timing.cc revision 5728
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "cpu/exetrace.hh"
36#include "cpu/simple/timing.hh"
37#include "mem/packet.hh"
38#include "mem/packet_access.hh"
39#include "params/TimingSimpleCPU.hh"
40#include "sim/system.hh"
41
42using namespace std;
43using namespace TheISA;
44
45Port *
46TimingSimpleCPU::getPort(const std::string &if_name, int idx)
47{
48    if (if_name == "dcache_port")
49        return &dcachePort;
50    else if (if_name == "icache_port")
51        return &icachePort;
52    else
53        panic("No Such Port\n");
54}
55
56void
57TimingSimpleCPU::init()
58{
59    BaseCPU::init();
60#if FULL_SYSTEM
61    for (int i = 0; i < threadContexts.size(); ++i) {
62        ThreadContext *tc = threadContexts[i];
63
64        // initialize CPU, including PC
65        TheISA::initCPU(tc, _cpuId);
66    }
67#endif
68}
69
70Tick
71TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
72{
73    panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
74    return curTick;
75}
76
77void
78TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
79{
80    //No internal storage to update, jusst return
81    return;
82}
83
84void
85TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
86{
87    if (status == RangeChange) {
88        if (!snoopRangeSent) {
89            snoopRangeSent = true;
90            sendStatusChange(Port::RangeChange);
91        }
92        return;
93    }
94
95    panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
96}
97
98
99void
100TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
101{
102    pkt = _pkt;
103    cpu->schedule(this, t);
104}
105
106TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
107    : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock), fetchEvent(this)
108{
109    _status = Idle;
110
111    icachePort.snoopRangeSent = false;
112    dcachePort.snoopRangeSent = false;
113
114    ifetch_pkt = dcache_pkt = NULL;
115    drainEvent = NULL;
116    previousTick = 0;
117    changeState(SimObject::Running);
118}
119
120
121TimingSimpleCPU::~TimingSimpleCPU()
122{
123}
124
125void
126TimingSimpleCPU::serialize(ostream &os)
127{
128    SimObject::State so_state = SimObject::getState();
129    SERIALIZE_ENUM(so_state);
130    BaseSimpleCPU::serialize(os);
131}
132
133void
134TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
135{
136    SimObject::State so_state;
137    UNSERIALIZE_ENUM(so_state);
138    BaseSimpleCPU::unserialize(cp, section);
139}
140
141unsigned int
142TimingSimpleCPU::drain(Event *drain_event)
143{
144    // TimingSimpleCPU is ready to drain if it's not waiting for
145    // an access to complete.
146    if (_status == Idle || _status == Running || _status == SwitchedOut) {
147        changeState(SimObject::Drained);
148        return 0;
149    } else {
150        changeState(SimObject::Draining);
151        drainEvent = drain_event;
152        return 1;
153    }
154}
155
156void
157TimingSimpleCPU::resume()
158{
159    DPRINTF(SimpleCPU, "Resume\n");
160    if (_status != SwitchedOut && _status != Idle) {
161        assert(system->getMemoryMode() == Enums::timing);
162
163        if (fetchEvent.scheduled())
164           deschedule(fetchEvent);
165
166        schedule(fetchEvent, nextCycle());
167    }
168
169    changeState(SimObject::Running);
170}
171
172void
173TimingSimpleCPU::switchOut()
174{
175    assert(_status == Running || _status == Idle);
176    _status = SwitchedOut;
177    numCycles += tickToCycles(curTick - previousTick);
178
179    // If we've been scheduled to resume but are then told to switch out,
180    // we'll need to cancel it.
181    if (fetchEvent.scheduled())
182        deschedule(fetchEvent);
183}
184
185
186void
187TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
188{
189    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
190
191    // if any of this CPU's ThreadContexts are active, mark the CPU as
192    // running and schedule its tick event.
193    for (int i = 0; i < threadContexts.size(); ++i) {
194        ThreadContext *tc = threadContexts[i];
195        if (tc->status() == ThreadContext::Active && _status != Running) {
196            _status = Running;
197            break;
198        }
199    }
200
201    if (_status != Running) {
202        _status = Idle;
203    }
204    assert(threadContexts.size() == 1);
205    previousTick = curTick;
206}
207
208
209void
210TimingSimpleCPU::activateContext(int thread_num, int delay)
211{
212    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
213
214    assert(thread_num == 0);
215    assert(thread);
216
217    assert(_status == Idle);
218
219    notIdleFraction++;
220    _status = Running;
221
222    // kick things off by initiating the fetch of the next instruction
223    schedule(fetchEvent, nextCycle(curTick + ticks(delay)));
224}
225
226
227void
228TimingSimpleCPU::suspendContext(int thread_num)
229{
230    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
231
232    assert(thread_num == 0);
233    assert(thread);
234
235    assert(_status == Running);
236
237    // just change status to Idle... if status != Running,
238    // completeInst() will not initiate fetch of next instruction.
239
240    notIdleFraction--;
241    _status = Idle;
242}
243
244bool
245TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
246{
247    RequestPtr req = pkt->req;
248    if (req->isMmapedIpr()) {
249        Tick delay;
250        delay = TheISA::handleIprRead(thread->getTC(), pkt);
251        new IprEvent(pkt, this, nextCycle(curTick + delay));
252        _status = DcacheWaitResponse;
253        dcache_pkt = NULL;
254    } else if (!dcachePort.sendTiming(pkt)) {
255        _status = DcacheRetry;
256        dcache_pkt = pkt;
257    } else {
258        _status = DcacheWaitResponse;
259        // memory system takes ownership of packet
260        dcache_pkt = NULL;
261    }
262    return dcache_pkt == NULL;
263}
264
265template <class T>
266Fault
267TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
268{
269    Fault fault;
270    const int asid = 0;
271    const int thread_id = 0;
272    const Addr pc = thread->readPC();
273
274    PacketPtr pkt;
275    RequestPtr req;
276
277    int block_size = dcachePort.peerBlockSize();
278    int data_size = sizeof(T);
279
280    Addr second_addr = roundDown(addr + data_size - 1, block_size);
281
282    if (second_addr > addr) {
283        Addr first_size = second_addr - addr;
284        Addr second_size = data_size - first_size;
285        // Make sure we'll only need two accesses.
286        assert(roundDown(second_addr + second_size - 1, block_size) ==
287                second_addr);
288
289        /*
290         * Do the translations. If something isn't going to work, find out
291         * before we waste time setting up anything else.
292         */
293        req = new Request(asid, addr, first_size,
294                          flags, pc, _cpuId, thread_id);
295        fault = thread->translateDataReadReq(req);
296        if (fault != NoFault) {
297            delete req;
298            return fault;
299        }
300        Request *second_req =
301            new Request(asid, second_addr, second_size,
302                        flags, pc, _cpuId, thread_id);
303        fault = thread->translateDataReadReq(second_req);
304        if (fault != NoFault) {
305            delete req;
306            delete second_req;
307            return fault;
308        }
309
310        T * data_ptr = new T;
311
312        /*
313         * This is the big packet that will hold the data we've gotten so far,
314         * if any, and also act as the response we actually give to the
315         * instruction.
316         */
317        Request *orig_req =
318            new Request(asid, addr, data_size, flags, pc, _cpuId, thread_id);
319        orig_req->setPhys(req->getPaddr(), data_size, flags);
320        PacketPtr big_pkt =
321            new Packet(orig_req, MemCmd::ReadResp, Packet::Broadcast);
322        big_pkt->dataDynamic<T>(data_ptr);
323        SplitMainSenderState * main_send_state = new SplitMainSenderState;
324        big_pkt->senderState = main_send_state;
325        main_send_state->outstanding = 2;
326
327        // This is the packet we'll process now.
328        pkt = new Packet(req, MemCmd::ReadReq, Packet::Broadcast);
329        pkt->dataStatic<uint8_t>((uint8_t *)data_ptr);
330        pkt->senderState = new SplitFragmentSenderState(big_pkt, 0);
331
332        // This is the second half of the access we'll deal with later.
333        PacketPtr second_pkt =
334            new Packet(second_req, MemCmd::ReadReq, Packet::Broadcast);
335        second_pkt->dataStatic<uint8_t>((uint8_t *)data_ptr + first_size);
336        second_pkt->senderState = new SplitFragmentSenderState(big_pkt, 1);
337        if (!handleReadPacket(pkt)) {
338            main_send_state->fragments[1] = second_pkt;
339        } else {
340            handleReadPacket(second_pkt);
341        }
342    } else {
343        req = new Request(asid, addr, data_size,
344                          flags, pc, _cpuId, thread_id);
345
346        // translate to physical address
347        Fault fault = thread->translateDataReadReq(req);
348
349        if (fault != NoFault) {
350            delete req;
351            return fault;
352        }
353
354        pkt = new Packet(req,
355                         (req->isLocked() ?
356                          MemCmd::LoadLockedReq : MemCmd::ReadReq),
357                          Packet::Broadcast);
358        pkt->dataDynamic<T>(new T);
359
360        handleReadPacket(pkt);
361    }
362
363    if (traceData) {
364        traceData->setData(data);
365        traceData->setAddr(addr);
366    }
367
368    // This will need a new way to tell if it has a dcache attached.
369    if (req->isUncacheable())
370        recordEvent("Uncached Read");
371
372    return NoFault;
373}
374
375Fault
376TimingSimpleCPU::translateDataReadAddr(Addr vaddr, Addr &paddr,
377        int size, unsigned flags)
378{
379    Request *req =
380        new Request(0, vaddr, size, flags, thread->readPC(), _cpuId, 0);
381
382    if (traceData) {
383        traceData->setAddr(vaddr);
384    }
385
386    Fault fault = thread->translateDataWriteReq(req);
387
388    if (fault == NoFault)
389        paddr = req->getPaddr();
390
391    delete req;
392    return fault;
393}
394
395#ifndef DOXYGEN_SHOULD_SKIP_THIS
396
397template
398Fault
399TimingSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
400
401template
402Fault
403TimingSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
404
405template
406Fault
407TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
408
409template
410Fault
411TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
412
413template
414Fault
415TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
416
417template
418Fault
419TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
420
421#endif //DOXYGEN_SHOULD_SKIP_THIS
422
423template<>
424Fault
425TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
426{
427    return read(addr, *(uint64_t*)&data, flags);
428}
429
430template<>
431Fault
432TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
433{
434    return read(addr, *(uint32_t*)&data, flags);
435}
436
437
438template<>
439Fault
440TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
441{
442    return read(addr, (uint32_t&)data, flags);
443}
444
445bool
446TimingSimpleCPU::handleWritePacket()
447{
448    RequestPtr req = dcache_pkt->req;
449    if (req->isMmapedIpr()) {
450        Tick delay;
451        delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
452        new IprEvent(dcache_pkt, this, nextCycle(curTick + delay));
453        _status = DcacheWaitResponse;
454        dcache_pkt = NULL;
455    } else if (!dcachePort.sendTiming(dcache_pkt)) {
456        _status = DcacheRetry;
457    } else {
458        _status = DcacheWaitResponse;
459        // memory system takes ownership of packet
460        dcache_pkt = NULL;
461    }
462    return dcache_pkt == NULL;
463}
464
465template <class T>
466Fault
467TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
468{
469    const int asid = 0;
470    const int thread_id = 0;
471    bool do_access = true;  // flag to suppress cache access
472    const Addr pc = thread->readPC();
473
474    RequestPtr req;
475
476    int block_size = dcachePort.peerBlockSize();
477    int data_size = sizeof(T);
478
479    Addr second_addr = roundDown(addr + data_size - 1, block_size);
480
481    if (second_addr > addr) {
482        Fault fault;
483        Addr first_size = second_addr - addr;
484        Addr second_size = data_size - first_size;
485        // Make sure we'll only need two accesses.
486        assert(roundDown(second_addr + second_size - 1, block_size) ==
487                second_addr);
488
489        req = new Request(asid, addr, first_size,
490                          flags, pc, _cpuId, thread_id);
491        fault = thread->translateDataWriteReq(req);
492        if (fault != NoFault) {
493            delete req;
494            return fault;
495        }
496        RequestPtr second_req = new Request(asid, second_addr, second_size,
497                                            flags, pc, _cpuId, thread_id);
498        fault = thread->translateDataWriteReq(second_req);
499        if (fault != NoFault) {
500            delete req;
501            delete second_req;
502            return fault;
503        }
504
505        if (req->isLocked() || req->isSwap() ||
506                second_req->isLocked() || second_req->isSwap()) {
507            panic("LL/SCs and swaps can't be split.");
508        }
509
510        T * data_ptr = new T;
511
512        /*
513         * This is the big packet that will hold the data we've gotten so far,
514         * if any, and also act as the response we actually give to the
515         * instruction.
516         */
517        RequestPtr orig_req =
518            new Request(asid, addr, data_size, flags, pc, _cpuId, thread_id);
519        orig_req->setPhys(req->getPaddr(), data_size, flags);
520        PacketPtr big_pkt =
521            new Packet(orig_req, MemCmd::WriteResp, Packet::Broadcast);
522        big_pkt->dataDynamic<T>(data_ptr);
523        big_pkt->set(data);
524        SplitMainSenderState * main_send_state = new SplitMainSenderState;
525        big_pkt->senderState = main_send_state;
526        main_send_state->outstanding = 2;
527
528        assert(dcache_pkt == NULL);
529        // This is the packet we'll process now.
530        dcache_pkt = new Packet(req, MemCmd::WriteReq, Packet::Broadcast);
531        dcache_pkt->dataStatic<uint8_t>((uint8_t *)data_ptr);
532        dcache_pkt->senderState = new SplitFragmentSenderState(big_pkt, 0);
533
534        // This is the second half of the access we'll deal with later.
535        PacketPtr second_pkt =
536            new Packet(second_req, MemCmd::WriteReq, Packet::Broadcast);
537        second_pkt->dataStatic<uint8_t>((uint8_t *)data_ptr + first_size);
538        second_pkt->senderState = new SplitFragmentSenderState(big_pkt, 1);
539        if (!handleWritePacket()) {
540            main_send_state->fragments[1] = second_pkt;
541        } else {
542            dcache_pkt = second_pkt;
543            handleWritePacket();
544        }
545    } else {
546        req = new Request(asid, addr, data_size, flags, pc, _cpuId, thread_id);
547
548        // translate to physical address
549        Fault fault = thread->translateDataWriteReq(req);
550        if (fault != NoFault) {
551            delete req;
552            return fault;
553        }
554
555        MemCmd cmd = MemCmd::WriteReq; // default
556
557        if (req->isLocked()) {
558            cmd = MemCmd::StoreCondReq;
559            do_access = TheISA::handleLockedWrite(thread, req);
560        } else if (req->isSwap()) {
561            cmd = MemCmd::SwapReq;
562            if (req->isCondSwap()) {
563                assert(res);
564                req->setExtraData(*res);
565            }
566        }
567
568        // Note: need to allocate dcache_pkt even if do_access is
569        // false, as it's used unconditionally to call completeAcc().
570        assert(dcache_pkt == NULL);
571        dcache_pkt = new Packet(req, cmd, Packet::Broadcast);
572        dcache_pkt->allocate();
573        if (req->isMmapedIpr())
574            dcache_pkt->set(htog(data));
575        else
576            dcache_pkt->set(data);
577
578        if (do_access)
579            handleWritePacket();
580    }
581
582    if (traceData) {
583        traceData->setAddr(req->getVaddr());
584        traceData->setData(data);
585    }
586
587    // This will need a new way to tell if it's hooked up to a cache or not.
588    if (req->isUncacheable())
589        recordEvent("Uncached Write");
590
591    // If the write needs to have a fault on the access, consider calling
592    // changeStatus() and changing it to "bad addr write" or something.
593    return NoFault;
594}
595
596Fault
597TimingSimpleCPU::translateDataWriteAddr(Addr vaddr, Addr &paddr,
598        int size, unsigned flags)
599{
600    Request *req =
601        new Request(0, vaddr, size, flags, thread->readPC(), _cpuId, 0);
602
603    if (traceData) {
604        traceData->setAddr(vaddr);
605    }
606
607    Fault fault = thread->translateDataWriteReq(req);
608
609    if (fault == NoFault)
610        paddr = req->getPaddr();
611
612    delete req;
613    return fault;
614}
615
616
617#ifndef DOXYGEN_SHOULD_SKIP_THIS
618template
619Fault
620TimingSimpleCPU::write(Twin32_t data, Addr addr,
621                       unsigned flags, uint64_t *res);
622
623template
624Fault
625TimingSimpleCPU::write(Twin64_t data, Addr addr,
626                       unsigned flags, uint64_t *res);
627
628template
629Fault
630TimingSimpleCPU::write(uint64_t data, Addr addr,
631                       unsigned flags, uint64_t *res);
632
633template
634Fault
635TimingSimpleCPU::write(uint32_t data, Addr addr,
636                       unsigned flags, uint64_t *res);
637
638template
639Fault
640TimingSimpleCPU::write(uint16_t data, Addr addr,
641                       unsigned flags, uint64_t *res);
642
643template
644Fault
645TimingSimpleCPU::write(uint8_t data, Addr addr,
646                       unsigned flags, uint64_t *res);
647
648#endif //DOXYGEN_SHOULD_SKIP_THIS
649
650template<>
651Fault
652TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
653{
654    return write(*(uint64_t*)&data, addr, flags, res);
655}
656
657template<>
658Fault
659TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
660{
661    return write(*(uint32_t*)&data, addr, flags, res);
662}
663
664
665template<>
666Fault
667TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
668{
669    return write((uint32_t)data, addr, flags, res);
670}
671
672
673void
674TimingSimpleCPU::fetch()
675{
676    DPRINTF(SimpleCPU, "Fetch\n");
677
678    if (!curStaticInst || !curStaticInst->isDelayedCommit())
679        checkForInterrupts();
680
681    checkPcEventQueue();
682
683    bool fromRom = isRomMicroPC(thread->readMicroPC());
684
685    if (!fromRom) {
686        Request *ifetch_req = new Request();
687        ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
688        Fault fault = setupFetchRequest(ifetch_req);
689
690        ifetch_pkt = new Packet(ifetch_req, MemCmd::ReadReq, Packet::Broadcast);
691        ifetch_pkt->dataStatic(&inst);
692
693        if (fault == NoFault) {
694            if (!icachePort.sendTiming(ifetch_pkt)) {
695                // Need to wait for retry
696                _status = IcacheRetry;
697            } else {
698                // Need to wait for cache to respond
699                _status = IcacheWaitResponse;
700                // ownership of packet transferred to memory system
701                ifetch_pkt = NULL;
702            }
703        } else {
704            delete ifetch_req;
705            delete ifetch_pkt;
706            // fetch fault: advance directly to next instruction (fault handler)
707            advanceInst(fault);
708        }
709    } else {
710        _status = IcacheWaitResponse;
711        completeIfetch(NULL);
712    }
713
714    numCycles += tickToCycles(curTick - previousTick);
715    previousTick = curTick;
716}
717
718
719void
720TimingSimpleCPU::advanceInst(Fault fault)
721{
722    if (fault != NoFault || !stayAtPC)
723        advancePC(fault);
724
725    if (_status == Running) {
726        // kick off fetch of next instruction... callback from icache
727        // response will cause that instruction to be executed,
728        // keeping the CPU running.
729        fetch();
730    }
731}
732
733
734void
735TimingSimpleCPU::completeIfetch(PacketPtr pkt)
736{
737    DPRINTF(SimpleCPU, "Complete ICache Fetch\n");
738
739    // received a response from the icache: execute the received
740    // instruction
741
742    assert(!pkt || !pkt->isError());
743    assert(_status == IcacheWaitResponse);
744
745    _status = Running;
746
747    numCycles += tickToCycles(curTick - previousTick);
748    previousTick = curTick;
749
750    if (getState() == SimObject::Draining) {
751        if (pkt) {
752            delete pkt->req;
753            delete pkt;
754        }
755
756        completeDrain();
757        return;
758    }
759
760    preExecute();
761    if (curStaticInst &&
762            curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
763        // load or store: just send to dcache
764        Fault fault = curStaticInst->initiateAcc(this, traceData);
765        if (_status != Running) {
766            // instruction will complete in dcache response callback
767            assert(_status == DcacheWaitResponse || _status == DcacheRetry);
768            assert(fault == NoFault);
769        } else {
770            if (fault == NoFault) {
771                // Note that ARM can have NULL packets if the instruction gets
772                // squashed due to predication
773                // early fail on store conditional: complete now
774                assert(dcache_pkt != NULL || THE_ISA == ARM_ISA);
775
776                fault = curStaticInst->completeAcc(dcache_pkt, this,
777                                                   traceData);
778                if (dcache_pkt != NULL)
779                {
780                    delete dcache_pkt->req;
781                    delete dcache_pkt;
782                    dcache_pkt = NULL;
783                }
784
785                // keep an instruction count
786                if (fault == NoFault)
787                    countInst();
788            } else if (traceData) {
789                // If there was a fault, we shouldn't trace this instruction.
790                delete traceData;
791                traceData = NULL;
792            }
793
794            postExecute();
795            // @todo remove me after debugging with legion done
796            if (curStaticInst && (!curStaticInst->isMicroop() ||
797                        curStaticInst->isFirstMicroop()))
798                instCnt++;
799            advanceInst(fault);
800        }
801    } else if (curStaticInst) {
802        // non-memory instruction: execute completely now
803        Fault fault = curStaticInst->execute(this, traceData);
804
805        // keep an instruction count
806        if (fault == NoFault)
807            countInst();
808        else if (traceData) {
809            // If there was a fault, we shouldn't trace this instruction.
810            delete traceData;
811            traceData = NULL;
812        }
813
814        postExecute();
815        // @todo remove me after debugging with legion done
816        if (curStaticInst && (!curStaticInst->isMicroop() ||
817                    curStaticInst->isFirstMicroop()))
818            instCnt++;
819        advanceInst(fault);
820    } else {
821        advanceInst(NoFault);
822    }
823
824    if (pkt) {
825        delete pkt->req;
826        delete pkt;
827    }
828}
829
830void
831TimingSimpleCPU::IcachePort::ITickEvent::process()
832{
833    cpu->completeIfetch(pkt);
834}
835
836bool
837TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
838{
839    if (pkt->isResponse() && !pkt->wasNacked()) {
840        // delay processing of returned data until next CPU clock edge
841        Tick next_tick = cpu->nextCycle(curTick);
842
843        if (next_tick == curTick)
844            cpu->completeIfetch(pkt);
845        else
846            tickEvent.schedule(pkt, next_tick);
847
848        return true;
849    }
850    else if (pkt->wasNacked()) {
851        assert(cpu->_status == IcacheWaitResponse);
852        pkt->reinitNacked();
853        if (!sendTiming(pkt)) {
854            cpu->_status = IcacheRetry;
855            cpu->ifetch_pkt = pkt;
856        }
857    }
858    //Snooping a Coherence Request, do nothing
859    return true;
860}
861
862void
863TimingSimpleCPU::IcachePort::recvRetry()
864{
865    // we shouldn't get a retry unless we have a packet that we're
866    // waiting to transmit
867    assert(cpu->ifetch_pkt != NULL);
868    assert(cpu->_status == IcacheRetry);
869    PacketPtr tmp = cpu->ifetch_pkt;
870    if (sendTiming(tmp)) {
871        cpu->_status = IcacheWaitResponse;
872        cpu->ifetch_pkt = NULL;
873    }
874}
875
876void
877TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
878{
879    // received a response from the dcache: complete the load or store
880    // instruction
881    assert(!pkt->isError());
882
883    numCycles += tickToCycles(curTick - previousTick);
884    previousTick = curTick;
885
886    if (pkt->senderState) {
887        SplitFragmentSenderState * send_state =
888            dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
889        assert(send_state);
890        delete pkt->req;
891        delete pkt;
892        PacketPtr big_pkt = send_state->bigPkt;
893        delete send_state;
894
895        SplitMainSenderState * main_send_state =
896            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
897        assert(main_send_state);
898        // Record the fact that this packet is no longer outstanding.
899        assert(main_send_state->outstanding != 0);
900        main_send_state->outstanding--;
901
902        if (main_send_state->outstanding) {
903            return;
904        } else {
905            delete main_send_state;
906            big_pkt->senderState = NULL;
907            pkt = big_pkt;
908        }
909    }
910
911    assert(_status == DcacheWaitResponse);
912    _status = Running;
913
914    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
915
916    // keep an instruction count
917    if (fault == NoFault)
918        countInst();
919    else if (traceData) {
920        // If there was a fault, we shouldn't trace this instruction.
921        delete traceData;
922        traceData = NULL;
923    }
924
925    // the locked flag may be cleared on the response packet, so check
926    // pkt->req and not pkt to see if it was a load-locked
927    if (pkt->isRead() && pkt->req->isLocked()) {
928        TheISA::handleLockedRead(thread, pkt->req);
929    }
930
931    delete pkt->req;
932    delete pkt;
933
934    postExecute();
935
936    if (getState() == SimObject::Draining) {
937        advancePC(fault);
938        completeDrain();
939
940        return;
941    }
942
943    advanceInst(fault);
944}
945
946
947void
948TimingSimpleCPU::completeDrain()
949{
950    DPRINTF(Config, "Done draining\n");
951    changeState(SimObject::Drained);
952    drainEvent->process();
953}
954
955void
956TimingSimpleCPU::DcachePort::setPeer(Port *port)
957{
958    Port::setPeer(port);
959
960#if FULL_SYSTEM
961    // Update the ThreadContext's memory ports (Functional/Virtual
962    // Ports)
963    cpu->tcBase()->connectMemPorts(cpu->tcBase());
964#endif
965}
966
967bool
968TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
969{
970    if (pkt->isResponse() && !pkt->wasNacked()) {
971        // delay processing of returned data until next CPU clock edge
972        Tick next_tick = cpu->nextCycle(curTick);
973
974        if (next_tick == curTick) {
975            cpu->completeDataAccess(pkt);
976        } else {
977            tickEvent.schedule(pkt, next_tick);
978        }
979
980        return true;
981    }
982    else if (pkt->wasNacked()) {
983        assert(cpu->_status == DcacheWaitResponse);
984        pkt->reinitNacked();
985        if (!sendTiming(pkt)) {
986            cpu->_status = DcacheRetry;
987            cpu->dcache_pkt = pkt;
988        }
989    }
990    //Snooping a Coherence Request, do nothing
991    return true;
992}
993
994void
995TimingSimpleCPU::DcachePort::DTickEvent::process()
996{
997    cpu->completeDataAccess(pkt);
998}
999
1000void
1001TimingSimpleCPU::DcachePort::recvRetry()
1002{
1003    // we shouldn't get a retry unless we have a packet that we're
1004    // waiting to transmit
1005    assert(cpu->dcache_pkt != NULL);
1006    assert(cpu->_status == DcacheRetry);
1007    PacketPtr tmp = cpu->dcache_pkt;
1008    if (tmp->senderState) {
1009        // This is a packet from a split access.
1010        SplitFragmentSenderState * send_state =
1011            dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
1012        assert(send_state);
1013        PacketPtr big_pkt = send_state->bigPkt;
1014
1015        SplitMainSenderState * main_send_state =
1016            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
1017        assert(main_send_state);
1018
1019        if (sendTiming(tmp)) {
1020            // If we were able to send without retrying, record that fact
1021            // and try sending the other fragment.
1022            send_state->clearFromParent();
1023            int other_index = main_send_state->getPendingFragment();
1024            if (other_index > 0) {
1025                tmp = main_send_state->fragments[other_index];
1026                cpu->dcache_pkt = tmp;
1027                if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
1028                        (big_pkt->isWrite() && cpu->handleWritePacket())) {
1029                    main_send_state->fragments[other_index] = NULL;
1030                }
1031            } else {
1032                cpu->_status = DcacheWaitResponse;
1033                // memory system takes ownership of packet
1034                cpu->dcache_pkt = NULL;
1035            }
1036        }
1037    } else if (sendTiming(tmp)) {
1038        cpu->_status = DcacheWaitResponse;
1039        // memory system takes ownership of packet
1040        cpu->dcache_pkt = NULL;
1041    }
1042}
1043
1044TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
1045    Tick t)
1046    : pkt(_pkt), cpu(_cpu)
1047{
1048    cpu->schedule(this, t);
1049}
1050
1051void
1052TimingSimpleCPU::IprEvent::process()
1053{
1054    cpu->completeDataAccess(pkt);
1055}
1056
1057const char *
1058TimingSimpleCPU::IprEvent::description() const
1059{
1060    return "Timing Simple CPU Delay IPR event";
1061}
1062
1063
1064void
1065TimingSimpleCPU::printAddr(Addr a)
1066{
1067    dcachePort.printAddr(a);
1068}
1069
1070
1071////////////////////////////////////////////////////////////////////////
1072//
1073//  TimingSimpleCPU Simulation Object
1074//
1075TimingSimpleCPU *
1076TimingSimpleCPUParams::create()
1077{
1078    numThreads = 1;
1079#if !FULL_SYSTEM
1080    if (workload.size() != 1)
1081        panic("only one workload allowed");
1082#endif
1083    return new TimingSimpleCPU(this);
1084}
1085