base.cc revision 11629:22f08c96bf7f
1/*
2 * Copyright (c) 2012, 2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Sandberg
38 */
39
40#include <linux/kvm.h>
41#include <sys/ioctl.h>
42#include <sys/mman.h>
43#include <unistd.h>
44
45#include <cerrno>
46#include <csignal>
47#include <ostream>
48
49#include "arch/mmapped_ipr.hh"
50#include "arch/utility.hh"
51#include "cpu/kvm/base.hh"
52#include "debug/Checkpoint.hh"
53#include "debug/Drain.hh"
54#include "debug/Kvm.hh"
55#include "debug/KvmIO.hh"
56#include "debug/KvmRun.hh"
57#include "params/BaseKvmCPU.hh"
58#include "sim/process.hh"
59#include "sim/system.hh"
60
61#include <signal.h>
62
63/* Used by some KVM macros */
64#define PAGE_SIZE pageSize
65
66BaseKvmCPU::BaseKvmCPU(BaseKvmCPUParams *params)
67    : BaseCPU(params),
68      vm(*params->kvmVM),
69      _status(Idle),
70      dataPort(name() + ".dcache_port", this),
71      instPort(name() + ".icache_port", this),
72      alwaysSyncTC(params->alwaysSyncTC),
73      threadContextDirty(true),
74      kvmStateDirty(false),
75      vcpuID(vm.allocVCPUID()), vcpuFD(-1), vcpuMMapSize(0),
76      _kvmRun(NULL), mmioRing(NULL),
77      pageSize(sysconf(_SC_PAGE_SIZE)),
78      tickEvent(*this),
79      activeInstPeriod(0),
80      perfControlledByTimer(params->usePerfOverflow),
81      hostFactor(params->hostFactor),
82      ctrInsts(0)
83{
84    if (pageSize == -1)
85        panic("KVM: Failed to determine host page size (%i)\n",
86              errno);
87
88    if (FullSystem)
89        thread = new SimpleThread(this, 0, params->system, params->itb, params->dtb,
90                                  params->isa[0]);
91    else
92        thread = new SimpleThread(this, /* thread_num */ 0, params->system,
93                                  params->workload[0], params->itb,
94                                  params->dtb, params->isa[0]);
95
96    thread->setStatus(ThreadContext::Halted);
97    tc = thread->getTC();
98    threadContexts.push_back(tc);
99}
100
101BaseKvmCPU::~BaseKvmCPU()
102{
103    if (_kvmRun)
104        munmap(_kvmRun, vcpuMMapSize);
105    close(vcpuFD);
106}
107
108void
109BaseKvmCPU::init()
110{
111    BaseCPU::init();
112
113    if (numThreads != 1)
114        fatal("KVM: Multithreading not supported");
115
116    tc->initMemProxies(tc);
117
118    // initialize CPU, including PC
119    if (FullSystem && !switchedOut())
120        TheISA::initCPU(tc, tc->contextId());
121}
122
123void
124BaseKvmCPU::startup()
125{
126    const BaseKvmCPUParams * const p(
127        dynamic_cast<const BaseKvmCPUParams *>(params()));
128
129    Kvm &kvm(*vm.kvm);
130
131    BaseCPU::startup();
132
133    assert(vcpuFD == -1);
134
135    // Tell the VM that a CPU is about to start.
136    vm.cpuStartup();
137
138    // We can't initialize KVM CPUs in BaseKvmCPU::init() since we are
139    // not guaranteed that the parent KVM VM has initialized at that
140    // point. Initialize virtual CPUs here instead.
141    vcpuFD = vm.createVCPU(vcpuID);
142
143    // Map the KVM run structure */
144    vcpuMMapSize = kvm.getVCPUMMapSize();
145    _kvmRun = (struct kvm_run *)mmap(0, vcpuMMapSize,
146                                     PROT_READ | PROT_WRITE, MAP_SHARED,
147                                     vcpuFD, 0);
148    if (_kvmRun == MAP_FAILED)
149        panic("KVM: Failed to map run data structure\n");
150
151    // Setup a pointer to the MMIO ring buffer if coalesced MMIO is
152    // available. The offset into the KVM's communication page is
153    // provided by the coalesced MMIO capability.
154    int mmioOffset(kvm.capCoalescedMMIO());
155    if (!p->useCoalescedMMIO) {
156        inform("KVM: Coalesced MMIO disabled by config.\n");
157    } else if (mmioOffset) {
158        inform("KVM: Coalesced IO available\n");
159        mmioRing = (struct kvm_coalesced_mmio_ring *)(
160            (char *)_kvmRun + (mmioOffset * pageSize));
161    } else {
162        inform("KVM: Coalesced not supported by host OS\n");
163    }
164
165    thread->startup();
166
167    Event *startupEvent(
168        new EventWrapper<BaseKvmCPU,
169                         &BaseKvmCPU::startupThread>(this, true));
170    schedule(startupEvent, curTick());
171}
172
173BaseKvmCPU::Status
174BaseKvmCPU::KVMCpuPort::nextIOState() const
175{
176    return (activeMMIOReqs || pendingMMIOPkts.size())
177        ? RunningMMIOPending : RunningServiceCompletion;
178}
179
180Tick
181BaseKvmCPU::KVMCpuPort::submitIO(PacketPtr pkt)
182{
183    if (cpu->system->isAtomicMode()) {
184        Tick delay = sendAtomic(pkt);
185        delete pkt->req;
186        delete pkt;
187        return delay;
188    } else {
189        if (pendingMMIOPkts.empty() && sendTimingReq(pkt)) {
190            activeMMIOReqs++;
191        } else {
192            pendingMMIOPkts.push(pkt);
193        }
194        // Return value is irrelevant for timing-mode accesses.
195        return 0;
196    }
197}
198
199bool
200BaseKvmCPU::KVMCpuPort::recvTimingResp(PacketPtr pkt)
201{
202    DPRINTF(KvmIO, "KVM: Finished timing request\n");
203
204    delete pkt->req;
205    delete pkt;
206    activeMMIOReqs--;
207
208    // We can switch back into KVM when all pending and in-flight MMIO
209    // operations have completed.
210    if (!(activeMMIOReqs || pendingMMIOPkts.size())) {
211        DPRINTF(KvmIO, "KVM: Finished all outstanding timing requests\n");
212        cpu->finishMMIOPending();
213    }
214    return true;
215}
216
217void
218BaseKvmCPU::KVMCpuPort::recvReqRetry()
219{
220    DPRINTF(KvmIO, "KVM: Retry for timing request\n");
221
222    assert(pendingMMIOPkts.size());
223
224    // Assuming that we can issue infinite requests this cycle is a bit
225    // unrealistic, but it's not worth modeling something more complex in
226    // KVM.
227    while (pendingMMIOPkts.size() && sendTimingReq(pendingMMIOPkts.front())) {
228        pendingMMIOPkts.pop();
229        activeMMIOReqs++;
230    }
231}
232
233void
234BaseKvmCPU::finishMMIOPending()
235{
236    assert(_status = RunningMMIOPending);
237    assert(!tickEvent.scheduled());
238
239    _status = RunningServiceCompletion;
240    schedule(tickEvent, nextCycle());
241}
242
243void
244BaseKvmCPU::startupThread()
245{
246    // Do thread-specific initialization. We need to setup signal
247    // delivery for counters and timers from within the thread that
248    // will execute the event queue to ensure that signals are
249    // delivered to the right threads.
250    const BaseKvmCPUParams * const p(
251        dynamic_cast<const BaseKvmCPUParams *>(params()));
252
253    vcpuThread = pthread_self();
254
255    // Setup signal handlers. This has to be done after the vCPU is
256    // created since it manipulates the vCPU signal mask.
257    setupSignalHandler();
258
259    setupCounters();
260
261    if (p->usePerfOverflow)
262        runTimer.reset(new PerfKvmTimer(hwCycles,
263                                        KVM_KICK_SIGNAL,
264                                        p->hostFactor,
265                                        p->hostFreq));
266    else
267        runTimer.reset(new PosixKvmTimer(KVM_KICK_SIGNAL, CLOCK_MONOTONIC,
268                                         p->hostFactor,
269                                         p->hostFreq));
270
271}
272
273void
274BaseKvmCPU::regStats()
275{
276    using namespace Stats;
277
278    BaseCPU::regStats();
279
280    numInsts
281        .name(name() + ".committedInsts")
282        .desc("Number of instructions committed")
283        ;
284
285    numVMExits
286        .name(name() + ".numVMExits")
287        .desc("total number of KVM exits")
288        ;
289
290    numVMHalfEntries
291        .name(name() + ".numVMHalfEntries")
292        .desc("number of KVM entries to finalize pending operations")
293        ;
294
295    numExitSignal
296        .name(name() + ".numExitSignal")
297        .desc("exits due to signal delivery")
298        ;
299
300    numMMIO
301        .name(name() + ".numMMIO")
302        .desc("number of VM exits due to memory mapped IO")
303        ;
304
305    numCoalescedMMIO
306        .name(name() + ".numCoalescedMMIO")
307        .desc("number of coalesced memory mapped IO requests")
308        ;
309
310    numIO
311        .name(name() + ".numIO")
312        .desc("number of VM exits due to legacy IO")
313        ;
314
315    numHalt
316        .name(name() + ".numHalt")
317        .desc("number of VM exits due to wait for interrupt instructions")
318        ;
319
320    numInterrupts
321        .name(name() + ".numInterrupts")
322        .desc("number of interrupts delivered")
323        ;
324
325    numHypercalls
326        .name(name() + ".numHypercalls")
327        .desc("number of hypercalls")
328        ;
329}
330
331void
332BaseKvmCPU::serializeThread(CheckpointOut &cp, ThreadID tid) const
333{
334    if (DTRACE(Checkpoint)) {
335        DPRINTF(Checkpoint, "KVM: Serializing thread %i:\n", tid);
336        dump();
337    }
338
339    assert(tid == 0);
340    assert(_status == Idle);
341    thread->serialize(cp);
342}
343
344void
345BaseKvmCPU::unserializeThread(CheckpointIn &cp, ThreadID tid)
346{
347    DPRINTF(Checkpoint, "KVM: Unserialize thread %i:\n", tid);
348
349    assert(tid == 0);
350    assert(_status == Idle);
351    thread->unserialize(cp);
352    threadContextDirty = true;
353}
354
355DrainState
356BaseKvmCPU::drain()
357{
358    if (switchedOut())
359        return DrainState::Drained;
360
361    DPRINTF(Drain, "BaseKvmCPU::drain\n");
362    switch (_status) {
363      case Running:
364        // The base KVM code is normally ready when it is in the
365        // Running state, but the architecture specific code might be
366        // of a different opinion. This may happen when the CPU been
367        // notified of an event that hasn't been accepted by the vCPU
368        // yet.
369        if (!archIsDrained())
370            return DrainState::Draining;
371
372        // The state of the CPU is consistent, so we don't need to do
373        // anything special to drain it. We simply de-schedule the
374        // tick event and enter the Idle state to prevent nasty things
375        // like MMIOs from happening.
376        if (tickEvent.scheduled())
377            deschedule(tickEvent);
378        _status = Idle;
379
380        /** FALLTHROUGH */
381      case Idle:
382        // Idle, no need to drain
383        assert(!tickEvent.scheduled());
384
385        // Sync the thread context here since we'll need it when we
386        // switch CPUs or checkpoint the CPU.
387        syncThreadContext();
388
389        return DrainState::Drained;
390
391      case RunningServiceCompletion:
392        // The CPU has just requested a service that was handled in
393        // the RunningService state, but the results have still not
394        // been reported to the CPU. Now, we /could/ probably just
395        // update the register state ourselves instead of letting KVM
396        // handle it, but that would be tricky. Instead, we enter KVM
397        // and let it do its stuff.
398        DPRINTF(Drain, "KVM CPU is waiting for service completion, "
399                "requesting drain.\n");
400        return DrainState::Draining;
401
402      case RunningMMIOPending:
403        // We need to drain since there are in-flight timing accesses
404        DPRINTF(Drain, "KVM CPU is waiting for timing accesses to complete, "
405                "requesting drain.\n");
406        return DrainState::Draining;
407
408      case RunningService:
409        // We need to drain since the CPU is waiting for service (e.g., MMIOs)
410        DPRINTF(Drain, "KVM CPU is waiting for service, requesting drain.\n");
411        return DrainState::Draining;
412
413      default:
414        panic("KVM: Unhandled CPU state in drain()\n");
415        return DrainState::Drained;
416    }
417}
418
419void
420BaseKvmCPU::drainResume()
421{
422    assert(!tickEvent.scheduled());
423
424    // We might have been switched out. In that case, we don't need to
425    // do anything.
426    if (switchedOut())
427        return;
428
429    DPRINTF(Kvm, "drainResume\n");
430    verifyMemoryMode();
431
432    // The tick event is de-scheduled as a part of the draining
433    // process. Re-schedule it if the thread context is active.
434    if (tc->status() == ThreadContext::Active) {
435        schedule(tickEvent, nextCycle());
436        _status = Running;
437    } else {
438        _status = Idle;
439    }
440}
441
442void
443BaseKvmCPU::notifyFork()
444{
445    // We should have drained prior to forking, which means that the
446    // tick event shouldn't be scheduled and the CPU is idle.
447    assert(!tickEvent.scheduled());
448    assert(_status == Idle);
449
450    if (vcpuFD != -1) {
451        if (close(vcpuFD) == -1)
452            warn("kvm CPU: notifyFork failed to close vcpuFD\n");
453
454        if (_kvmRun)
455            munmap(_kvmRun, vcpuMMapSize);
456
457        vcpuFD = -1;
458        _kvmRun = NULL;
459
460        hwInstructions.detach();
461        hwCycles.detach();
462    }
463}
464
465void
466BaseKvmCPU::switchOut()
467{
468    DPRINTF(Kvm, "switchOut\n");
469
470    BaseCPU::switchOut();
471
472    // We should have drained prior to executing a switchOut, which
473    // means that the tick event shouldn't be scheduled and the CPU is
474    // idle.
475    assert(!tickEvent.scheduled());
476    assert(_status == Idle);
477}
478
479void
480BaseKvmCPU::takeOverFrom(BaseCPU *cpu)
481{
482    DPRINTF(Kvm, "takeOverFrom\n");
483
484    BaseCPU::takeOverFrom(cpu);
485
486    // We should have drained prior to executing a switchOut, which
487    // means that the tick event shouldn't be scheduled and the CPU is
488    // idle.
489    assert(!tickEvent.scheduled());
490    assert(_status == Idle);
491    assert(threadContexts.size() == 1);
492
493    // Force an update of the KVM state here instead of flagging the
494    // TC as dirty. This is not ideal from a performance point of
495    // view, but it makes debugging easier as it allows meaningful KVM
496    // state to be dumped before and after a takeover.
497    updateKvmState();
498    threadContextDirty = false;
499}
500
501void
502BaseKvmCPU::verifyMemoryMode() const
503{
504    if (!(system->bypassCaches())) {
505        fatal("The KVM-based CPUs requires the memory system to be in the "
506              "'noncaching' mode.\n");
507    }
508}
509
510void
511BaseKvmCPU::wakeup(ThreadID tid)
512{
513    DPRINTF(Kvm, "wakeup()\n");
514    // This method might have been called from another
515    // context. Migrate to this SimObject's event queue when
516    // delivering the wakeup signal.
517    EventQueue::ScopedMigration migrate(eventQueue());
518
519    // Kick the vCPU to get it to come out of KVM.
520    kick();
521
522    if (thread->status() != ThreadContext::Suspended)
523        return;
524
525    thread->activate();
526}
527
528void
529BaseKvmCPU::activateContext(ThreadID thread_num)
530{
531    DPRINTF(Kvm, "ActivateContext %d\n", thread_num);
532
533    assert(thread_num == 0);
534    assert(thread);
535
536    assert(_status == Idle);
537    assert(!tickEvent.scheduled());
538
539    numCycles += ticksToCycles(thread->lastActivate - thread->lastSuspend);
540
541    schedule(tickEvent, clockEdge(Cycles(0)));
542    _status = Running;
543}
544
545
546void
547BaseKvmCPU::suspendContext(ThreadID thread_num)
548{
549    DPRINTF(Kvm, "SuspendContext %d\n", thread_num);
550
551    assert(thread_num == 0);
552    assert(thread);
553
554    if (_status == Idle)
555        return;
556
557    assert(_status == Running || _status == RunningServiceCompletion);
558
559    // The tick event may no be scheduled if the quest has requested
560    // the monitor to wait for interrupts. The normal CPU models can
561    // get their tick events descheduled by quiesce instructions, but
562    // that can't happen here.
563    if (tickEvent.scheduled())
564        deschedule(tickEvent);
565
566    _status = Idle;
567}
568
569void
570BaseKvmCPU::deallocateContext(ThreadID thread_num)
571{
572    // for now, these are equivalent
573    suspendContext(thread_num);
574}
575
576void
577BaseKvmCPU::haltContext(ThreadID thread_num)
578{
579    // for now, these are equivalent
580    suspendContext(thread_num);
581}
582
583ThreadContext *
584BaseKvmCPU::getContext(int tn)
585{
586    assert(tn == 0);
587    syncThreadContext();
588    return tc;
589}
590
591
592Counter
593BaseKvmCPU::totalInsts() const
594{
595    return ctrInsts;
596}
597
598Counter
599BaseKvmCPU::totalOps() const
600{
601    hack_once("Pretending totalOps is equivalent to totalInsts()\n");
602    return ctrInsts;
603}
604
605void
606BaseKvmCPU::dump() const
607{
608    inform("State dumping not implemented.");
609}
610
611void
612BaseKvmCPU::tick()
613{
614    Tick delay(0);
615    assert(_status != Idle && _status != RunningMMIOPending);
616
617    switch (_status) {
618      case RunningService:
619        // handleKvmExit() will determine the next state of the CPU
620        delay = handleKvmExit();
621
622        if (tryDrain())
623            _status = Idle;
624        break;
625
626      case RunningServiceCompletion:
627      case Running: {
628          const uint64_t nextInstEvent(
629              !comInstEventQueue[0]->empty() ?
630              comInstEventQueue[0]->nextTick() : UINT64_MAX);
631          // Enter into KVM and complete pending IO instructions if we
632          // have an instruction event pending.
633          const Tick ticksToExecute(
634              nextInstEvent > ctrInsts ?
635              curEventQueue()->nextTick() - curTick() : 0);
636
637          if (alwaysSyncTC)
638              threadContextDirty = true;
639
640          // We might need to update the KVM state.
641          syncKvmState();
642
643          // Setup any pending instruction count breakpoints using
644          // PerfEvent if we are going to execute more than just an IO
645          // completion.
646          if (ticksToExecute > 0)
647              setupInstStop();
648
649          DPRINTF(KvmRun, "Entering KVM...\n");
650          if (drainState() == DrainState::Draining) {
651              // Force an immediate exit from KVM after completing
652              // pending operations. The architecture-specific code
653              // takes care to run until it is in a state where it can
654              // safely be drained.
655              delay = kvmRunDrain();
656          } else {
657              delay = kvmRun(ticksToExecute);
658          }
659
660          // The CPU might have been suspended before entering into
661          // KVM. Assume that the CPU was suspended /before/ entering
662          // into KVM and skip the exit handling.
663          if (_status == Idle)
664              break;
665
666          // Entering into KVM implies that we'll have to reload the thread
667          // context from KVM if we want to access it. Flag the KVM state as
668          // dirty with respect to the cached thread context.
669          kvmStateDirty = true;
670
671          if (alwaysSyncTC)
672              syncThreadContext();
673
674          // Enter into the RunningService state unless the
675          // simulation was stopped by a timer.
676          if (_kvmRun->exit_reason !=  KVM_EXIT_INTR) {
677              _status = RunningService;
678          } else {
679              ++numExitSignal;
680              _status = Running;
681          }
682
683          // Service any pending instruction events. The vCPU should
684          // have exited in time for the event using the instruction
685          // counter configured by setupInstStop().
686          comInstEventQueue[0]->serviceEvents(ctrInsts);
687          system->instEventQueue.serviceEvents(system->totalNumInsts);
688
689          if (tryDrain())
690              _status = Idle;
691      } break;
692
693      default:
694        panic("BaseKvmCPU entered tick() in an illegal state (%i)\n",
695              _status);
696    }
697
698    // Schedule a new tick if we are still running
699    if (_status != Idle && _status != RunningMMIOPending)
700        schedule(tickEvent, clockEdge(ticksToCycles(delay)));
701}
702
703Tick
704BaseKvmCPU::kvmRunDrain()
705{
706    // By default, the only thing we need to drain is a pending IO
707    // operation which assumes that we are in the
708    // RunningServiceCompletion or RunningMMIOPending state.
709    assert(_status == RunningServiceCompletion ||
710           _status == RunningMMIOPending);
711
712    // Deliver the data from the pending IO operation and immediately
713    // exit.
714    return kvmRun(0);
715}
716
717uint64_t
718BaseKvmCPU::getHostCycles() const
719{
720    return hwCycles.read();
721}
722
723Tick
724BaseKvmCPU::kvmRun(Tick ticks)
725{
726    Tick ticksExecuted;
727    fatal_if(vcpuFD == -1,
728             "Trying to run a KVM CPU in a forked child process. "
729             "This is not supported.\n");
730    DPRINTF(KvmRun, "KVM: Executing for %i ticks\n", ticks);
731
732    if (ticks == 0) {
733        // Settings ticks == 0 is a special case which causes an entry
734        // into KVM that finishes pending operations (e.g., IO) and
735        // then immediately exits.
736        DPRINTF(KvmRun, "KVM: Delivering IO without full guest entry\n");
737
738        ++numVMHalfEntries;
739
740        // Send a KVM_KICK_SIGNAL to the vCPU thread (i.e., this
741        // thread). The KVM control signal is masked while executing
742        // in gem5 and gets unmasked temporarily as when entering
743        // KVM. See setSignalMask() and setupSignalHandler().
744        kick();
745
746        // Start the vCPU. KVM will check for signals after completing
747        // pending operations (IO). Since the KVM_KICK_SIGNAL is
748        // pending, this forces an immediate exit to gem5 again. We
749        // don't bother to setup timers since this shouldn't actually
750        // execute any code (other than completing half-executed IO
751        // instructions) in the guest.
752        ioctlRun();
753
754        // We always execute at least one cycle to prevent the
755        // BaseKvmCPU::tick() to be rescheduled on the same tick
756        // twice.
757        ticksExecuted = clockPeriod();
758    } else {
759        // This method is executed as a result of a tick event. That
760        // means that the event queue will be locked when entering the
761        // method. We temporarily unlock the event queue to allow
762        // other threads to steal control of this thread to inject
763        // interrupts. They will typically lock the queue and then
764        // force an exit from KVM by kicking the vCPU.
765        EventQueue::ScopedRelease release(curEventQueue());
766
767        if (ticks < runTimer->resolution()) {
768            DPRINTF(KvmRun, "KVM: Adjusting tick count (%i -> %i)\n",
769                    ticks, runTimer->resolution());
770            ticks = runTimer->resolution();
771        }
772
773        // Get hardware statistics after synchronizing contexts. The KVM
774        // state update might affect guest cycle counters.
775        uint64_t baseCycles(getHostCycles());
776        uint64_t baseInstrs(hwInstructions.read());
777
778        // Arm the run timer and start the cycle timer if it isn't
779        // controlled by the overflow timer. Starting/stopping the cycle
780        // timer automatically starts the other perf timers as they are in
781        // the same counter group.
782        runTimer->arm(ticks);
783        if (!perfControlledByTimer)
784            hwCycles.start();
785
786        ioctlRun();
787
788        runTimer->disarm();
789        if (!perfControlledByTimer)
790            hwCycles.stop();
791
792        // The control signal may have been delivered after we exited
793        // from KVM. It will be pending in that case since it is
794        // masked when we aren't executing in KVM. Discard it to make
795        // sure we don't deliver it immediately next time we try to
796        // enter into KVM.
797        discardPendingSignal(KVM_KICK_SIGNAL);
798
799        const uint64_t hostCyclesExecuted(getHostCycles() - baseCycles);
800        const uint64_t simCyclesExecuted(hostCyclesExecuted * hostFactor);
801        const uint64_t instsExecuted(hwInstructions.read() - baseInstrs);
802        ticksExecuted = runTimer->ticksFromHostCycles(hostCyclesExecuted);
803
804        /* Update statistics */
805        numCycles += simCyclesExecuted;;
806        numInsts += instsExecuted;
807        ctrInsts += instsExecuted;
808        system->totalNumInsts += instsExecuted;
809
810        DPRINTF(KvmRun,
811                "KVM: Executed %i instructions in %i cycles "
812                "(%i ticks, sim cycles: %i).\n",
813                instsExecuted, hostCyclesExecuted, ticksExecuted, simCyclesExecuted);
814    }
815
816    ++numVMExits;
817
818    return ticksExecuted + flushCoalescedMMIO();
819}
820
821void
822BaseKvmCPU::kvmNonMaskableInterrupt()
823{
824    ++numInterrupts;
825    if (ioctl(KVM_NMI) == -1)
826        panic("KVM: Failed to deliver NMI to virtual CPU\n");
827}
828
829void
830BaseKvmCPU::kvmInterrupt(const struct kvm_interrupt &interrupt)
831{
832    ++numInterrupts;
833    if (ioctl(KVM_INTERRUPT, (void *)&interrupt) == -1)
834        panic("KVM: Failed to deliver interrupt to virtual CPU\n");
835}
836
837void
838BaseKvmCPU::getRegisters(struct kvm_regs &regs) const
839{
840    if (ioctl(KVM_GET_REGS, &regs) == -1)
841        panic("KVM: Failed to get guest registers\n");
842}
843
844void
845BaseKvmCPU::setRegisters(const struct kvm_regs &regs)
846{
847    if (ioctl(KVM_SET_REGS, (void *)&regs) == -1)
848        panic("KVM: Failed to set guest registers\n");
849}
850
851void
852BaseKvmCPU::getSpecialRegisters(struct kvm_sregs &regs) const
853{
854    if (ioctl(KVM_GET_SREGS, &regs) == -1)
855        panic("KVM: Failed to get guest special registers\n");
856}
857
858void
859BaseKvmCPU::setSpecialRegisters(const struct kvm_sregs &regs)
860{
861    if (ioctl(KVM_SET_SREGS, (void *)&regs) == -1)
862        panic("KVM: Failed to set guest special registers\n");
863}
864
865void
866BaseKvmCPU::getFPUState(struct kvm_fpu &state) const
867{
868    if (ioctl(KVM_GET_FPU, &state) == -1)
869        panic("KVM: Failed to get guest FPU state\n");
870}
871
872void
873BaseKvmCPU::setFPUState(const struct kvm_fpu &state)
874{
875    if (ioctl(KVM_SET_FPU, (void *)&state) == -1)
876        panic("KVM: Failed to set guest FPU state\n");
877}
878
879
880void
881BaseKvmCPU::setOneReg(uint64_t id, const void *addr)
882{
883#ifdef KVM_SET_ONE_REG
884    struct kvm_one_reg reg;
885    reg.id = id;
886    reg.addr = (uint64_t)addr;
887
888    if (ioctl(KVM_SET_ONE_REG, &reg) == -1) {
889        panic("KVM: Failed to set register (0x%x) value (errno: %i)\n",
890              id, errno);
891    }
892#else
893    panic("KVM_SET_ONE_REG is unsupported on this platform.\n");
894#endif
895}
896
897void
898BaseKvmCPU::getOneReg(uint64_t id, void *addr) const
899{
900#ifdef KVM_GET_ONE_REG
901    struct kvm_one_reg reg;
902    reg.id = id;
903    reg.addr = (uint64_t)addr;
904
905    if (ioctl(KVM_GET_ONE_REG, &reg) == -1) {
906        panic("KVM: Failed to get register (0x%x) value (errno: %i)\n",
907              id, errno);
908    }
909#else
910    panic("KVM_GET_ONE_REG is unsupported on this platform.\n");
911#endif
912}
913
914std::string
915BaseKvmCPU::getAndFormatOneReg(uint64_t id) const
916{
917#ifdef KVM_GET_ONE_REG
918    std::ostringstream ss;
919
920    ss.setf(std::ios::hex, std::ios::basefield);
921    ss.setf(std::ios::showbase);
922#define HANDLE_INTTYPE(len)                      \
923    case KVM_REG_SIZE_U ## len: {                \
924        uint ## len ## _t value;                 \
925        getOneReg(id, &value);                   \
926        ss << value;                             \
927    }  break
928
929#define HANDLE_ARRAY(len)                               \
930    case KVM_REG_SIZE_U ## len: {                       \
931        uint8_t value[len / 8];                         \
932        getOneReg(id, value);                           \
933        ccprintf(ss, "[0x%x", value[0]);                \
934        for (int i = 1; i < len  / 8; ++i)              \
935            ccprintf(ss, ", 0x%x", value[i]);           \
936        ccprintf(ss, "]");                              \
937      } break
938
939    switch (id & KVM_REG_SIZE_MASK) {
940        HANDLE_INTTYPE(8);
941        HANDLE_INTTYPE(16);
942        HANDLE_INTTYPE(32);
943        HANDLE_INTTYPE(64);
944        HANDLE_ARRAY(128);
945        HANDLE_ARRAY(256);
946        HANDLE_ARRAY(512);
947        HANDLE_ARRAY(1024);
948      default:
949        ss << "??";
950    }
951
952#undef HANDLE_INTTYPE
953#undef HANDLE_ARRAY
954
955    return ss.str();
956#else
957    panic("KVM_GET_ONE_REG is unsupported on this platform.\n");
958#endif
959}
960
961void
962BaseKvmCPU::syncThreadContext()
963{
964    if (!kvmStateDirty)
965        return;
966
967    assert(!threadContextDirty);
968
969    updateThreadContext();
970    kvmStateDirty = false;
971}
972
973void
974BaseKvmCPU::syncKvmState()
975{
976    if (!threadContextDirty)
977        return;
978
979    assert(!kvmStateDirty);
980
981    updateKvmState();
982    threadContextDirty = false;
983}
984
985Tick
986BaseKvmCPU::handleKvmExit()
987{
988    DPRINTF(KvmRun, "handleKvmExit (exit_reason: %i)\n", _kvmRun->exit_reason);
989    assert(_status == RunningService);
990
991    // Switch into the running state by default. Individual handlers
992    // can override this.
993    _status = Running;
994    switch (_kvmRun->exit_reason) {
995      case KVM_EXIT_UNKNOWN:
996        return handleKvmExitUnknown();
997
998      case KVM_EXIT_EXCEPTION:
999        return handleKvmExitException();
1000
1001      case KVM_EXIT_IO:
1002      {
1003        ++numIO;
1004        Tick ticks = handleKvmExitIO();
1005        _status = dataPort.nextIOState();
1006        return ticks;
1007      }
1008
1009      case KVM_EXIT_HYPERCALL:
1010        ++numHypercalls;
1011        return handleKvmExitHypercall();
1012
1013      case KVM_EXIT_HLT:
1014        /* The guest has halted and is waiting for interrupts */
1015        DPRINTF(Kvm, "handleKvmExitHalt\n");
1016        ++numHalt;
1017
1018        // Suspend the thread until the next interrupt arrives
1019        thread->suspend();
1020
1021        // This is actually ignored since the thread is suspended.
1022        return 0;
1023
1024      case KVM_EXIT_MMIO:
1025      {
1026        /* Service memory mapped IO requests */
1027        DPRINTF(KvmIO, "KVM: Handling MMIO (w: %u, addr: 0x%x, len: %u)\n",
1028                _kvmRun->mmio.is_write,
1029                _kvmRun->mmio.phys_addr, _kvmRun->mmio.len);
1030
1031        ++numMMIO;
1032        Tick ticks = doMMIOAccess(_kvmRun->mmio.phys_addr, _kvmRun->mmio.data,
1033                                  _kvmRun->mmio.len, _kvmRun->mmio.is_write);
1034        // doMMIOAccess could have triggered a suspend, in which case we don't
1035        // want to overwrite the _status.
1036        if (_status != Idle)
1037            _status = dataPort.nextIOState();
1038        return ticks;
1039      }
1040
1041      case KVM_EXIT_IRQ_WINDOW_OPEN:
1042        return handleKvmExitIRQWindowOpen();
1043
1044      case KVM_EXIT_FAIL_ENTRY:
1045        return handleKvmExitFailEntry();
1046
1047      case KVM_EXIT_INTR:
1048        /* KVM was interrupted by a signal, restart it in the next
1049         * tick. */
1050        return 0;
1051
1052      case KVM_EXIT_INTERNAL_ERROR:
1053        panic("KVM: Internal error (suberror: %u)\n",
1054              _kvmRun->internal.suberror);
1055
1056      default:
1057        dump();
1058        panic("KVM: Unexpected exit (exit_reason: %u)\n", _kvmRun->exit_reason);
1059    }
1060}
1061
1062Tick
1063BaseKvmCPU::handleKvmExitIO()
1064{
1065    panic("KVM: Unhandled guest IO (dir: %i, size: %i, port: 0x%x, count: %i)\n",
1066          _kvmRun->io.direction, _kvmRun->io.size,
1067          _kvmRun->io.port, _kvmRun->io.count);
1068}
1069
1070Tick
1071BaseKvmCPU::handleKvmExitHypercall()
1072{
1073    panic("KVM: Unhandled hypercall\n");
1074}
1075
1076Tick
1077BaseKvmCPU::handleKvmExitIRQWindowOpen()
1078{
1079    warn("KVM: Unhandled IRQ window.\n");
1080    return 0;
1081}
1082
1083
1084Tick
1085BaseKvmCPU::handleKvmExitUnknown()
1086{
1087    dump();
1088    panic("KVM: Unknown error when starting vCPU (hw reason: 0x%llx)\n",
1089          _kvmRun->hw.hardware_exit_reason);
1090}
1091
1092Tick
1093BaseKvmCPU::handleKvmExitException()
1094{
1095    dump();
1096    panic("KVM: Got exception when starting vCPU "
1097          "(exception: %u, error_code: %u)\n",
1098          _kvmRun->ex.exception, _kvmRun->ex.error_code);
1099}
1100
1101Tick
1102BaseKvmCPU::handleKvmExitFailEntry()
1103{
1104    dump();
1105    panic("KVM: Failed to enter virtualized mode (hw reason: 0x%llx)\n",
1106          _kvmRun->fail_entry.hardware_entry_failure_reason);
1107}
1108
1109Tick
1110BaseKvmCPU::doMMIOAccess(Addr paddr, void *data, int size, bool write)
1111{
1112    ThreadContext *tc(thread->getTC());
1113    syncThreadContext();
1114
1115    RequestPtr mmio_req = new Request(paddr, size, Request::UNCACHEABLE,
1116                                      dataMasterId());
1117    mmio_req->setContext(tc->contextId());
1118    // Some architectures do need to massage physical addresses a bit
1119    // before they are inserted into the memory system. This enables
1120    // APIC accesses on x86 and m5ops where supported through a MMIO
1121    // interface.
1122    BaseTLB::Mode tlb_mode(write ? BaseTLB::Write : BaseTLB::Read);
1123    Fault fault(tc->getDTBPtr()->finalizePhysical(mmio_req, tc, tlb_mode));
1124    if (fault != NoFault)
1125        warn("Finalization of MMIO address failed: %s\n", fault->name());
1126
1127
1128    const MemCmd cmd(write ? MemCmd::WriteReq : MemCmd::ReadReq);
1129    PacketPtr pkt = new Packet(mmio_req, cmd);
1130    pkt->dataStatic(data);
1131
1132    if (mmio_req->isMmappedIpr()) {
1133        // We currently assume that there is no need to migrate to a
1134        // different event queue when doing IPRs. Currently, IPRs are
1135        // only used for m5ops, so it should be a valid assumption.
1136        const Cycles ipr_delay(write ?
1137                             TheISA::handleIprWrite(tc, pkt) :
1138                             TheISA::handleIprRead(tc, pkt));
1139        threadContextDirty = true;
1140        delete pkt->req;
1141        delete pkt;
1142        return clockPeriod() * ipr_delay;
1143    } else {
1144        // Temporarily lock and migrate to the event queue of the
1145        // VM. This queue is assumed to "own" all devices we need to
1146        // access if running in multi-core mode.
1147        EventQueue::ScopedMigration migrate(vm.eventQueue());
1148
1149        return dataPort.submitIO(pkt);
1150    }
1151}
1152
1153void
1154BaseKvmCPU::setSignalMask(const sigset_t *mask)
1155{
1156    std::unique_ptr<struct kvm_signal_mask> kvm_mask;
1157
1158    if (mask) {
1159        kvm_mask.reset((struct kvm_signal_mask *)operator new(
1160                           sizeof(struct kvm_signal_mask) + sizeof(*mask)));
1161        // The kernel and the user-space headers have different ideas
1162        // about the size of sigset_t. This seems like a massive hack,
1163        // but is actually what qemu does.
1164        assert(sizeof(*mask) >= 8);
1165        kvm_mask->len = 8;
1166        memcpy(kvm_mask->sigset, mask, kvm_mask->len);
1167    }
1168
1169    if (ioctl(KVM_SET_SIGNAL_MASK, (void *)kvm_mask.get()) == -1)
1170        panic("KVM: Failed to set vCPU signal mask (errno: %i)\n",
1171              errno);
1172}
1173
1174int
1175BaseKvmCPU::ioctl(int request, long p1) const
1176{
1177    if (vcpuFD == -1)
1178        panic("KVM: CPU ioctl called before initialization\n");
1179
1180    return ::ioctl(vcpuFD, request, p1);
1181}
1182
1183Tick
1184BaseKvmCPU::flushCoalescedMMIO()
1185{
1186    if (!mmioRing)
1187        return 0;
1188
1189    DPRINTF(KvmIO, "KVM: Flushing the coalesced MMIO ring buffer\n");
1190
1191    // TODO: We might need to do synchronization when we start to
1192    // support multiple CPUs
1193    Tick ticks(0);
1194    while (mmioRing->first != mmioRing->last) {
1195        struct kvm_coalesced_mmio &ent(
1196            mmioRing->coalesced_mmio[mmioRing->first]);
1197
1198        DPRINTF(KvmIO, "KVM: Handling coalesced MMIO (addr: 0x%x, len: %u)\n",
1199                ent.phys_addr, ent.len);
1200
1201        ++numCoalescedMMIO;
1202        ticks += doMMIOAccess(ent.phys_addr, ent.data, ent.len, true);
1203
1204        mmioRing->first = (mmioRing->first + 1) % KVM_COALESCED_MMIO_MAX;
1205    }
1206
1207    return ticks;
1208}
1209
1210/**
1211 * Dummy handler for KVM kick signals.
1212 *
1213 * @note This function is usually not called since the kernel doesn't
1214 * seem to deliver signals when the signal is only unmasked when
1215 * running in KVM. This doesn't matter though since we are only
1216 * interested in getting KVM to exit, which happens as expected. See
1217 * setupSignalHandler() and kvmRun() for details about KVM signal
1218 * handling.
1219 */
1220static void
1221onKickSignal(int signo, siginfo_t *si, void *data)
1222{
1223}
1224
1225void
1226BaseKvmCPU::setupSignalHandler()
1227{
1228    struct sigaction sa;
1229
1230    memset(&sa, 0, sizeof(sa));
1231    sa.sa_sigaction = onKickSignal;
1232    sa.sa_flags = SA_SIGINFO | SA_RESTART;
1233    if (sigaction(KVM_KICK_SIGNAL, &sa, NULL) == -1)
1234        panic("KVM: Failed to setup vCPU timer signal handler\n");
1235
1236    sigset_t sigset;
1237    if (pthread_sigmask(SIG_BLOCK, NULL, &sigset) == -1)
1238        panic("KVM: Failed get signal mask\n");
1239
1240    // Request KVM to setup the same signal mask as we're currently
1241    // running with except for the KVM control signal. We'll sometimes
1242    // need to raise the KVM_KICK_SIGNAL to cause immediate exits from
1243    // KVM after servicing IO requests. See kvmRun().
1244    sigdelset(&sigset, KVM_KICK_SIGNAL);
1245    setSignalMask(&sigset);
1246
1247    // Mask our control signals so they aren't delivered unless we're
1248    // actually executing inside KVM.
1249    sigaddset(&sigset, KVM_KICK_SIGNAL);
1250    if (pthread_sigmask(SIG_SETMASK, &sigset, NULL) == -1)
1251        panic("KVM: Failed mask the KVM control signals\n");
1252}
1253
1254bool
1255BaseKvmCPU::discardPendingSignal(int signum) const
1256{
1257    int discardedSignal;
1258
1259    // Setting the timeout to zero causes sigtimedwait to return
1260    // immediately.
1261    struct timespec timeout;
1262    timeout.tv_sec = 0;
1263    timeout.tv_nsec = 0;
1264
1265    sigset_t sigset;
1266    sigemptyset(&sigset);
1267    sigaddset(&sigset, signum);
1268
1269    do {
1270        discardedSignal = sigtimedwait(&sigset, NULL, &timeout);
1271    } while (discardedSignal == -1 && errno == EINTR);
1272
1273    if (discardedSignal == signum)
1274        return true;
1275    else if (discardedSignal == -1 && errno == EAGAIN)
1276        return false;
1277    else
1278        panic("Unexpected return value from sigtimedwait: %i (errno: %i)\n",
1279              discardedSignal, errno);
1280}
1281
1282void
1283BaseKvmCPU::setupCounters()
1284{
1285    DPRINTF(Kvm, "Attaching cycle counter...\n");
1286    PerfKvmCounterConfig cfgCycles(PERF_TYPE_HARDWARE,
1287                                PERF_COUNT_HW_CPU_CYCLES);
1288    cfgCycles.disabled(true)
1289        .pinned(true);
1290
1291    // Try to exclude the host. We set both exclude_hv and
1292    // exclude_host since different architectures use slightly
1293    // different APIs in the kernel.
1294    cfgCycles.exclude_hv(true)
1295        .exclude_host(true);
1296
1297    if (perfControlledByTimer) {
1298        // We need to configure the cycles counter to send overflows
1299        // since we are going to use it to trigger timer signals that
1300        // trap back into m5 from KVM. In practice, this means that we
1301        // need to set some non-zero sample period that gets
1302        // overridden when the timer is armed.
1303        cfgCycles.wakeupEvents(1)
1304            .samplePeriod(42);
1305    }
1306
1307    hwCycles.attach(cfgCycles,
1308                    0); // TID (0 => currentThread)
1309
1310    setupInstCounter();
1311}
1312
1313bool
1314BaseKvmCPU::tryDrain()
1315{
1316    if (drainState() != DrainState::Draining)
1317        return false;
1318
1319    if (!archIsDrained()) {
1320        DPRINTF(Drain, "tryDrain: Architecture code is not ready.\n");
1321        return false;
1322    }
1323
1324    if (_status == Idle || _status == Running) {
1325        DPRINTF(Drain,
1326                "tryDrain: CPU transitioned into the Idle state, drain done\n");
1327        signalDrainDone();
1328        return true;
1329    } else {
1330        DPRINTF(Drain, "tryDrain: CPU not ready.\n");
1331        return false;
1332    }
1333}
1334
1335void
1336BaseKvmCPU::ioctlRun()
1337{
1338    if (ioctl(KVM_RUN) == -1) {
1339        if (errno != EINTR)
1340            panic("KVM: Failed to start virtual CPU (errno: %i)\n",
1341                  errno);
1342    }
1343}
1344
1345void
1346BaseKvmCPU::setupInstStop()
1347{
1348    if (comInstEventQueue[0]->empty()) {
1349        setupInstCounter(0);
1350    } else {
1351        const uint64_t next(comInstEventQueue[0]->nextTick());
1352
1353        assert(next > ctrInsts);
1354        setupInstCounter(next - ctrInsts);
1355    }
1356}
1357
1358void
1359BaseKvmCPU::setupInstCounter(uint64_t period)
1360{
1361    // No need to do anything if we aren't attaching for the first
1362    // time or the period isn't changing.
1363    if (period == activeInstPeriod && hwInstructions.attached())
1364        return;
1365
1366    PerfKvmCounterConfig cfgInstructions(PERF_TYPE_HARDWARE,
1367                                         PERF_COUNT_HW_INSTRUCTIONS);
1368
1369    // Try to exclude the host. We set both exclude_hv and
1370    // exclude_host since different architectures use slightly
1371    // different APIs in the kernel.
1372    cfgInstructions.exclude_hv(true)
1373        .exclude_host(true);
1374
1375    if (period) {
1376        // Setup a sampling counter if that has been requested.
1377        cfgInstructions.wakeupEvents(1)
1378            .samplePeriod(period);
1379    }
1380
1381    // We need to detach and re-attach the counter to reliably change
1382    // sampling settings. See PerfKvmCounter::period() for details.
1383    if (hwInstructions.attached())
1384        hwInstructions.detach();
1385    assert(hwCycles.attached());
1386    hwInstructions.attach(cfgInstructions,
1387                          0, // TID (0 => currentThread)
1388                          hwCycles);
1389
1390    if (period)
1391        hwInstructions.enableSignals(KVM_KICK_SIGNAL);
1392
1393    activeInstPeriod = period;
1394}
1395