/* * Copyright (c) 2002-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Steve Reinhardt */ #include "arch/locked_mem.hh" #include "arch/mmaped_ipr.hh" #include "arch/utility.hh" #include "base/bigint.hh" #include "cpu/exetrace.hh" #include "cpu/simple/timing.hh" #include "mem/packet.hh" #include "mem/packet_access.hh" #include "params/TimingSimpleCPU.hh" #include "sim/system.hh" using namespace std; using namespace TheISA; Port * TimingSimpleCPU::getPort(const std::string &if_name, int idx) { if (if_name == "dcache_port") return &dcachePort; else if (if_name == "icache_port") return &icachePort; else panic("No Such Port\n"); } void TimingSimpleCPU::init() { BaseCPU::init(); #if FULL_SYSTEM for (int i = 0; i < threadContexts.size(); ++i) { ThreadContext *tc = threadContexts[i]; // initialize CPU, including PC TheISA::initCPU(tc, _cpuId); } #endif } Tick TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt) { panic("TimingSimpleCPU doesn't expect recvAtomic callback!"); return curTick; } void TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt) { //No internal storage to update, jusst return return; } void TimingSimpleCPU::CpuPort::recvStatusChange(Status status) { if (status == RangeChange) { if (!snoopRangeSent) { snoopRangeSent = true; sendStatusChange(Port::RangeChange); } return; } panic("TimingSimpleCPU doesn't expect recvStatusChange callback!"); } void TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t) { pkt = _pkt; cpu->schedule(this, t); } TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p) : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock), fetchEvent(this) { _status = Idle; icachePort.snoopRangeSent = false; dcachePort.snoopRangeSent = false; ifetch_pkt = dcache_pkt = NULL; drainEvent = NULL; previousTick = 0; changeState(SimObject::Running); } TimingSimpleCPU::~TimingSimpleCPU() { } void TimingSimpleCPU::serialize(ostream &os) { SimObject::State so_state = SimObject::getState(); SERIALIZE_ENUM(so_state); BaseSimpleCPU::serialize(os); } void TimingSimpleCPU::unserialize(Checkpoint *cp, const string §ion) { SimObject::State so_state; UNSERIALIZE_ENUM(so_state); BaseSimpleCPU::unserialize(cp, section); } unsigned int TimingSimpleCPU::drain(Event *drain_event) { // TimingSimpleCPU is ready to drain if it's not waiting for // an access to complete. if (_status == Idle || _status == Running || _status == SwitchedOut) { changeState(SimObject::Drained); return 0; } else { changeState(SimObject::Draining); drainEvent = drain_event; return 1; } } void TimingSimpleCPU::resume() { DPRINTF(SimpleCPU, "Resume\n"); if (_status != SwitchedOut && _status != Idle) { assert(system->getMemoryMode() == Enums::timing); if (fetchEvent.scheduled()) deschedule(fetchEvent); schedule(fetchEvent, nextCycle()); } changeState(SimObject::Running); } void TimingSimpleCPU::switchOut() { assert(_status == Running || _status == Idle); _status = SwitchedOut; numCycles += tickToCycles(curTick - previousTick); // If we've been scheduled to resume but are then told to switch out, // we'll need to cancel it. if (fetchEvent.scheduled()) deschedule(fetchEvent); } void TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU) { BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort); // if any of this CPU's ThreadContexts are active, mark the CPU as // running and schedule its tick event. for (int i = 0; i < threadContexts.size(); ++i) { ThreadContext *tc = threadContexts[i]; if (tc->status() == ThreadContext::Active && _status != Running) { _status = Running; break; } } if (_status != Running) { _status = Idle; } assert(threadContexts.size() == 1); previousTick = curTick; } void TimingSimpleCPU::activateContext(int thread_num, int delay) { DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay); assert(thread_num == 0); assert(thread); assert(_status == Idle); notIdleFraction++; _status = Running; // kick things off by initiating the fetch of the next instruction schedule(fetchEvent, nextCycle(curTick + ticks(delay))); } void TimingSimpleCPU::suspendContext(int thread_num) { DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num); assert(thread_num == 0); assert(thread); assert(_status == Running); // just change status to Idle... if status != Running, // completeInst() will not initiate fetch of next instruction. notIdleFraction--; _status = Idle; } bool TimingSimpleCPU::handleReadPacket(PacketPtr pkt) { RequestPtr req = pkt->req; if (req->isMmapedIpr()) { Tick delay; delay = TheISA::handleIprRead(thread->getTC(), pkt); new IprEvent(pkt, this, nextCycle(curTick + delay)); _status = DcacheWaitResponse; dcache_pkt = NULL; } else if (!dcachePort.sendTiming(pkt)) { _status = DcacheRetry; dcache_pkt = pkt; } else { _status = DcacheWaitResponse; // memory system takes ownership of packet dcache_pkt = NULL; } return dcache_pkt == NULL; } template Fault TimingSimpleCPU::read(Addr addr, T &data, unsigned flags) { Fault fault; const int asid = 0; const int thread_id = 0; const Addr pc = thread->readPC(); PacketPtr pkt; RequestPtr req; int block_size = dcachePort.peerBlockSize(); int data_size = sizeof(T); Addr second_addr = roundDown(addr + data_size - 1, block_size); if (second_addr > addr) { Addr first_size = second_addr - addr; Addr second_size = data_size - first_size; // Make sure we'll only need two accesses. assert(roundDown(second_addr + second_size - 1, block_size) == second_addr); /* * Do the translations. If something isn't going to work, find out * before we waste time setting up anything else. */ req = new Request(asid, addr, first_size, flags, pc, _cpuId, thread_id); fault = thread->translateDataReadReq(req); if (fault != NoFault) { delete req; return fault; } Request *second_req = new Request(asid, second_addr, second_size, flags, pc, _cpuId, thread_id); fault = thread->translateDataReadReq(second_req); if (fault != NoFault) { delete req; delete second_req; return fault; } T * data_ptr = new T; /* * This is the big packet that will hold the data we've gotten so far, * if any, and also act as the response we actually give to the * instruction. */ Request *orig_req = new Request(asid, addr, data_size, flags, pc, _cpuId, thread_id); orig_req->setPhys(req->getPaddr(), data_size, flags); PacketPtr big_pkt = new Packet(orig_req, MemCmd::ReadResp, Packet::Broadcast); big_pkt->dataDynamic(data_ptr); SplitMainSenderState * main_send_state = new SplitMainSenderState; big_pkt->senderState = main_send_state; main_send_state->outstanding = 2; // This is the packet we'll process now. pkt = new Packet(req, MemCmd::ReadReq, Packet::Broadcast); pkt->dataStatic((uint8_t *)data_ptr); pkt->senderState = new SplitFragmentSenderState(big_pkt, 0); // This is the second half of the access we'll deal with later. PacketPtr second_pkt = new Packet(second_req, MemCmd::ReadReq, Packet::Broadcast); second_pkt->dataStatic((uint8_t *)data_ptr + first_size); second_pkt->senderState = new SplitFragmentSenderState(big_pkt, 1); if (!handleReadPacket(pkt)) { main_send_state->fragments[1] = second_pkt; } else { handleReadPacket(second_pkt); } } else { req = new Request(asid, addr, data_size, flags, pc, _cpuId, thread_id); // translate to physical address Fault fault = thread->translateDataReadReq(req); if (fault != NoFault) { delete req; return fault; } pkt = new Packet(req, (req->isLocked() ? MemCmd::LoadLockedReq : MemCmd::ReadReq), Packet::Broadcast); pkt->dataDynamic(new T); handleReadPacket(pkt); } if (traceData) { traceData->setData(data); traceData->setAddr(addr); } // This will need a new way to tell if it has a dcache attached. if (req->isUncacheable()) recordEvent("Uncached Read"); return NoFault; } Fault TimingSimpleCPU::translateDataReadAddr(Addr vaddr, Addr &paddr, int size, unsigned flags) { Request *req = new Request(0, vaddr, size, flags, thread->readPC(), _cpuId, 0); if (traceData) { traceData->setAddr(vaddr); } Fault fault = thread->translateDataWriteReq(req); if (fault == NoFault) paddr = req->getPaddr(); delete req; return fault; } #ifndef DOXYGEN_SHOULD_SKIP_THIS template Fault TimingSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags); template Fault TimingSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags); template Fault TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags); template Fault TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags); template Fault TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags); template Fault TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags); #endif //DOXYGEN_SHOULD_SKIP_THIS template<> Fault TimingSimpleCPU::read(Addr addr, double &data, unsigned flags) { return read(addr, *(uint64_t*)&data, flags); } template<> Fault TimingSimpleCPU::read(Addr addr, float &data, unsigned flags) { return read(addr, *(uint32_t*)&data, flags); } template<> Fault TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags) { return read(addr, (uint32_t&)data, flags); } bool TimingSimpleCPU::handleWritePacket() { RequestPtr req = dcache_pkt->req; if (req->isMmapedIpr()) { Tick delay; delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt); new IprEvent(dcache_pkt, this, nextCycle(curTick + delay)); _status = DcacheWaitResponse; dcache_pkt = NULL; } else if (!dcachePort.sendTiming(dcache_pkt)) { _status = DcacheRetry; } else { _status = DcacheWaitResponse; // memory system takes ownership of packet dcache_pkt = NULL; } return dcache_pkt == NULL; } template Fault TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res) { const int asid = 0; const int thread_id = 0; bool do_access = true; // flag to suppress cache access const Addr pc = thread->readPC(); RequestPtr req; int block_size = dcachePort.peerBlockSize(); int data_size = sizeof(T); Addr second_addr = roundDown(addr + data_size - 1, block_size); if (second_addr > addr) { Fault fault; Addr first_size = second_addr - addr; Addr second_size = data_size - first_size; // Make sure we'll only need two accesses. assert(roundDown(second_addr + second_size - 1, block_size) == second_addr); req = new Request(asid, addr, first_size, flags, pc, _cpuId, thread_id); fault = thread->translateDataWriteReq(req); if (fault != NoFault) { delete req; return fault; } RequestPtr second_req = new Request(asid, second_addr, second_size, flags, pc, _cpuId, thread_id); fault = thread->translateDataWriteReq(second_req); if (fault != NoFault) { delete req; delete second_req; return fault; } if (req->isLocked() || req->isSwap() || second_req->isLocked() || second_req->isSwap()) { panic("LL/SCs and swaps can't be split."); } T * data_ptr = new T; /* * This is the big packet that will hold the data we've gotten so far, * if any, and also act as the response we actually give to the * instruction. */ RequestPtr orig_req = new Request(asid, addr, data_size, flags, pc, _cpuId, thread_id); orig_req->setPhys(req->getPaddr(), data_size, flags); PacketPtr big_pkt = new Packet(orig_req, MemCmd::WriteResp, Packet::Broadcast); big_pkt->dataDynamic(data_ptr); big_pkt->set(data); SplitMainSenderState * main_send_state = new SplitMainSenderState; big_pkt->senderState = main_send_state; main_send_state->outstanding = 2; assert(dcache_pkt == NULL); // This is the packet we'll process now. dcache_pkt = new Packet(req, MemCmd::WriteReq, Packet::Broadcast); dcache_pkt->dataStatic((uint8_t *)data_ptr); dcache_pkt->senderState = new SplitFragmentSenderState(big_pkt, 0); // This is the second half of the access we'll deal with later. PacketPtr second_pkt = new Packet(second_req, MemCmd::WriteReq, Packet::Broadcast); second_pkt->dataStatic((uint8_t *)data_ptr + first_size); second_pkt->senderState = new SplitFragmentSenderState(big_pkt, 1); if (!handleWritePacket()) { main_send_state->fragments[1] = second_pkt; } else { dcache_pkt = second_pkt; handleWritePacket(); } } else { req = new Request(asid, addr, data_size, flags, pc, _cpuId, thread_id); // translate to physical address Fault fault = thread->translateDataWriteReq(req); if (fault != NoFault) { delete req; return fault; } MemCmd cmd = MemCmd::WriteReq; // default if (req->isLocked()) { cmd = MemCmd::StoreCondReq; do_access = TheISA::handleLockedWrite(thread, req); } else if (req->isSwap()) { cmd = MemCmd::SwapReq; if (req->isCondSwap()) { assert(res); req->setExtraData(*res); } } // Note: need to allocate dcache_pkt even if do_access is // false, as it's used unconditionally to call completeAcc(). assert(dcache_pkt == NULL); dcache_pkt = new Packet(req, cmd, Packet::Broadcast); dcache_pkt->allocate(); if (req->isMmapedIpr()) dcache_pkt->set(htog(data)); else dcache_pkt->set(data); if (do_access) handleWritePacket(); } if (traceData) { traceData->setAddr(req->getVaddr()); traceData->setData(data); } // This will need a new way to tell if it's hooked up to a cache or not. if (req->isUncacheable()) recordEvent("Uncached Write"); // If the write needs to have a fault on the access, consider calling // changeStatus() and changing it to "bad addr write" or something. return NoFault; } Fault TimingSimpleCPU::translateDataWriteAddr(Addr vaddr, Addr &paddr, int size, unsigned flags) { Request *req = new Request(0, vaddr, size, flags, thread->readPC(), _cpuId, 0); if (traceData) { traceData->setAddr(vaddr); } Fault fault = thread->translateDataWriteReq(req); if (fault == NoFault) paddr = req->getPaddr(); delete req; return fault; } #ifndef DOXYGEN_SHOULD_SKIP_THIS template Fault TimingSimpleCPU::write(Twin32_t data, Addr addr, unsigned flags, uint64_t *res); template Fault TimingSimpleCPU::write(Twin64_t data, Addr addr, unsigned flags, uint64_t *res); template Fault TimingSimpleCPU::write(uint64_t data, Addr addr, unsigned flags, uint64_t *res); template Fault TimingSimpleCPU::write(uint32_t data, Addr addr, unsigned flags, uint64_t *res); template Fault TimingSimpleCPU::write(uint16_t data, Addr addr, unsigned flags, uint64_t *res); template Fault TimingSimpleCPU::write(uint8_t data, Addr addr, unsigned flags, uint64_t *res); #endif //DOXYGEN_SHOULD_SKIP_THIS template<> Fault TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res) { return write(*(uint64_t*)&data, addr, flags, res); } template<> Fault TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res) { return write(*(uint32_t*)&data, addr, flags, res); } template<> Fault TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res) { return write((uint32_t)data, addr, flags, res); } void TimingSimpleCPU::fetch() { DPRINTF(SimpleCPU, "Fetch\n"); if (!curStaticInst || !curStaticInst->isDelayedCommit()) checkForInterrupts(); checkPcEventQueue(); bool fromRom = isRomMicroPC(thread->readMicroPC()); if (!fromRom) { Request *ifetch_req = new Request(); ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0); Fault fault = setupFetchRequest(ifetch_req); ifetch_pkt = new Packet(ifetch_req, MemCmd::ReadReq, Packet::Broadcast); ifetch_pkt->dataStatic(&inst); if (fault == NoFault) { if (!icachePort.sendTiming(ifetch_pkt)) { // Need to wait for retry _status = IcacheRetry; } else { // Need to wait for cache to respond _status = IcacheWaitResponse; // ownership of packet transferred to memory system ifetch_pkt = NULL; } } else { delete ifetch_req; delete ifetch_pkt; // fetch fault: advance directly to next instruction (fault handler) advanceInst(fault); } } else { _status = IcacheWaitResponse; completeIfetch(NULL); } numCycles += tickToCycles(curTick - previousTick); previousTick = curTick; } void TimingSimpleCPU::advanceInst(Fault fault) { if (fault != NoFault || !stayAtPC) advancePC(fault); if (_status == Running) { // kick off fetch of next instruction... callback from icache // response will cause that instruction to be executed, // keeping the CPU running. fetch(); } } void TimingSimpleCPU::completeIfetch(PacketPtr pkt) { DPRINTF(SimpleCPU, "Complete ICache Fetch\n"); // received a response from the icache: execute the received // instruction assert(!pkt || !pkt->isError()); assert(_status == IcacheWaitResponse); _status = Running; numCycles += tickToCycles(curTick - previousTick); previousTick = curTick; if (getState() == SimObject::Draining) { if (pkt) { delete pkt->req; delete pkt; } completeDrain(); return; } preExecute(); if (curStaticInst && curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) { // load or store: just send to dcache Fault fault = curStaticInst->initiateAcc(this, traceData); if (_status != Running) { // instruction will complete in dcache response callback assert(_status == DcacheWaitResponse || _status == DcacheRetry); assert(fault == NoFault); } else { if (fault == NoFault) { // Note that ARM can have NULL packets if the instruction gets // squashed due to predication // early fail on store conditional: complete now assert(dcache_pkt != NULL || THE_ISA == ARM_ISA); fault = curStaticInst->completeAcc(dcache_pkt, this, traceData); if (dcache_pkt != NULL) { delete dcache_pkt->req; delete dcache_pkt; dcache_pkt = NULL; } // keep an instruction count if (fault == NoFault) countInst(); } else if (traceData) { // If there was a fault, we shouldn't trace this instruction. delete traceData; traceData = NULL; } postExecute(); // @todo remove me after debugging with legion done if (curStaticInst && (!curStaticInst->isMicroop() || curStaticInst->isFirstMicroop())) instCnt++; advanceInst(fault); } } else if (curStaticInst) { // non-memory instruction: execute completely now Fault fault = curStaticInst->execute(this, traceData); // keep an instruction count if (fault == NoFault) countInst(); else if (traceData) { // If there was a fault, we shouldn't trace this instruction. delete traceData; traceData = NULL; } postExecute(); // @todo remove me after debugging with legion done if (curStaticInst && (!curStaticInst->isMicroop() || curStaticInst->isFirstMicroop())) instCnt++; advanceInst(fault); } else { advanceInst(NoFault); } if (pkt) { delete pkt->req; delete pkt; } } void TimingSimpleCPU::IcachePort::ITickEvent::process() { cpu->completeIfetch(pkt); } bool TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt) { if (pkt->isResponse() && !pkt->wasNacked()) { // delay processing of returned data until next CPU clock edge Tick next_tick = cpu->nextCycle(curTick); if (next_tick == curTick) cpu->completeIfetch(pkt); else tickEvent.schedule(pkt, next_tick); return true; } else if (pkt->wasNacked()) { assert(cpu->_status == IcacheWaitResponse); pkt->reinitNacked(); if (!sendTiming(pkt)) { cpu->_status = IcacheRetry; cpu->ifetch_pkt = pkt; } } //Snooping a Coherence Request, do nothing return true; } void TimingSimpleCPU::IcachePort::recvRetry() { // we shouldn't get a retry unless we have a packet that we're // waiting to transmit assert(cpu->ifetch_pkt != NULL); assert(cpu->_status == IcacheRetry); PacketPtr tmp = cpu->ifetch_pkt; if (sendTiming(tmp)) { cpu->_status = IcacheWaitResponse; cpu->ifetch_pkt = NULL; } } void TimingSimpleCPU::completeDataAccess(PacketPtr pkt) { // received a response from the dcache: complete the load or store // instruction assert(!pkt->isError()); numCycles += tickToCycles(curTick - previousTick); previousTick = curTick; if (pkt->senderState) { SplitFragmentSenderState * send_state = dynamic_cast(pkt->senderState); assert(send_state); delete pkt->req; delete pkt; PacketPtr big_pkt = send_state->bigPkt; delete send_state; SplitMainSenderState * main_send_state = dynamic_cast(big_pkt->senderState); assert(main_send_state); // Record the fact that this packet is no longer outstanding. assert(main_send_state->outstanding != 0); main_send_state->outstanding--; if (main_send_state->outstanding) { return; } else { delete main_send_state; big_pkt->senderState = NULL; pkt = big_pkt; } } assert(_status == DcacheWaitResponse); _status = Running; Fault fault = curStaticInst->completeAcc(pkt, this, traceData); // keep an instruction count if (fault == NoFault) countInst(); else if (traceData) { // If there was a fault, we shouldn't trace this instruction. delete traceData; traceData = NULL; } // the locked flag may be cleared on the response packet, so check // pkt->req and not pkt to see if it was a load-locked if (pkt->isRead() && pkt->req->isLocked()) { TheISA::handleLockedRead(thread, pkt->req); } delete pkt->req; delete pkt; postExecute(); if (getState() == SimObject::Draining) { advancePC(fault); completeDrain(); return; } advanceInst(fault); } void TimingSimpleCPU::completeDrain() { DPRINTF(Config, "Done draining\n"); changeState(SimObject::Drained); drainEvent->process(); } void TimingSimpleCPU::DcachePort::setPeer(Port *port) { Port::setPeer(port); #if FULL_SYSTEM // Update the ThreadContext's memory ports (Functional/Virtual // Ports) cpu->tcBase()->connectMemPorts(cpu->tcBase()); #endif } bool TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt) { if (pkt->isResponse() && !pkt->wasNacked()) { // delay processing of returned data until next CPU clock edge Tick next_tick = cpu->nextCycle(curTick); if (next_tick == curTick) { cpu->completeDataAccess(pkt); } else { tickEvent.schedule(pkt, next_tick); } return true; } else if (pkt->wasNacked()) { assert(cpu->_status == DcacheWaitResponse); pkt->reinitNacked(); if (!sendTiming(pkt)) { cpu->_status = DcacheRetry; cpu->dcache_pkt = pkt; } } //Snooping a Coherence Request, do nothing return true; } void TimingSimpleCPU::DcachePort::DTickEvent::process() { cpu->completeDataAccess(pkt); } void TimingSimpleCPU::DcachePort::recvRetry() { // we shouldn't get a retry unless we have a packet that we're // waiting to transmit assert(cpu->dcache_pkt != NULL); assert(cpu->_status == DcacheRetry); PacketPtr tmp = cpu->dcache_pkt; if (tmp->senderState) { // This is a packet from a split access. SplitFragmentSenderState * send_state = dynamic_cast(tmp->senderState); assert(send_state); PacketPtr big_pkt = send_state->bigPkt; SplitMainSenderState * main_send_state = dynamic_cast(big_pkt->senderState); assert(main_send_state); if (sendTiming(tmp)) { // If we were able to send without retrying, record that fact // and try sending the other fragment. send_state->clearFromParent(); int other_index = main_send_state->getPendingFragment(); if (other_index > 0) { tmp = main_send_state->fragments[other_index]; cpu->dcache_pkt = tmp; if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) || (big_pkt->isWrite() && cpu->handleWritePacket())) { main_send_state->fragments[other_index] = NULL; } } else { cpu->_status = DcacheWaitResponse; // memory system takes ownership of packet cpu->dcache_pkt = NULL; } } } else if (sendTiming(tmp)) { cpu->_status = DcacheWaitResponse; // memory system takes ownership of packet cpu->dcache_pkt = NULL; } } TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu, Tick t) : pkt(_pkt), cpu(_cpu) { cpu->schedule(this, t); } void TimingSimpleCPU::IprEvent::process() { cpu->completeDataAccess(pkt); } const char * TimingSimpleCPU::IprEvent::description() const { return "Timing Simple CPU Delay IPR event"; } void TimingSimpleCPU::printAddr(Addr a) { dcachePort.printAddr(a); } //////////////////////////////////////////////////////////////////////// // // TimingSimpleCPU Simulation Object // TimingSimpleCPU * TimingSimpleCPUParams::create() { numThreads = 1; #if !FULL_SYSTEM if (workload.size() != 1) panic("only one workload allowed"); #endif return new TimingSimpleCPU(this); }