.hdr, hdr_len,
1273                desc->adv_read.pkt, buf_len);
1274
1275        split_point = hsplit(pktPtr);
1276
1277        if (packet->length <= hdr_len) {
1278            bytesCopied = packet->length;
1279            assert(pkt_offset == 0);
1280            DPRINTF(EthernetDesc, "Hdr split: Entire packet in header\n");
1281            igbe->dmaWrite(pciToDma(desc->adv_read.hdr),
1282                           packet->length, &pktEvent, packet->data,
1283                           igbe->rxWriteDelay);
1284            desc->adv_wb.header_len = htole((uint16_t)packet->length);
1285            desc->adv_wb.sph = htole(0);
1286            desc->adv_wb.pkt_len = htole(0);
1287        } else if (split_point) {
1288            if (pkt_offset) {
1289                // we are only copying some data, header/data has already been
1290                // copied
1291                int max_to_copy =
1292                    std::min(packet->length - pkt_offset, buf_len);
1293                bytesCopied += max_to_copy;
1294                DPRINTF(EthernetDesc,
1295                        "Hdr split: Continuing data buffer copy\n");
1296                igbe->dmaWrite(pciToDma(desc->adv_read.pkt),
1297                               max_to_copy, &pktEvent,
1298                               packet->data + pkt_offset, igbe->rxWriteDelay);
1299                desc->adv_wb.header_len = htole(0);
1300                desc->adv_wb.pkt_len = htole((uint16_t)max_to_copy);
1301                desc->adv_wb.sph = htole(0);
1302            } else {
1303                int max_to_copy =
1304                    std::min(packet->length - split_point, buf_len);
1305                bytesCopied += max_to_copy + split_point;
1306
1307                DPRINTF(EthernetDesc, "Hdr split: splitting at %d\n",
1308                        split_point);
1309                igbe->dmaWrite(pciToDma(desc->adv_read.hdr),
1310                               split_point, &pktHdrEvent,
1311                               packet->data, igbe->rxWriteDelay);
1312                igbe->dmaWrite(pciToDma(desc->adv_read.pkt),
1313                               max_to_copy, &pktDataEvent,
1314                               packet->data + split_point, igbe->rxWriteDelay);
1315                desc->adv_wb.header_len = htole(split_point);
1316                desc->adv_wb.sph = 1;
1317                desc->adv_wb.pkt_len = htole((uint16_t)(max_to_copy));
1318            }
1319        } else {
1320            panic("Header split not fitting within header buffer or "
1321                  "undecodable packet not fitting in header unsupported\n");
1322        }
1323        break;
1324      default:
1325        panic("Unimplemnted RX receive buffer type: %d\n",
1326              igbe->regs.srrctl.desctype());
1327    }
1328    return bytesCopied;
1329
1330}
1331
1332void
1333IGbE::RxDescCache::pktComplete()
1334{
1335    assert(unusedCache.size());
1336    RxDesc *desc;
1337    desc = unusedCache.front();
1338
1339    igbe->anBegin("RXS", "Update Desc");
1340
1341    uint16_t crcfixup = igbe->regs.rctl.secrc() ? 0 : 4 ;
1342    DPRINTF(EthernetDesc, "pktPtr->length: %d bytesCopied: %d "
1343            "stripcrc offset: %d value written: %d %d\n",
1344            pktPtr->length, bytesCopied, crcfixup,
1345            htole((uint16_t)(pktPtr->length + crcfixup)),
1346            (uint16_t)(pktPtr->length + crcfixup));
1347
1348    // no support for anything but starting at 0
1349    assert(igbe->regs.rxcsum.pcss() == 0);
1350
1351    DPRINTF(EthernetDesc, "Packet written to memory updating Descriptor\n");
1352
1353    uint16_t status = RXDS_DD;
1354    uint8_t err = 0;
1355    uint16_t ext_err = 0;
1356    uint16_t csum = 0;
1357    uint16_t ptype = 0;
1358    uint16_t ip_id = 0;
1359
1360    assert(bytesCopied <= pktPtr->length);
1361    if (bytesCopied == pktPtr->length)
1362        status |= RXDS_EOP;
1363
1364    IpPtr ip(pktPtr);
1365
1366    if (ip) {
1367        DPRINTF(EthernetDesc, "Proccesing Ip packet with Id=%d\n", ip->id());
1368        ptype |= RXDP_IPV4;
1369        ip_id = ip->id();
1370
1371        if (igbe->regs.rxcsum.ipofld()) {
1372            DPRINTF(EthernetDesc, "Checking IP checksum\n");
1373            status |= RXDS_IPCS;
1374            csum = htole(cksum(ip));
1375            igbe->rxIpChecksums++;
1376            if (cksum(ip) != 0) {
1377                err |= RXDE_IPE;
1378                ext_err |= RXDEE_IPE;
1379                DPRINTF(EthernetDesc, "Checksum is bad!!\n");
1380            }
1381        }
1382        TcpPtr tcp(ip);
1383        if (tcp && igbe->regs.rxcsum.tuofld()) {
1384            DPRINTF(EthernetDesc, "Checking TCP checksum\n");
1385            status |= RXDS_TCPCS;
1386            ptype |= RXDP_TCP;
1387            csum = htole(cksum(tcp));
1388            igbe->rxTcpChecksums++;
1389            if (cksum(tcp) != 0) {
1390                DPRINTF(EthernetDesc, "Checksum is bad!!\n");
1391                err |= RXDE_TCPE;
1392                ext_err |= RXDEE_TCPE;
1393            }
1394        }
1395
1396        UdpPtr udp(ip);
1397        if (udp && igbe->regs.rxcsum.tuofld()) {
1398            DPRINTF(EthernetDesc, "Checking UDP checksum\n");
1399            status |= RXDS_UDPCS;
1400            ptype |= RXDP_UDP;
1401            csum = htole(cksum(udp));
1402            igbe->rxUdpChecksums++;
1403            if (cksum(udp) != 0) {
1404                DPRINTF(EthernetDesc, "Checksum is bad!!\n");
1405                ext_err |= RXDEE_TCPE;
1406                err |= RXDE_TCPE;
1407            }
1408        }
1409    } else { // if ip
1410        DPRINTF(EthernetSM, "Proccesing Non-Ip packet\n");
1411    }
1412
1413    switch (igbe->regs.srrctl.desctype()) {
1414      case RXDT_LEGACY:
1415        desc->legacy.len = htole((uint16_t)(pktPtr->length + crcfixup));
1416        desc->legacy.status = htole(status);
1417        desc->legacy.errors = htole(err);
1418        // No vlan support at this point... just set it to 0
1419        desc->legacy.vlan = 0;
1420        break;
1421      case RXDT_ADV_SPLIT_A:
1422      case RXDT_ADV_ONEBUF:
1423        desc->adv_wb.rss_type = htole(0);
1424        desc->adv_wb.pkt_type = htole(ptype);
1425        if (igbe->regs.rxcsum.pcsd()) {
1426            // no rss support right now
1427            desc->adv_wb.rss_hash = htole(0);
1428        } else {
1429            desc->adv_wb.id = htole(ip_id);
1430            desc->adv_wb.csum = htole(csum);
1431        }
1432        desc->adv_wb.status = htole(status);
1433        desc->adv_wb.errors = htole(ext_err);
1434        // no vlan support
1435        desc->adv_wb.vlan_tag = htole(0);
1436        break;
1437      default:
1438        panic("Unimplemnted RX receive buffer type %d\n",
1439              igbe->regs.srrctl.desctype());
1440    }
1441
1442    DPRINTF(EthernetDesc, "Descriptor complete w0: %#x w1: %#x\n",
1443            desc->adv_read.pkt, desc->adv_read.hdr);
1444
1445    if (bytesCopied == pktPtr->length) {
1446        DPRINTF(EthernetDesc,
1447                "Packet completely written to descriptor buffers\n");
1448        // Deal with the rx timer interrupts
1449        if (igbe->regs.rdtr.delay()) {
1450            Tick delay = igbe->regs.rdtr.delay() * igbe->intClock();
1451            DPRINTF(EthernetSM, "RXS: Scheduling DTR for %d\n", delay);
1452            igbe->reschedule(igbe->rdtrEvent, curTick() + delay);
1453        }
1454
1455        if (igbe->regs.radv.idv()) {
1456            Tick delay = igbe->regs.radv.idv() * igbe->intClock();
1457            DPRINTF(EthernetSM, "RXS: Scheduling ADV for %d\n", delay);
1458            if (!igbe->radvEvent.scheduled()) {
1459                igbe->schedule(igbe->radvEvent, curTick() + delay);
1460            }
1461        }
1462
1463        // if neither radv or rdtr, maybe itr is set...
1464        if (!igbe->regs.rdtr.delay() && !igbe->regs.radv.idv()) {
1465            DPRINTF(EthernetSM,
1466                    "RXS: Receive interrupt delay disabled, posting IT_RXT\n");
1467            igbe->postInterrupt(IT_RXT);
1468        }
1469
1470        // If the packet is small enough, interrupt appropriately
1471        // I wonder if this is delayed or not?!
1472        if (pktPtr->length <= igbe->regs.rsrpd.idv()) {
1473            DPRINTF(EthernetSM,
1474                    "RXS: Posting IT_SRPD beacuse small packet received\n");
1475            igbe->postInterrupt(IT_SRPD);
1476        }
1477        bytesCopied = 0;
1478    }
1479
1480    pktPtr = NULL;
1481    igbe->checkDrain();
1482    enableSm();
1483    pktDone = true;
1484
1485    igbe->anBegin("RXS", "Done Updating Desc");
1486    DPRINTF(EthernetDesc, "Processing of this descriptor complete\n");
1487    igbe->anDq("RXS", annUnusedCacheQ);
1488    unusedCache.pop_front();
1489    igbe->anQ("RXS", annUsedCacheQ);
1490    usedCache.push_back(desc);
1491}
1492
1493void
1494IGbE::RxDescCache::enableSm()
1495{
1496    if (!igbe->drainEvent) {
1497        igbe->rxTick = true;
1498        igbe->restartClock();
1499    }
1500}
1501
1502bool
1503IGbE::RxDescCache::packetDone()
1504{
1505    if (pktDone) {
1506        pktDone = false;
1507        return true;
1508    }
1509    return false;
1510}
1511
1512bool
1513IGbE::RxDescCache::hasOutstandingEvents()
1514{
1515    return pktEvent.scheduled() || wbEvent.scheduled() ||
1516        fetchEvent.scheduled() || pktHdrEvent.scheduled() ||
1517        pktDataEvent.scheduled();
1518
1519}
1520
1521void
1522IGbE::RxDescCache::serialize(std::ostream &os)
1523{
1524    DescCache<RxDesc>::serialize(os);
1525    SERIALIZE_SCALAR(pktDone);
1526    SERIALIZE_SCALAR(splitCount);
1527    SERIALIZE_SCALAR(bytesCopied);
1528}
1529
1530void
1531IGbE::RxDescCache::unserialize(Checkpoint *cp, const std::string &section)
1532{
1533    DescCache<RxDesc>::unserialize(cp, section);
1534    UNSERIALIZE_SCALAR(pktDone);
1535    UNSERIALIZE_SCALAR(splitCount);
1536    UNSERIALIZE_SCALAR(bytesCopied);
1537}
1538
1539
1540///////////////////////////// IGbE::TxDescCache //////////////////////////////
1541
1542IGbE::TxDescCache::TxDescCache(IGbE *i, const std::string n, int s)
1543    : DescCache<TxDesc>(i,n, s), pktDone(false), isTcp(false),
1544      pktWaiting(false), completionAddress(0), completionEnabled(false),
1545      useTso(false), tsoHeaderLen(0), tsoMss(0), tsoTotalLen(0), tsoUsedLen(0),
1546      tsoPrevSeq(0), tsoPktPayloadBytes(0), tsoLoadedHeader(false),
1547      tsoPktHasHeader(false), tsoDescBytesUsed(0), tsoCopyBytes(0), tsoPkts(0),
1548      pktEvent(this), headerEvent(this), nullEvent(this)
1549{
1550    annSmFetch = "TX Desc Fetch";
1551    annSmWb = "TX Desc Writeback";
1552    annUnusedDescQ = "TX Unused Descriptors";
1553    annUnusedCacheQ = "TX Unused Descriptor Cache";
1554    annUsedCacheQ = "TX Used Descriptor Cache";
1555    annUsedDescQ = "TX Used Descriptors";
1556    annDescQ = "TX Descriptors";
1557}
1558
1559void
1560IGbE::TxDescCache::processContextDesc()
1561{
1562    assert(unusedCache.size());
1563    TxDesc *desc;
1564
1565    DPRINTF(EthernetDesc, "Checking and  processing context descriptors\n");
1566
1567    while (!useTso && unusedCache.size() &&
1568           TxdOp::isContext(unusedCache.front())) {
1569        DPRINTF(EthernetDesc, "Got context descriptor type...\n");
1570
1571        desc = unusedCache.front();
1572        DPRINTF(EthernetDesc, "Descriptor upper: %#x lower: %#X\n",
1573                desc->d1, desc->d2);
1574
1575
1576        // is this going to be a tcp or udp packet?
1577        isTcp = TxdOp::tcp(desc) ? true : false;
1578
1579        // setup all the TSO variables, they'll be ignored if we don't use
1580        // tso for this connection
1581        tsoHeaderLen = TxdOp::hdrlen(desc);
1582        tsoMss  = TxdOp::mss(desc);
1583
1584        if (TxdOp::isType(desc, TxdOp::TXD_CNXT) && TxdOp::tse(desc)) {
1585            DPRINTF(EthernetDesc, "TCP offload enabled for packet hdrlen: "
1586                    "%d mss: %d paylen %d\n", TxdOp::hdrlen(desc),
1587                    TxdOp::mss(desc), TxdOp::getLen(desc));
1588            useTso = true;
1589            tsoTotalLen = TxdOp::getLen(desc);
1590            tsoLoadedHeader = false;
1591            tsoDescBytesUsed = 0;
1592            tsoUsedLen = 0;
1593            tsoPrevSeq = 0;
1594            tsoPktHasHeader = false;
1595            tsoPkts = 0;
1596            tsoCopyBytes = 0;
1597        }
1598
1599        TxdOp::setDd(desc);
1600        unusedCache.pop_front();
1601        igbe->anDq("TXS", annUnusedCacheQ);
1602        usedCache.push_back(desc);
1603        igbe->anQ("TXS", annUsedCacheQ);
1604    }
1605
1606    if (!unusedCache.size())
1607        return;
1608
1609    desc = unusedCache.front();
1610    if (!useTso && TxdOp::isType(desc, TxdOp::TXD_ADVDATA) &&
1611        TxdOp::tse(desc)) {
1612        DPRINTF(EthernetDesc, "TCP offload(adv) enabled for packet "
1613                "hdrlen: %d mss: %d paylen %d\n",
1614                tsoHeaderLen, tsoMss, TxdOp::getTsoLen(desc));
1615        useTso = true;
1616        tsoTotalLen = TxdOp::getTsoLen(desc);
1617        tsoLoadedHeader = false;
1618        tsoDescBytesUsed = 0;
1619        tsoUsedLen = 0;
1620        tsoPrevSeq = 0;
1621        tsoPktHasHeader = false;
1622        tsoPkts = 0;
1623    }
1624
1625    if (useTso && !tsoLoadedHeader) {
1626        // we need to fetch a header
1627        DPRINTF(EthernetDesc, "Starting DMA of TSO header\n");
1628        assert(TxdOp::isData(desc) && TxdOp::getLen(desc) >= tsoHeaderLen);
1629        pktWaiting = true;
1630        assert(tsoHeaderLen <= 256);
1631        igbe->dmaRead(pciToDma(TxdOp::getBuf(desc)),
1632                      tsoHeaderLen, &headerEvent, tsoHeader, 0);
1633    }
1634}
1635
1636void
1637IGbE::TxDescCache::headerComplete()
1638{
1639    DPRINTF(EthernetDesc, "TSO: Fetching TSO header complete\n");
1640    pktWaiting = false;
1641
1642    assert(unusedCache.size());
1643    TxDesc *desc = unusedCache.front();
1644    DPRINTF(EthernetDesc, "TSO: len: %d tsoHeaderLen: %d\n",
1645            TxdOp::getLen(desc), tsoHeaderLen);
1646
1647    if (TxdOp::getLen(desc) == tsoHeaderLen) {
1648        tsoDescBytesUsed = 0;
1649        tsoLoadedHeader = true;
1650        unusedCache.pop_front();
1651        usedCache.push_back(desc);
1652    } else {
1653        DPRINTF(EthernetDesc, "TSO: header part of larger payload\n");
1654        tsoDescBytesUsed = tsoHeaderLen;
1655        tsoLoadedHeader = true;
1656    }
1657    enableSm();
1658    igbe->checkDrain();
1659}
1660
1661unsigned
1662IGbE::TxDescCache::getPacketSize(EthPacketPtr p)
1663{
1664    if (!unusedCache.size())
1665        return 0;
1666
1667    DPRINTF(EthernetDesc, "Starting processing of descriptor\n");
1668
1669    assert(!useTso || tsoLoadedHeader);
1670    TxDesc *desc = unusedCache.front();
1671
1672    if (useTso) {
1673        DPRINTF(EthernetDesc, "getPacket(): TxDescriptor data "
1674                "d1: %#llx d2: %#llx\n", desc->d1, desc->d2);
1675        DPRINTF(EthernetDesc, "TSO: use: %d hdrlen: %d mss: %d total: %d "
1676                "used: %d loaded hdr: %d\n", useTso, tsoHeaderLen, tsoMss,
1677                tsoTotalLen, tsoUsedLen, tsoLoadedHeader);
1678
1679        if (tsoPktHasHeader)
1680            tsoCopyBytes =  std::min((tsoMss + tsoHeaderLen) - p->length,
1681                                     TxdOp::getLen(desc) - tsoDescBytesUsed);
1682        else
1683            tsoCopyBytes =  std::min(tsoMss,
1684                                     TxdOp::getLen(desc) - tsoDescBytesUsed);
1685        unsigned pkt_size =
1686            tsoCopyBytes + (tsoPktHasHeader ? 0 : tsoHeaderLen);
1687
1688        DPRINTF(EthernetDesc, "TSO: descBytesUsed: %d copyBytes: %d "
1689                "this descLen: %d\n",
1690                tsoDescBytesUsed, tsoCopyBytes, TxdOp::getLen(desc));
1691        DPRINTF(EthernetDesc, "TSO: pktHasHeader: %d\n", tsoPktHasHeader);
1692        DPRINTF(EthernetDesc, "TSO: Next packet is %d bytes\n", pkt_size);
1693        return pkt_size;
1694    }
1695
1696    DPRINTF(EthernetDesc, "Next TX packet is %d bytes\n",
1697            TxdOp::getLen(unusedCache.front()));
1698    return TxdOp::getLen(desc);
1699}
1700
1701void
1702IGbE::TxDescCache::getPacketData(EthPacketPtr p)
1703{
1704    assert(unusedCache.size());
1705
1706    TxDesc *desc;
1707    desc = unusedCache.front();
1708
1709    DPRINTF(EthernetDesc, "getPacketData(): TxDescriptor data "
1710            "d1: %#llx d2: %#llx\n", desc->d1, desc->d2);
1711    assert((TxdOp::isLegacy(desc) || TxdOp::isData(desc)) &&
1712           TxdOp::getLen(desc));
1713
1714    pktPtr = p;
1715
1716    pktWaiting = true;
1717
1718    DPRINTF(EthernetDesc, "Starting DMA of packet at offset %d\n", p->length);
1719
1720    if (useTso) {
1721        assert(tsoLoadedHeader);
1722        if (!tsoPktHasHeader) {
1723            DPRINTF(EthernetDesc,
1724                    "Loading TSO header (%d bytes) into start of packet\n",
1725                    tsoHeaderLen);
1726            memcpy(p->data, &tsoHeader,tsoHeaderLen);
1727            p->length +=tsoHeaderLen;
1728            tsoPktHasHeader = true;
1729        }
1730    }
1731
1732    if (useTso) {
1733        DPRINTF(EthernetDesc,
1734                "Starting DMA of packet at offset %d length: %d\n",
1735                p->length, tsoCopyBytes);
1736        igbe->dmaRead(pciToDma(TxdOp::getBuf(desc))
1737                      + tsoDescBytesUsed,
1738                      tsoCopyBytes, &pktEvent, p->data + p->length,
1739                      igbe->txReadDelay);
1740        tsoDescBytesUsed += tsoCopyBytes;
1741        assert(tsoDescBytesUsed <= TxdOp::getLen(desc));
1742    } else {
1743        igbe->dmaRead(pciToDma(TxdOp::getBuf(desc)),
1744                      TxdOp::getLen(desc), &pktEvent, p->data + p->length,
1745                      igbe->txReadDelay);
1746    }
1747}
1748
1749void
1750IGbE::TxDescCache::pktComplete()
1751{
1752
1753    TxDesc *desc;
1754    assert(unusedCache.size());
1755    assert(pktPtr);
1756
1757    igbe->anBegin("TXS", "Update Desc");
1758
1759    DPRINTF(EthernetDesc, "DMA of packet complete\n");
1760
1761
1762    desc = unusedCache.front();
1763    assert((TxdOp::isLegacy(desc) || TxdOp::isData(desc)) &&
1764           TxdOp::getLen(desc));
1765
1766    DPRINTF(EthernetDesc, "TxDescriptor data d1: %#llx d2: %#llx\n",
1767            desc->d1, desc->d2);
1768
1769    // Set the length of the data in the EtherPacket
1770    if (useTso) {
1771        DPRINTF(EthernetDesc, "TSO: use: %d hdrlen: %d mss: %d total: %d "
1772            "used: %d loaded hdr: %d\n", useTso, tsoHeaderLen, tsoMss,
1773            tsoTotalLen, tsoUsedLen, tsoLoadedHeader);
1774        pktPtr->length += tsoCopyBytes;
1775        tsoUsedLen += tsoCopyBytes;
1776        DPRINTF(EthernetDesc, "TSO: descBytesUsed: %d copyBytes: %d\n",
1777            tsoDescBytesUsed, tsoCopyBytes);
1778    } else
1779        pktPtr->length += TxdOp::getLen(desc);
1780
1781
1782
1783    if ((!TxdOp::eop(desc) && !useTso) ||
1784        (pktPtr->length < ( tsoMss + tsoHeaderLen) &&
1785         tsoTotalLen != tsoUsedLen && useTso)) {
1786        assert(!useTso || (tsoDescBytesUsed == TxdOp::getLen(desc)));
1787        igbe->anDq("TXS", annUnusedCacheQ);
1788        unusedCache.pop_front();
1789        igbe->anQ("TXS", annUsedCacheQ);
1790        usedCache.push_back(desc);
1791
1792        tsoDescBytesUsed = 0;
1793        pktDone = true;
1794        pktWaiting = false;
1795        pktMultiDesc = true;
1796
1797        DPRINTF(EthernetDesc, "Partial Packet Descriptor of %d bytes Done\n",
1798                pktPtr->length);
1799        pktPtr = NULL;
1800
1801        enableSm();
1802        igbe->checkDrain();
1803        return;
1804    }
1805
1806
1807    pktMultiDesc = false;
1808    // no support for vlans
1809    assert(!TxdOp::vle(desc));
1810
1811    // we only support single packet descriptors at this point
1812    if (!useTso)
1813        assert(TxdOp::eop(desc));
1814
1815    // set that this packet is done
1816    if (TxdOp::rs(desc))
1817        TxdOp::setDd(desc);
1818
1819    DPRINTF(EthernetDesc, "TxDescriptor data d1: %#llx d2: %#llx\n",
1820            desc->d1, desc->d2);
1821
1822    if (useTso) {
1823        IpPtr ip(pktPtr);
1824        if (ip) {
1825            DPRINTF(EthernetDesc, "TSO: Modifying IP header. Id + %d\n",
1826                    tsoPkts);
1827            ip->id(ip->id() + tsoPkts++);
1828            ip->len(pktPtr->length - EthPtr(pktPtr)->size());
1829
1830            TcpPtr tcp(ip);
1831            if (tcp) {
1832                DPRINTF(EthernetDesc,
1833                        "TSO: Modifying TCP header. old seq %d + %d\n",
1834                        tcp->seq(), tsoPrevSeq);
1835                tcp->seq(tcp->seq() + tsoPrevSeq);
1836                if (tsoUsedLen != tsoTotalLen)
1837                    tcp->flags(tcp->flags() & ~9); // clear fin & psh
1838            }
1839            UdpPtr udp(ip);
1840            if (udp) {
1841                DPRINTF(EthernetDesc, "TSO: Modifying UDP header.\n");
1842                udp->len(pktPtr->length - EthPtr(pktPtr)->size());
1843            }
1844        }
1845        tsoPrevSeq = tsoUsedLen;
1846    }
1847
1848    if (DTRACE(EthernetDesc)) {
1849        IpPtr ip(pktPtr);
1850        if (ip)
1851            DPRINTF(EthernetDesc, "Proccesing Ip packet with Id=%d\n",
1852                    ip->id());
1853        else
1854            DPRINTF(EthernetSM, "Proccesing Non-Ip packet\n");
1855    }
1856
1857    // Checksums are only ofloaded for new descriptor types
1858    if (TxdOp::isData(desc) && ( TxdOp::ixsm(desc) || TxdOp::txsm(desc)) ) {
1859        DPRINTF(EthernetDesc, "Calculating checksums for packet\n");
1860        IpPtr ip(pktPtr);
1861        assert(ip);
1862        if (TxdOp::ixsm(desc)) {
1863            ip->sum(0);
1864            ip->sum(cksum(ip));
1865            igbe->txIpChecksums++;
1866            DPRINTF(EthernetDesc, "Calculated IP checksum\n");
1867        }
1868        if (TxdOp::txsm(desc)) {
1869            TcpPtr tcp(ip);
1870            UdpPtr udp(ip);
1871            if (tcp) {
1872                tcp->sum(0);
1873                tcp->sum(cksum(tcp));
1874                igbe->txTcpChecksums++;
1875                DPRINTF(EthernetDesc, "Calculated TCP checksum\n");
1876            } else if (udp) {
1877                assert(udp);
1878                udp->sum(0);
1879                udp->sum(cksum(udp));
1880                igbe->txUdpChecksums++;
1881                DPRINTF(EthernetDesc, "Calculated UDP checksum\n");
1882            } else {
1883                panic("Told to checksum, but don't know how\n");
1884            }
1885        }
1886    }
1887
1888    if (TxdOp::ide(desc)) {
1889        // Deal with the rx timer interrupts
1890        DPRINTF(EthernetDesc, "Descriptor had IDE set\n");
1891        if (igbe->regs.tidv.idv()) {
1892            Tick delay = igbe->regs.tidv.idv() * igbe->intClock();
1893            DPRINTF(EthernetDesc, "setting tidv\n");
1894            igbe->reschedule(igbe->tidvEvent, curTick() + delay, true);
1895        }
1896
1897        if (igbe->regs.tadv.idv() && igbe->regs.tidv.idv()) {
1898            Tick delay = igbe->regs.tadv.idv() * igbe->intClock();
1899            DPRINTF(EthernetDesc, "setting tadv\n");
1900            if (!igbe->tadvEvent.scheduled()) {
1901                igbe->schedule(igbe->tadvEvent, curTick() + delay);
1902            }
1903        }
1904    }
1905
1906
1907    if (!useTso ||  TxdOp::getLen(desc) == tsoDescBytesUsed) {
1908        DPRINTF(EthernetDesc, "Descriptor Done\n");
1909        igbe->anDq("TXS", annUnusedCacheQ);
1910        unusedCache.pop_front();
1911        igbe->anQ("TXS", annUsedCacheQ);
1912        usedCache.push_back(desc);
1913        tsoDescBytesUsed = 0;
1914    }
1915
1916    if (useTso && tsoUsedLen == tsoTotalLen)
1917        useTso = false;
1918
1919
1920    DPRINTF(EthernetDesc,
1921            "------Packet of %d bytes ready for transmission-------\n",
1922            pktPtr->length);
1923    pktDone = true;
1924    pktWaiting = false;
1925    pktPtr = NULL;
1926    tsoPktHasHeader = false;
1927
1928    if (igbe->regs.txdctl.wthresh() == 0) {
1929        igbe->anBegin("TXS", "Desc Writeback");
1930        DPRINTF(EthernetDesc, "WTHRESH == 0, writing back descriptor\n");
1931        writeback(0);
1932    } else if (!igbe->regs.txdctl.gran() && igbe->regs.txdctl.wthresh() <=
1933               descInBlock(usedCache.size())) {
1934        DPRINTF(EthernetDesc, "used > WTHRESH, writing back descriptor\n");
1935        igbe->anBegin("TXS", "Desc Writeback");
1936        writeback((igbe->cacheBlockSize()-1)>>4);
1937    } else if (igbe->regs.txdctl.wthresh() <= usedCache.size()) {
1938        DPRINTF(EthernetDesc, "used > WTHRESH, writing back descriptor\n");
1939        igbe->anBegin("TXS", "Desc Writeback");
1940        writeback((igbe->cacheBlockSize()-1)>>4);
1941    }
1942
1943    enableSm();
1944    igbe->checkDrain();
1945}
1946
1947void
1948IGbE::TxDescCache::actionAfterWb()
1949{
1950    DPRINTF(EthernetDesc, "actionAfterWb() completionEnabled: %d\n",
1951            completionEnabled);
1952    igbe->postInterrupt(iGbReg::IT_TXDW);
1953    if (completionEnabled) {
1954        descEnd = igbe->regs.tdh();
1955        DPRINTF(EthernetDesc,
1956                "Completion writing back value: %d to addr: %#x\n", descEnd,
1957                completionAddress);
1958        igbe->dmaWrite(pciToDma(mbits(completionAddress, 63, 2)),
1959                       sizeof(descEnd), &nullEvent, (uint8_t*)&descEnd, 0);
1960    }
1961}
1962
1963void
1964IGbE::TxDescCache::serialize(std::ostream &os)
1965{
1966    DescCache<TxDesc>::serialize(os);
1967    SERIALIZE_SCALAR(pktDone);
1968    SERIALIZE_SCALAR(isTcp);
1969    SERIALIZE_SCALAR(pktWaiting);
1970    SERIALIZE_SCALAR(pktMultiDesc);
1971
1972    SERIALIZE_SCALAR(useTso);
1973    SERIALIZE_SCALAR(tsoHeaderLen);
1974    SERIALIZE_SCALAR(tsoMss);
1975    SERIALIZE_SCALAR(tsoTotalLen);
1976    SERIALIZE_SCALAR(tsoUsedLen);
1977    SERIALIZE_SCALAR(tsoPrevSeq);;
1978    SERIALIZE_SCALAR(tsoPktPayloadBytes);
1979    SERIALIZE_SCALAR(tsoLoadedHeader);
1980    SERIALIZE_SCALAR(tsoPktHasHeader);
1981    SERIALIZE_ARRAY(tsoHeader, 256);
1982    SERIALIZE_SCALAR(tsoDescBytesUsed);
1983    SERIALIZE_SCALAR(tsoCopyBytes);
1984    SERIALIZE_SCALAR(tsoPkts);
1985
1986    SERIALIZE_SCALAR(completionAddress);
1987    SERIALIZE_SCALAR(completionEnabled);
1988    SERIALIZE_SCALAR(descEnd);
1989}
1990
1991void
1992IGbE::TxDescCache::unserialize(Checkpoint *cp, const std::string &section)
1993{
1994    DescCache<TxDesc>::unserialize(cp, section);
1995    UNSERIALIZE_SCALAR(pktDone);
1996    UNSERIALIZE_SCALAR(isTcp);
1997    UNSERIALIZE_SCALAR(pktWaiting);
1998    UNSERIALIZE_SCALAR(pktMultiDesc);
1999
2000    UNSERIALIZE_SCALAR(useTso);
2001    UNSERIALIZE_SCALAR(tsoHeaderLen);
2002    UNSERIALIZE_SCALAR(tsoMss);
2003    UNSERIALIZE_SCALAR(tsoTotalLen);
2004    UNSERIALIZE_SCALAR(tsoUsedLen);
2005    UNSERIALIZE_SCALAR(tsoPrevSeq);;
2006    UNSERIALIZE_SCALAR(tsoPktPayloadBytes);
2007    UNSERIALIZE_SCALAR(tsoLoadedHeader);
2008    UNSERIALIZE_SCALAR(tsoPktHasHeader);
2009    UNSERIALIZE_ARRAY(tsoHeader, 256);
2010    UNSERIALIZE_SCALAR(tsoDescBytesUsed);
2011    UNSERIALIZE_SCALAR(tsoCopyBytes);
2012    UNSERIALIZE_SCALAR(tsoPkts);
2013
2014    UNSERIALIZE_SCALAR(completionAddress);
2015    UNSERIALIZE_SCALAR(completionEnabled);
2016    UNSERIALIZE_SCALAR(descEnd);
2017}
2018
2019bool
2020IGbE::TxDescCache::packetAvailable()
2021{
2022    if (pktDone) {
2023        pktDone = false;
2024        return true;
2025    }
2026    return false;
2027}
2028
2029void
2030IGbE::TxDescCache::enableSm()
2031{
2032    if (!igbe->drainEvent) {
2033        igbe->txTick = true;
2034        igbe->restartClock();
2035    }
2036}
2037
2038bool
2039IGbE::TxDescCache::hasOutstandingEvents()
2040{
2041    return pktEvent.scheduled() || wbEvent.scheduled() ||
2042        fetchEvent.scheduled();
2043}
2044
2045
2046///////////////////////////////////// IGbE /////////////////////////////////
2047
2048void
2049IGbE::restartClock()
2050{
2051    if (!tickEvent.scheduled() && (rxTick || txTick || txFifoTick) &&
2052        getState() == SimObject::Running)
2053        schedule(tickEvent, clockEdge(Cycles(1)));
2054}
2055
2056unsigned int
2057IGbE::drain(Event *de)
2058{
2059    unsigned int count;
2060    count = pioPort.drain(de) + dmaPort.drain(de);
2061    if (rxDescCache.hasOutstandingEvents() ||
2062        txDescCache.hasOutstandingEvents()) {
2063        count++;
2064        drainEvent = de;
2065    }
2066
2067    txFifoTick = false;
2068    txTick = false;
2069    rxTick = false;
2070
2071    if (tickEvent.scheduled())
2072        deschedule(tickEvent);
2073
2074    if (count) {
2075        DPRINTF(Drain, "IGbE not drained\n");
2076        changeState(Draining);
2077    } else
2078        changeState(Drained);
2079
2080    return count;
2081}
2082
2083void
2084IGbE::resume()
2085{
2086    SimObject::resume();
2087
2088    txFifoTick = true;
2089    txTick = true;
2090    rxTick = true;
2091
2092    restartClock();
2093    DPRINTF(EthernetSM, "resuming from drain");
2094}
2095
2096void
2097IGbE::checkDrain()
2098{
2099    if (!drainEvent)
2100        return;
2101
2102    txFifoTick = false;
2103    txTick = false;
2104    rxTick = false;
2105    if (!rxDescCache.hasOutstandingEvents() &&
2106        !txDescCache.hasOutstandingEvents()) {
2107        DPRINTF(Drain, "IGbE done draining, processing drain event\n");
2108        drainEvent->process();
2109        drainEvent = NULL;
2110    }
2111}
2112
2113void
2114IGbE::txStateMachine()
2115{
2116    if (!regs.tctl.en()) {
2117        txTick = false;
2118        DPRINTF(EthernetSM, "TXS: TX disabled, stopping ticking\n");
2119        return;
2120    }
2121
2122    // If we have a packet available and it's length is not 0 (meaning it's not
2123    // a multidescriptor packet) put it in the fifo, otherwise an the next
2124    // iteration we'll get the rest of the data
2125    if (txPacket && txDescCache.packetAvailable()
2126        && !txDescCache.packetMultiDesc() && txPacket->length) {
2127        anQ("TXS", "TX FIFO Q");
2128        DPRINTF(EthernetSM, "TXS: packet placed in TX FIFO\n");
2129#ifndef NDEBUG
2130        bool success =
2131#endif
2132            txFifo.push(txPacket);
2133        txFifoTick = true && !drainEvent;
2134        assert(success);
2135        txPacket = NULL;
2136        anBegin("TXS", "Desc Writeback");
2137        txDescCache.writeback((cacheBlockSize()-1)>>4);
2138        return;
2139    }
2140
2141    // Only support descriptor granularity
2142    if (regs.txdctl.lwthresh() &&
2143        txDescCache.descLeft() < (regs.txdctl.lwthresh() * 8)) {
2144        DPRINTF(EthernetSM, "TXS: LWTHRESH caused posting of TXDLOW\n");
2145        postInterrupt(IT_TXDLOW);
2146    }
2147
2148    if (!txPacket) {
2149        txPacket = new EthPacketData(16384);
2150    }
2151
2152    if (!txDescCache.packetWaiting()) {
2153        if (txDescCache.descLeft() == 0) {
2154            postInterrupt(IT_TXQE);
2155            anBegin("TXS", "Desc Writeback");
2156            txDescCache.writeback(0);
2157            anBegin("TXS", "Desc Fetch");
2158            anWe("TXS", txDescCache.annUnusedCacheQ);
2159            txDescCache.fetchDescriptors();
2160            DPRINTF(EthernetSM, "TXS: No descriptors left in ring, forcing "
2161                    "writeback stopping ticking and posting TXQE\n");
2162            txTick = false;
2163            return;
2164        }
2165
2166
2167        if (!(txDescCache.descUnused())) {
2168            anBegin("TXS", "Desc Fetch");
2169            txDescCache.fetchDescriptors();
2170            anWe("TXS", txDescCache.annUnusedCacheQ);
2171            DPRINTF(EthernetSM, "TXS: No descriptors available in cache, "
2172                    "fetching and stopping ticking\n");
2173            txTick = false;
2174            return;
2175        }
2176        anPq("TXS", txDescCache.annUnusedCacheQ);
2177
2178
2179        txDescCache.processContextDesc();
2180        if (txDescCache.packetWaiting()) {
2181            DPRINTF(EthernetSM,
2182                    "TXS: Fetching TSO header, stopping ticking\n");
2183            txTick = false;
2184            return;
2185        }
2186
2187        unsigned size = txDescCache.getPacketSize(txPacket);
2188        if (size > 0 && txFifo.avail() > size) {
2189            anRq("TXS", "TX FIFO Q");
2190            anBegin("TXS", "DMA Packet");
2191            DPRINTF(EthernetSM, "TXS: Reserving %d bytes in FIFO and "
2192                    "beginning DMA of next packet\n", size);
2193            txFifo.reserve(size);
2194            txDescCache.getPacketData(txPacket);
2195        } else if (size == 0) {
2196            DPRINTF(EthernetSM, "TXS: getPacketSize returned: %d\n", size);
2197            DPRINTF(EthernetSM,
2198                    "TXS: No packets to get, writing back used descriptors\n");
2199            anBegin("TXS", "Desc Writeback");
2200            txDescCache.writeback(0);
2201        } else {
2202            anWf("TXS", "TX FIFO Q");
2203            DPRINTF(EthernetSM, "TXS: FIFO full, stopping ticking until space "
2204                    "available in FIFO\n");
2205            txTick = false;
2206        }
2207
2208
2209        return;
2210    }
2211    DPRINTF(EthernetSM, "TXS: Nothing to do, stopping ticking\n");
2212    txTick = false;
2213}
2214
2215bool
2216IGbE::ethRxPkt(EthPacketPtr pkt)
2217{
2218    rxBytes += pkt->length;
2219    rxPackets++;
2220
2221    DPRINTF(Ethernet, "RxFIFO: Receiving pcakte from wire\n");
2222    anBegin("RXQ", "Wire Recv");
2223
2224
2225    if (!regs.rctl.en()) {
2226        DPRINTF(Ethernet, "RxFIFO: RX not enabled, dropping\n");
2227        anBegin("RXQ", "FIFO Drop", CPA::FL_BAD);
2228        return true;
2229    }
2230
2231    // restart the state machines if they are stopped
2232    rxTick = true && !drainEvent;
2233    if ((rxTick || txTick) && !tickEvent.scheduled()) {
2234        DPRINTF(EthernetSM,
2235                "RXS: received packet into fifo, starting ticking\n");
2236        restartClock();
2237    }
2238
2239    if (!rxFifo.push(pkt)) {
2240        DPRINTF(Ethernet, "RxFIFO: Packet won't fit in fifo... dropped\n");
2241        postInterrupt(IT_RXO, true);
2242        anBegin("RXQ", "FIFO Drop", CPA::FL_BAD);
2243        return false;
2244    }
2245
2246    if (CPA::available() && cpa->enabled()) {
2247        assert(sys->numSystemsRunning <= 2);
2248        System *other_sys;
2249        if (sys->systemList[0] == sys)
2250            other_sys = sys->systemList[1];
2251        else
2252            other_sys = sys->systemList[0];
2253
2254        cpa->hwDq(CPA::FL_NONE, sys, macAddr, "RXQ", "WireQ", 0, other_sys);
2255        anQ("RXQ", "RX FIFO Q");
2256        cpa->hwWe(CPA::FL_NONE, sys, macAddr, "RXQ", "WireQ", 0, other_sys);
2257    }
2258
2259    return true;
2260}
2261
2262
2263void
2264IGbE::rxStateMachine()
2265{
2266    if (!regs.rctl.en()) {
2267        rxTick = false;
2268        DPRINTF(EthernetSM, "RXS: RX disabled, stopping ticking\n");
2269        return;
2270    }
2271
2272    // If the packet is done check for interrupts/descriptors/etc
2273    if (rxDescCache.packetDone()) {
2274        rxDmaPacket = false;
2275        DPRINTF(EthernetSM, "RXS: Packet completed DMA to memory\n");
2276        int descLeft = rxDescCache.descLeft();
2277        DPRINTF(EthernetSM, "RXS: descLeft: %d rdmts: %d rdlen: %d\n",
2278                descLeft, regs.rctl.rdmts(), regs.rdlen());
2279        switch (regs.rctl.rdmts()) {
2280          case 2: if (descLeft > .125 * regs.rdlen()) break;
2281          case 1: if (descLeft > .250 * regs.rdlen()) break;
2282          case 0: if (descLeft > .500 * regs.rdlen())  break;
2283            DPRINTF(Ethernet, "RXS: Interrupting (RXDMT) "
2284                    "because of descriptors left\n");
2285            postInterrupt(IT_RXDMT);
2286            break;
2287        }
2288
2289        if (rxFifo.empty())
2290            rxDescCache.writeback(0);
2291
2292        if (descLeft == 0) {
2293            anBegin("RXS", "Writeback Descriptors");
2294            rxDescCache.writeback(0);
2295            DPRINTF(EthernetSM, "RXS: No descriptors left in ring, forcing"
2296                    " writeback and stopping ticking\n");
2297            rxTick = false;
2298        }
2299
2300        // only support descriptor granulaties
2301        assert(regs.rxdctl.gran());
2302
2303        if (regs.rxdctl.wthresh() >= rxDescCache.descUsed()) {
2304            DPRINTF(EthernetSM,
2305                    "RXS: Writing back because WTHRESH >= descUsed\n");
2306            anBegin("RXS", "Writeback Descriptors");
2307            if (regs.rxdctl.wthresh() < (cacheBlockSize()>>4))
2308                rxDescCache.writeback(regs.rxdctl.wthresh()-1);
2309            else
2310                rxDescCache.writeback((cacheBlockSize()-1)>>4);
2311        }
2312
2313        if ((rxDescCache.descUnused() < regs.rxdctl.pthresh()) &&
2314            ((rxDescCache.descLeft() - rxDescCache.descUnused()) >
2315             regs.rxdctl.hthresh())) {
2316            DPRINTF(EthernetSM, "RXS: Fetching descriptors because "
2317                    "descUnused < PTHRESH\n");
2318            anBegin("RXS", "Fetch Descriptors");
2319            rxDescCache.fetchDescriptors();
2320        }
2321
2322        if (rxDescCache.descUnused() == 0) {
2323            anBegin("RXS", "Fetch Descriptors");
2324            rxDescCache.fetchDescriptors();
2325            anWe("RXS", rxDescCache.annUnusedCacheQ);
2326            DPRINTF(EthernetSM, "RXS: No descriptors available in cache, "
2327                    "fetching descriptors and stopping ticking\n");
2328            rxTick = false;
2329        }
2330        return;
2331    }
2332
2333    if (rxDmaPacket) {
2334        DPRINTF(EthernetSM,
2335                "RXS: stopping ticking until packet DMA completes\n");
2336        rxTick = false;
2337        return;
2338    }
2339
2340    if (!rxDescCache.descUnused()) {
2341        anBegin("RXS", "Fetch Descriptors");
2342        rxDescCache.fetchDescriptors();
2343        anWe("RXS", rxDescCache.annUnusedCacheQ);
2344        DPRINTF(EthernetSM, "RXS: No descriptors available in cache, "
2345                "stopping ticking\n");
2346        rxTick = false;
2347        DPRINTF(EthernetSM, "RXS: No descriptors available, fetching\n");
2348        return;
2349    }
2350    anPq("RXS", rxDescCache.annUnusedCacheQ);
2351
2352    if (rxFifo.empty()) {
2353        anWe("RXS", "RX FIFO Q");
2354        DPRINTF(EthernetSM, "RXS: RxFIFO empty, stopping ticking\n");
2355        rxTick = false;
2356        return;
2357    }
2358    anPq("RXS", "RX FIFO Q");
2359    anBegin("RXS", "Get Desc");
2360
2361    EthPacketPtr pkt;
2362    pkt = rxFifo.front();
2363
2364
2365    pktOffset = rxDescCache.writePacket(pkt, pktOffset);
2366    DPRINTF(EthernetSM, "RXS: Writing packet into memory\n");
2367    if (pktOffset == pkt->length) {
2368        anBegin( "RXS", "FIFO Dequeue");
2369        DPRINTF(EthernetSM, "RXS: Removing packet from FIFO\n");
2370        pktOffset = 0;
2371        anDq("RXS", "RX FIFO Q");
2372        rxFifo.pop();
2373    }
2374
2375    DPRINTF(EthernetSM, "RXS: stopping ticking until packet DMA completes\n");
2376    rxTick = false;
2377    rxDmaPacket = true;
2378    anBegin("RXS", "DMA Packet");
2379}
2380
2381void
2382IGbE::txWire()
2383{
2384    if (txFifo.empty()) {
2385        anWe("TXQ", "TX FIFO Q");
2386        txFifoTick = false;
2387        return;
2388    }
2389
2390
2391    anPq("TXQ", "TX FIFO Q");
2392    if (etherInt->sendPacket(txFifo.front())) {
2393        cpa->hwQ(CPA::FL_NONE, sys, macAddr, "TXQ", "WireQ", 0);
2394        if (DTRACE(EthernetSM)) {
2395            IpPtr ip(txFifo.front());
2396            if (ip)
2397                DPRINTF(EthernetSM, "Transmitting Ip packet with Id=%d\n",
2398                        ip->id());
2399            else
2400                DPRINTF(EthernetSM, "Transmitting Non-Ip packet\n");
2401        }
2402        anDq("TXQ", "TX FIFO Q");
2403        anBegin("TXQ", "Wire Send");
2404        DPRINTF(EthernetSM,
2405                "TxFIFO: Successful transmit, bytes available in fifo: %d\n",
2406                txFifo.avail());
2407
2408        txBytes += txFifo.front()->length;
2409        txPackets++;
2410        txFifoTick = false;
2411
2412        txFifo.pop();
2413    } else {
2414        // We'll get woken up when the packet ethTxDone() gets called
2415        txFifoTick = false;
2416    }
2417}
2418
2419void
2420IGbE::tick()
2421{
2422    DPRINTF(EthernetSM, "IGbE: -------------- Cycle --------------\n");
2423
2424    if (rxTick)
2425        rxStateMachine();
2426
2427    if (txTick)
2428        txStateMachine();
2429
2430    if (txFifoTick)
2431        txWire();
2432
2433
2434    if (rxTick || txTick || txFifoTick)
2435        schedule(tickEvent, curTick() + clockPeriod());
2436}
2437
2438void
2439IGbE::ethTxDone()
2440{
2441    anBegin("TXQ", "Send Done");
2442    // restart the tx state machines if they are stopped
2443    // fifo to send another packet
2444    // tx sm to put more data into the fifo
2445    txFifoTick = true && !drainEvent;
2446    if (txDescCache.descLeft() != 0 && !drainEvent)
2447        txTick = true;
2448
2449    restartClock();
2450    txWire();
2451    DPRINTF(EthernetSM, "TxFIFO: Transmission complete\n");
2452}
2453
2454void
2455IGbE::serialize(std::ostream &os)
2456{
2457    PciDev::serialize(os);
2458
2459    regs.serialize(os);
2460    SERIALIZE_SCALAR(eeOpBits);
2461    SERIALIZE_SCALAR(eeAddrBits);
2462    SERIALIZE_SCALAR(eeDataBits);
2463    SERIALIZE_SCALAR(eeOpcode);
2464    SERIALIZE_SCALAR(eeAddr);
2465    SERIALIZE_SCALAR(lastInterrupt);
2466    SERIALIZE_ARRAY(flash,iGbReg::EEPROM_SIZE);
2467
2468    rxFifo.serialize("rxfifo", os);
2469    txFifo.serialize("txfifo", os);
2470
2471    bool txPktExists = txPacket;
2472    SERIALIZE_SCALAR(txPktExists);
2473    if (txPktExists)
2474        txPacket->serialize("txpacket", os);
2475
2476    Tick rdtr_time = 0, radv_time = 0, tidv_time = 0, tadv_time = 0,
2477        inter_time = 0;
2478
2479    if (rdtrEvent.scheduled())
2480        rdtr_time = rdtrEvent.when();
2481    SERIALIZE_SCALAR(rdtr_time);
2482
2483    if (radvEvent.scheduled())
2484        radv_time = radvEvent.when();
2485    SERIALIZE_SCALAR(radv_time);
2486
2487    if (tidvEvent.scheduled())
2488        tidv_time = tidvEvent.when();
2489    SERIALIZE_SCALAR(tidv_time);
2490
2491    if (tadvEvent.scheduled())
2492        tadv_time = tadvEvent.when();
2493    SERIALIZE_SCALAR(tadv_time);
2494
2495    if (interEvent.scheduled())
2496        inter_time = interEvent.when();
2497    SERIALIZE_SCALAR(inter_time);
2498
2499    SERIALIZE_SCALAR(pktOffset);
2500
2501    nameOut(os, csprintf("%s.TxDescCache", name()));
2502    txDescCache.serialize(os);
2503
2504    nameOut(os, csprintf("%s.RxDescCache", name()));
2505    rxDescCache.serialize(os);
2506}
2507
2508void
2509IGbE::unserialize(Checkpoint *cp, const std::string &section)
2510{
2511    PciDev::unserialize(cp, section);
2512
2513    regs.unserialize(cp, section);
2514    UNSERIALIZE_SCALAR(eeOpBits);
2515    UNSERIALIZE_SCALAR(eeAddrBits);
2516    UNSERIALIZE_SCALAR(eeDataBits);
2517    UNSERIALIZE_SCALAR(eeOpcode);
2518    UNSERIALIZE_SCALAR(eeAddr);
2519    UNSERIALIZE_SCALAR(lastInterrupt);
2520    UNSERIALIZE_ARRAY(flash,iGbReg::EEPROM_SIZE);
2521
2522    rxFifo.unserialize("rxfifo", cp, section);
2523    txFifo.unserialize("txfifo", cp, section);
2524
2525    bool txPktExists;
2526    UNSERIALIZE_SCALAR(txPktExists);
2527    if (txPktExists) {
2528        txPacket = new EthPacketData(16384);
2529        txPacket->unserialize("txpacket", cp, section);
2530    }
2531
2532    rxTick = true;
2533    txTick = true;
2534    txFifoTick = true;
2535
2536    Tick rdtr_time, radv_time, tidv_time, tadv_time, inter_time;
2537    UNSERIALIZE_SCALAR(rdtr_time);
2538    UNSERIALIZE_SCALAR(radv_time);
2539    UNSERIALIZE_SCALAR(tidv_time);
2540    UNSERIALIZE_SCALAR(tadv_time);
2541    UNSERIALIZE_SCALAR(inter_time);
2542
2543    if (rdtr_time)
2544        schedule(rdtrEvent, rdtr_time);
2545
2546    if (radv_time)
2547        schedule(radvEvent, radv_time);
2548
2549    if (tidv_time)
2550        schedule(tidvEvent, tidv_time);
2551
2552    if (tadv_time)
2553        schedule(tadvEvent, tadv_time);
2554
2555    if (inter_time)
2556        schedule(interEvent, inter_time);
2557
2558    UNSERIALIZE_SCALAR(pktOffset);
2559
2560    txDescCache.unserialize(cp, csprintf("%s.TxDescCache", section));
2561
2562    rxDescCache.unserialize(cp, csprintf("%s.RxDescCache", section));
2563}
2564
2565IGbE *
2566IGbEParams::create()
2567{
2568    return new IGbE(this);
2569}
2570