1/* 2 * Copyright (c) 2012, 2015, 2017 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions are 16 * met: redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer; 18 * redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution; 21 * neither the name of the copyright holders nor the names of its 22 * contributors may be used to endorse or promote products derived from 23 * this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 * 37 * Authors: Andreas Sandberg 38 */ 39 40#include "cpu/kvm/base.hh" 41 42#include <linux/kvm.h> 43#include <sys/ioctl.h> 44#include <sys/mman.h> 45#include <unistd.h> 46 47#include <cerrno> 48#include <csignal> 49#include <ostream> 50 51#include "arch/mmapped_ipr.hh" 52#include "arch/utility.hh" 53#include "debug/Checkpoint.hh" 54#include "debug/Drain.hh" 55#include "debug/Kvm.hh" 56#include "debug/KvmIO.hh" 57#include "debug/KvmRun.hh" 58#include "params/BaseKvmCPU.hh" 59#include "sim/process.hh" 60#include "sim/system.hh" 61 62/* Used by some KVM macros */ 63#define PAGE_SIZE pageSize 64 65BaseKvmCPU::BaseKvmCPU(BaseKvmCPUParams *params) 66 : BaseCPU(params), 67 vm(*params->system->getKvmVM()), 68 _status(Idle), 69 dataPort(name() + ".dcache_port", this), 70 instPort(name() + ".icache_port", this), 71 alwaysSyncTC(params->alwaysSyncTC), 72 threadContextDirty(true), 73 kvmStateDirty(false), 74 vcpuID(vm.allocVCPUID()), vcpuFD(-1), vcpuMMapSize(0), 75 _kvmRun(NULL), mmioRing(NULL), 76 pageSize(sysconf(_SC_PAGE_SIZE)), 77 tickEvent([this]{ tick(); }, "BaseKvmCPU tick", 78 false, Event::CPU_Tick_Pri), 79 activeInstPeriod(0), 80 perfControlledByTimer(params->usePerfOverflow), 81 hostFactor(params->hostFactor), 82 ctrInsts(0) 83{ 84 if (pageSize == -1) 85 panic("KVM: Failed to determine host page size (%i)\n", 86 errno); 87 88 if (FullSystem) 89 thread = new SimpleThread(this, 0, params->system, params->itb, params->dtb, 90 params->isa[0]); 91 else 92 thread = new SimpleThread(this, /* thread_num */ 0, params->system, 93 params->workload[0], params->itb, 94 params->dtb, params->isa[0]); 95 96 thread->setStatus(ThreadContext::Halted); 97 tc = thread->getTC(); 98 threadContexts.push_back(tc); 99} 100 101BaseKvmCPU::~BaseKvmCPU() 102{ 103 if (_kvmRun) 104 munmap(_kvmRun, vcpuMMapSize); 105 close(vcpuFD); 106} 107 108void 109BaseKvmCPU::init() 110{ 111 BaseCPU::init(); 112 113 if (numThreads != 1) 114 fatal("KVM: Multithreading not supported"); 115 116 tc->initMemProxies(tc); 117 118 // initialize CPU, including PC 119 if (FullSystem && !switchedOut()) 120 TheISA::initCPU(tc, tc->contextId()); 121} 122 123void 124BaseKvmCPU::startup() 125{ 126 const BaseKvmCPUParams * const p( 127 dynamic_cast<const BaseKvmCPUParams *>(params())); 128 129 Kvm &kvm(*vm.kvm); 130 131 BaseCPU::startup(); 132 133 assert(vcpuFD == -1); 134 135 // Tell the VM that a CPU is about to start. 136 vm.cpuStartup(); 137 138 // We can't initialize KVM CPUs in BaseKvmCPU::init() since we are 139 // not guaranteed that the parent KVM VM has initialized at that 140 // point. Initialize virtual CPUs here instead. 141 vcpuFD = vm.createVCPU(vcpuID); 142 143 // Map the KVM run structure */ 144 vcpuMMapSize = kvm.getVCPUMMapSize(); 145 _kvmRun = (struct kvm_run *)mmap(0, vcpuMMapSize, 146 PROT_READ | PROT_WRITE, MAP_SHARED, 147 vcpuFD, 0); 148 if (_kvmRun == MAP_FAILED) 149 panic("KVM: Failed to map run data structure\n"); 150 151 // Setup a pointer to the MMIO ring buffer if coalesced MMIO is 152 // available. The offset into the KVM's communication page is 153 // provided by the coalesced MMIO capability. 154 int mmioOffset(kvm.capCoalescedMMIO()); 155 if (!p->useCoalescedMMIO) { 156 inform("KVM: Coalesced MMIO disabled by config.\n"); 157 } else if (mmioOffset) { 158 inform("KVM: Coalesced IO available\n"); 159 mmioRing = (struct kvm_coalesced_mmio_ring *)( 160 (char *)_kvmRun + (mmioOffset * pageSize)); 161 } else { 162 inform("KVM: Coalesced not supported by host OS\n"); 163 } 164 165 thread->startup(); 166 167 Event *startupEvent( 168 new EventFunctionWrapper([this]{ startupThread(); }, name(), true)); 169 schedule(startupEvent, curTick()); 170} 171 172BaseKvmCPU::Status 173BaseKvmCPU::KVMCpuPort::nextIOState() const 174{ 175 return (activeMMIOReqs || pendingMMIOPkts.size()) 176 ? RunningMMIOPending : RunningServiceCompletion; 177} 178 179Tick 180BaseKvmCPU::KVMCpuPort::submitIO(PacketPtr pkt) 181{ 182 if (cpu->system->isAtomicMode()) { 183 Tick delay = sendAtomic(pkt); 184 delete pkt; 185 return delay; 186 } else { 187 if (pendingMMIOPkts.empty() && sendTimingReq(pkt)) { 188 activeMMIOReqs++; 189 } else { 190 pendingMMIOPkts.push(pkt); 191 } 192 // Return value is irrelevant for timing-mode accesses. 193 return 0; 194 } 195} 196 197bool 198BaseKvmCPU::KVMCpuPort::recvTimingResp(PacketPtr pkt) 199{ 200 DPRINTF(KvmIO, "KVM: Finished timing request\n"); 201 202 delete pkt; 203 activeMMIOReqs--; 204 205 // We can switch back into KVM when all pending and in-flight MMIO 206 // operations have completed. 207 if (!(activeMMIOReqs || pendingMMIOPkts.size())) { 208 DPRINTF(KvmIO, "KVM: Finished all outstanding timing requests\n"); 209 cpu->finishMMIOPending(); 210 } 211 return true; 212} 213 214void 215BaseKvmCPU::KVMCpuPort::recvReqRetry() 216{ 217 DPRINTF(KvmIO, "KVM: Retry for timing request\n"); 218 219 assert(pendingMMIOPkts.size()); 220 221 // Assuming that we can issue infinite requests this cycle is a bit 222 // unrealistic, but it's not worth modeling something more complex in 223 // KVM. 224 while (pendingMMIOPkts.size() && sendTimingReq(pendingMMIOPkts.front())) { 225 pendingMMIOPkts.pop(); 226 activeMMIOReqs++; 227 } 228} 229 230void 231BaseKvmCPU::finishMMIOPending() 232{ 233 assert(_status = RunningMMIOPending); 234 assert(!tickEvent.scheduled()); 235 236 _status = RunningServiceCompletion; 237 schedule(tickEvent, nextCycle()); 238} 239 240void 241BaseKvmCPU::startupThread() 242{ 243 // Do thread-specific initialization. We need to setup signal 244 // delivery for counters and timers from within the thread that 245 // will execute the event queue to ensure that signals are 246 // delivered to the right threads. 247 const BaseKvmCPUParams * const p( 248 dynamic_cast<const BaseKvmCPUParams *>(params())); 249 250 vcpuThread = pthread_self(); 251 252 // Setup signal handlers. This has to be done after the vCPU is 253 // created since it manipulates the vCPU signal mask. 254 setupSignalHandler(); 255 256 setupCounters(); 257 258 if (p->usePerfOverflow) 259 runTimer.reset(new PerfKvmTimer(hwCycles, 260 KVM_KICK_SIGNAL, 261 p->hostFactor, 262 p->hostFreq)); 263 else 264 runTimer.reset(new PosixKvmTimer(KVM_KICK_SIGNAL, CLOCK_MONOTONIC, 265 p->hostFactor, 266 p->hostFreq)); 267 268} 269 270void 271BaseKvmCPU::regStats() 272{ 273 using namespace Stats; 274 275 BaseCPU::regStats(); 276 277 numInsts 278 .name(name() + ".committedInsts") 279 .desc("Number of instructions committed") 280 ; 281 282 numVMExits 283 .name(name() + ".numVMExits") 284 .desc("total number of KVM exits") 285 ; 286 287 numVMHalfEntries 288 .name(name() + ".numVMHalfEntries") 289 .desc("number of KVM entries to finalize pending operations") 290 ; 291 292 numExitSignal 293 .name(name() + ".numExitSignal") 294 .desc("exits due to signal delivery") 295 ; 296 297 numMMIO 298 .name(name() + ".numMMIO") 299 .desc("number of VM exits due to memory mapped IO") 300 ; 301 302 numCoalescedMMIO 303 .name(name() + ".numCoalescedMMIO") 304 .desc("number of coalesced memory mapped IO requests") 305 ; 306 307 numIO 308 .name(name() + ".numIO") 309 .desc("number of VM exits due to legacy IO") 310 ; 311 312 numHalt 313 .name(name() + ".numHalt") 314 .desc("number of VM exits due to wait for interrupt instructions") 315 ; 316 317 numInterrupts 318 .name(name() + ".numInterrupts") 319 .desc("number of interrupts delivered") 320 ; 321 322 numHypercalls 323 .name(name() + ".numHypercalls") 324 .desc("number of hypercalls") 325 ; 326} 327 328void 329BaseKvmCPU::serializeThread(CheckpointOut &cp, ThreadID tid) const 330{ 331 if (DTRACE(Checkpoint)) { 332 DPRINTF(Checkpoint, "KVM: Serializing thread %i:\n", tid); 333 dump(); 334 } 335 336 assert(tid == 0); 337 assert(_status == Idle); 338 thread->serialize(cp); 339} 340 341void 342BaseKvmCPU::unserializeThread(CheckpointIn &cp, ThreadID tid) 343{ 344 DPRINTF(Checkpoint, "KVM: Unserialize thread %i:\n", tid); 345 346 assert(tid == 0); 347 assert(_status == Idle); 348 thread->unserialize(cp); 349 threadContextDirty = true; 350} 351 352DrainState 353BaseKvmCPU::drain() 354{ 355 if (switchedOut()) 356 return DrainState::Drained; 357 358 DPRINTF(Drain, "BaseKvmCPU::drain\n"); 359 360 // The event queue won't be locked when calling drain since that's 361 // not done from an event. Lock the event queue here to make sure 362 // that scoped migrations continue to work if we need to 363 // synchronize the thread context. 364 std::lock_guard<EventQueue> lock(*this->eventQueue()); 365 366 switch (_status) { 367 case Running: 368 // The base KVM code is normally ready when it is in the 369 // Running state, but the architecture specific code might be 370 // of a different opinion. This may happen when the CPU been 371 // notified of an event that hasn't been accepted by the vCPU 372 // yet. 373 if (!archIsDrained()) 374 return DrainState::Draining; 375 376 // The state of the CPU is consistent, so we don't need to do 377 // anything special to drain it. We simply de-schedule the 378 // tick event and enter the Idle state to prevent nasty things 379 // like MMIOs from happening. 380 if (tickEvent.scheduled()) 381 deschedule(tickEvent); 382 _status = Idle; 383 384 M5_FALLTHROUGH; 385 case Idle: 386 // Idle, no need to drain 387 assert(!tickEvent.scheduled()); 388 389 // Sync the thread context here since we'll need it when we 390 // switch CPUs or checkpoint the CPU. 391 syncThreadContext(); 392 393 return DrainState::Drained; 394 395 case RunningServiceCompletion: 396 // The CPU has just requested a service that was handled in 397 // the RunningService state, but the results have still not 398 // been reported to the CPU. Now, we /could/ probably just 399 // update the register state ourselves instead of letting KVM 400 // handle it, but that would be tricky. Instead, we enter KVM 401 // and let it do its stuff. 402 DPRINTF(Drain, "KVM CPU is waiting for service completion, " 403 "requesting drain.\n"); 404 return DrainState::Draining; 405 406 case RunningMMIOPending: 407 // We need to drain since there are in-flight timing accesses 408 DPRINTF(Drain, "KVM CPU is waiting for timing accesses to complete, " 409 "requesting drain.\n"); 410 return DrainState::Draining; 411 412 case RunningService: 413 // We need to drain since the CPU is waiting for service (e.g., MMIOs) 414 DPRINTF(Drain, "KVM CPU is waiting for service, requesting drain.\n"); 415 return DrainState::Draining; 416 417 default: 418 panic("KVM: Unhandled CPU state in drain()\n"); 419 return DrainState::Drained; 420 } 421} 422 423void 424BaseKvmCPU::drainResume() 425{ 426 assert(!tickEvent.scheduled()); 427 428 // We might have been switched out. In that case, we don't need to 429 // do anything. 430 if (switchedOut()) 431 return; 432 433 DPRINTF(Kvm, "drainResume\n"); 434 verifyMemoryMode(); 435 436 // The tick event is de-scheduled as a part of the draining 437 // process. Re-schedule it if the thread context is active. 438 if (tc->status() == ThreadContext::Active) { 439 schedule(tickEvent, nextCycle()); 440 _status = Running; 441 } else { 442 _status = Idle; 443 } 444} 445 446void 447BaseKvmCPU::notifyFork() 448{ 449 // We should have drained prior to forking, which means that the 450 // tick event shouldn't be scheduled and the CPU is idle. 451 assert(!tickEvent.scheduled()); 452 assert(_status == Idle); 453 454 if (vcpuFD != -1) { 455 if (close(vcpuFD) == -1) 456 warn("kvm CPU: notifyFork failed to close vcpuFD\n"); 457 458 if (_kvmRun) 459 munmap(_kvmRun, vcpuMMapSize); 460 461 vcpuFD = -1; 462 _kvmRun = NULL; 463 464 hwInstructions.detach(); 465 hwCycles.detach(); 466 } 467} 468 469void 470BaseKvmCPU::switchOut() 471{ 472 DPRINTF(Kvm, "switchOut\n"); 473 474 BaseCPU::switchOut(); 475 476 // We should have drained prior to executing a switchOut, which 477 // means that the tick event shouldn't be scheduled and the CPU is 478 // idle. 479 assert(!tickEvent.scheduled()); 480 assert(_status == Idle); 481} 482 483void 484BaseKvmCPU::takeOverFrom(BaseCPU *cpu) 485{ 486 DPRINTF(Kvm, "takeOverFrom\n"); 487 488 BaseCPU::takeOverFrom(cpu); 489 490 // We should have drained prior to executing a switchOut, which 491 // means that the tick event shouldn't be scheduled and the CPU is 492 // idle. 493 assert(!tickEvent.scheduled()); 494 assert(_status == Idle); 495 assert(threadContexts.size() == 1); 496 497 // Force an update of the KVM state here instead of flagging the 498 // TC as dirty. This is not ideal from a performance point of 499 // view, but it makes debugging easier as it allows meaningful KVM 500 // state to be dumped before and after a takeover. 501 updateKvmState(); 502 threadContextDirty = false; 503} 504 505void 506BaseKvmCPU::verifyMemoryMode() const 507{ 508 if (!(system->bypassCaches())) { 509 fatal("The KVM-based CPUs requires the memory system to be in the " 510 "'noncaching' mode.\n"); 511 } 512} 513 514void 515BaseKvmCPU::wakeup(ThreadID tid) 516{ 517 DPRINTF(Kvm, "wakeup()\n"); 518 // This method might have been called from another 519 // context. Migrate to this SimObject's event queue when 520 // delivering the wakeup signal. 521 EventQueue::ScopedMigration migrate(eventQueue()); 522 523 // Kick the vCPU to get it to come out of KVM. 524 kick(); 525 526 if (thread->status() != ThreadContext::Suspended) 527 return; 528 529 thread->activate(); 530} 531 532void 533BaseKvmCPU::activateContext(ThreadID thread_num) 534{ 535 DPRINTF(Kvm, "ActivateContext %d\n", thread_num); 536 537 assert(thread_num == 0); 538 assert(thread); 539 540 assert(_status == Idle); 541 assert(!tickEvent.scheduled()); 542 543 numCycles += ticksToCycles(thread->lastActivate - thread->lastSuspend); 544 545 schedule(tickEvent, clockEdge(Cycles(0))); 546 _status = Running; 547} 548 549 550void 551BaseKvmCPU::suspendContext(ThreadID thread_num) 552{ 553 DPRINTF(Kvm, "SuspendContext %d\n", thread_num); 554 555 assert(thread_num == 0); 556 assert(thread); 557 558 if (_status == Idle) 559 return; 560 561 assert(_status == Running || _status == RunningServiceCompletion); 562 563 // The tick event may no be scheduled if the quest has requested 564 // the monitor to wait for interrupts. The normal CPU models can 565 // get their tick events descheduled by quiesce instructions, but 566 // that can't happen here. 567 if (tickEvent.scheduled()) 568 deschedule(tickEvent); 569 570 _status = Idle; 571} 572 573void 574BaseKvmCPU::deallocateContext(ThreadID thread_num) 575{ 576 // for now, these are equivalent 577 suspendContext(thread_num); 578} 579 580void 581BaseKvmCPU::haltContext(ThreadID thread_num) 582{ 583 // for now, these are equivalent 584 suspendContext(thread_num); 585 updateCycleCounters(BaseCPU::CPU_STATE_SLEEP); 586} 587 588ThreadContext * 589BaseKvmCPU::getContext(int tn) 590{ 591 assert(tn == 0); 592 syncThreadContext(); 593 return tc; 594} 595 596 597Counter 598BaseKvmCPU::totalInsts() const 599{ 600 return ctrInsts; 601} 602 603Counter 604BaseKvmCPU::totalOps() const 605{ 606 hack_once("Pretending totalOps is equivalent to totalInsts()\n"); 607 return ctrInsts; 608} 609 610void 611BaseKvmCPU::dump() const 612{ 613 inform("State dumping not implemented."); 614} 615 616void 617BaseKvmCPU::tick() 618{ 619 Tick delay(0); 620 assert(_status != Idle && _status != RunningMMIOPending); 621 622 switch (_status) { 623 case RunningService: 624 // handleKvmExit() will determine the next state of the CPU 625 delay = handleKvmExit(); 626 627 if (tryDrain()) 628 _status = Idle; 629 break; 630 631 case RunningServiceCompletion: 632 case Running: { 633 const uint64_t nextInstEvent( 634 !comInstEventQueue[0]->empty() ? 635 comInstEventQueue[0]->nextTick() : UINT64_MAX); 636 // Enter into KVM and complete pending IO instructions if we 637 // have an instruction event pending. 638 const Tick ticksToExecute( 639 nextInstEvent > ctrInsts ? 640 curEventQueue()->nextTick() - curTick() : 0); 641 642 if (alwaysSyncTC) 643 threadContextDirty = true; 644 645 // We might need to update the KVM state. 646 syncKvmState(); 647 648 // Setup any pending instruction count breakpoints using 649 // PerfEvent if we are going to execute more than just an IO 650 // completion. 651 if (ticksToExecute > 0) 652 setupInstStop(); 653 654 DPRINTF(KvmRun, "Entering KVM...\n"); 655 if (drainState() == DrainState::Draining) { 656 // Force an immediate exit from KVM after completing 657 // pending operations. The architecture-specific code 658 // takes care to run until it is in a state where it can 659 // safely be drained. 660 delay = kvmRunDrain(); 661 } else { 662 delay = kvmRun(ticksToExecute); 663 } 664 665 // The CPU might have been suspended before entering into 666 // KVM. Assume that the CPU was suspended /before/ entering 667 // into KVM and skip the exit handling. 668 if (_status == Idle) 669 break; 670 671 // Entering into KVM implies that we'll have to reload the thread 672 // context from KVM if we want to access it. Flag the KVM state as 673 // dirty with respect to the cached thread context. 674 kvmStateDirty = true; 675 676 if (alwaysSyncTC) 677 syncThreadContext(); 678 679 // Enter into the RunningService state unless the 680 // simulation was stopped by a timer. 681 if (_kvmRun->exit_reason != KVM_EXIT_INTR) { 682 _status = RunningService; 683 } else { 684 ++numExitSignal; 685 _status = Running; 686 } 687 688 // Service any pending instruction events. The vCPU should 689 // have exited in time for the event using the instruction 690 // counter configured by setupInstStop(). 691 comInstEventQueue[0]->serviceEvents(ctrInsts); 692 system->instEventQueue.serviceEvents(system->totalNumInsts); 693 694 if (tryDrain()) 695 _status = Idle; 696 } break; 697 698 default: 699 panic("BaseKvmCPU entered tick() in an illegal state (%i)\n", 700 _status); 701 } 702 703 // Schedule a new tick if we are still running 704 if (_status != Idle && _status != RunningMMIOPending) 705 schedule(tickEvent, clockEdge(ticksToCycles(delay))); 706} 707 708Tick 709BaseKvmCPU::kvmRunDrain() 710{ 711 // By default, the only thing we need to drain is a pending IO 712 // operation which assumes that we are in the 713 // RunningServiceCompletion or RunningMMIOPending state. 714 assert(_status == RunningServiceCompletion || 715 _status == RunningMMIOPending); 716 717 // Deliver the data from the pending IO operation and immediately 718 // exit. 719 return kvmRun(0); 720} 721 722uint64_t 723BaseKvmCPU::getHostCycles() const 724{ 725 return hwCycles.read(); 726} 727 728Tick 729BaseKvmCPU::kvmRun(Tick ticks) 730{ 731 Tick ticksExecuted; 732 fatal_if(vcpuFD == -1, 733 "Trying to run a KVM CPU in a forked child process. " 734 "This is not supported.\n"); 735 DPRINTF(KvmRun, "KVM: Executing for %i ticks\n", ticks); 736 737 if (ticks == 0) { 738 // Settings ticks == 0 is a special case which causes an entry 739 // into KVM that finishes pending operations (e.g., IO) and 740 // then immediately exits. 741 DPRINTF(KvmRun, "KVM: Delivering IO without full guest entry\n"); 742 743 ++numVMHalfEntries; 744 745 // Send a KVM_KICK_SIGNAL to the vCPU thread (i.e., this 746 // thread). The KVM control signal is masked while executing 747 // in gem5 and gets unmasked temporarily as when entering 748 // KVM. See setSignalMask() and setupSignalHandler(). 749 kick(); 750 751 // Start the vCPU. KVM will check for signals after completing 752 // pending operations (IO). Since the KVM_KICK_SIGNAL is 753 // pending, this forces an immediate exit to gem5 again. We 754 // don't bother to setup timers since this shouldn't actually 755 // execute any code (other than completing half-executed IO 756 // instructions) in the guest. 757 ioctlRun(); 758 759 // We always execute at least one cycle to prevent the 760 // BaseKvmCPU::tick() to be rescheduled on the same tick 761 // twice. 762 ticksExecuted = clockPeriod(); 763 } else { 764 // This method is executed as a result of a tick event. That 765 // means that the event queue will be locked when entering the 766 // method. We temporarily unlock the event queue to allow 767 // other threads to steal control of this thread to inject 768 // interrupts. They will typically lock the queue and then 769 // force an exit from KVM by kicking the vCPU. 770 EventQueue::ScopedRelease release(curEventQueue()); 771 772 if (ticks < runTimer->resolution()) { 773 DPRINTF(KvmRun, "KVM: Adjusting tick count (%i -> %i)\n", 774 ticks, runTimer->resolution()); 775 ticks = runTimer->resolution(); 776 } 777 778 // Get hardware statistics after synchronizing contexts. The KVM 779 // state update might affect guest cycle counters. 780 uint64_t baseCycles(getHostCycles()); 781 uint64_t baseInstrs(hwInstructions.read()); 782 783 // Arm the run timer and start the cycle timer if it isn't 784 // controlled by the overflow timer. Starting/stopping the cycle 785 // timer automatically starts the other perf timers as they are in 786 // the same counter group. 787 runTimer->arm(ticks); 788 if (!perfControlledByTimer) 789 hwCycles.start(); 790 791 ioctlRun(); 792 793 runTimer->disarm(); 794 if (!perfControlledByTimer) 795 hwCycles.stop(); 796 797 // The control signal may have been delivered after we exited 798 // from KVM. It will be pending in that case since it is 799 // masked when we aren't executing in KVM. Discard it to make 800 // sure we don't deliver it immediately next time we try to 801 // enter into KVM. 802 discardPendingSignal(KVM_KICK_SIGNAL); 803 804 const uint64_t hostCyclesExecuted(getHostCycles() - baseCycles); 805 const uint64_t simCyclesExecuted(hostCyclesExecuted * hostFactor); 806 const uint64_t instsExecuted(hwInstructions.read() - baseInstrs); 807 ticksExecuted = runTimer->ticksFromHostCycles(hostCyclesExecuted); 808 809 /* Update statistics */ 810 numCycles += simCyclesExecuted;; 811 numInsts += instsExecuted; 812 ctrInsts += instsExecuted; 813 system->totalNumInsts += instsExecuted; 814 815 DPRINTF(KvmRun, 816 "KVM: Executed %i instructions in %i cycles " 817 "(%i ticks, sim cycles: %i).\n", 818 instsExecuted, hostCyclesExecuted, ticksExecuted, simCyclesExecuted); 819 } 820 821 ++numVMExits; 822 823 return ticksExecuted + flushCoalescedMMIO(); 824} 825 826void 827BaseKvmCPU::kvmNonMaskableInterrupt() 828{ 829 ++numInterrupts; 830 if (ioctl(KVM_NMI) == -1) 831 panic("KVM: Failed to deliver NMI to virtual CPU\n"); 832} 833 834void 835BaseKvmCPU::kvmInterrupt(const struct kvm_interrupt &interrupt) 836{ 837 ++numInterrupts; 838 if (ioctl(KVM_INTERRUPT, (void *)&interrupt) == -1) 839 panic("KVM: Failed to deliver interrupt to virtual CPU\n"); 840} 841 842void 843BaseKvmCPU::getRegisters(struct kvm_regs ®s) const 844{ 845 if (ioctl(KVM_GET_REGS, ®s) == -1) 846 panic("KVM: Failed to get guest registers\n"); 847} 848 849void 850BaseKvmCPU::setRegisters(const struct kvm_regs ®s) 851{ 852 if (ioctl(KVM_SET_REGS, (void *)®s) == -1) 853 panic("KVM: Failed to set guest registers\n"); 854} 855 856void 857BaseKvmCPU::getSpecialRegisters(struct kvm_sregs ®s) const 858{ 859 if (ioctl(KVM_GET_SREGS, ®s) == -1) 860 panic("KVM: Failed to get guest special registers\n"); 861} 862 863void 864BaseKvmCPU::setSpecialRegisters(const struct kvm_sregs ®s) 865{ 866 if (ioctl(KVM_SET_SREGS, (void *)®s) == -1) 867 panic("KVM: Failed to set guest special registers\n"); 868} 869 870void 871BaseKvmCPU::getFPUState(struct kvm_fpu &state) const 872{ 873 if (ioctl(KVM_GET_FPU, &state) == -1) 874 panic("KVM: Failed to get guest FPU state\n"); 875} 876 877void 878BaseKvmCPU::setFPUState(const struct kvm_fpu &state) 879{ 880 if (ioctl(KVM_SET_FPU, (void *)&state) == -1) 881 panic("KVM: Failed to set guest FPU state\n"); 882} 883 884 885void 886BaseKvmCPU::setOneReg(uint64_t id, const void *addr) 887{ 888#ifdef KVM_SET_ONE_REG 889 struct kvm_one_reg reg; 890 reg.id = id; 891 reg.addr = (uint64_t)addr; 892 893 if (ioctl(KVM_SET_ONE_REG, ®) == -1) { 894 panic("KVM: Failed to set register (0x%x) value (errno: %i)\n", 895 id, errno); 896 } 897#else 898 panic("KVM_SET_ONE_REG is unsupported on this platform.\n"); 899#endif 900} 901 902void 903BaseKvmCPU::getOneReg(uint64_t id, void *addr) const 904{ 905#ifdef KVM_GET_ONE_REG 906 struct kvm_one_reg reg; 907 reg.id = id; 908 reg.addr = (uint64_t)addr; 909 910 if (ioctl(KVM_GET_ONE_REG, ®) == -1) { 911 panic("KVM: Failed to get register (0x%x) value (errno: %i)\n", 912 id, errno); 913 } 914#else 915 panic("KVM_GET_ONE_REG is unsupported on this platform.\n"); 916#endif 917} 918 919std::string 920BaseKvmCPU::getAndFormatOneReg(uint64_t id) const 921{ 922#ifdef KVM_GET_ONE_REG 923 std::ostringstream ss; 924 925 ss.setf(std::ios::hex, std::ios::basefield); 926 ss.setf(std::ios::showbase); 927#define HANDLE_INTTYPE(len) \ 928 case KVM_REG_SIZE_U ## len: { \ 929 uint ## len ## _t value; \ 930 getOneReg(id, &value); \ 931 ss << value; \ 932 } break 933 934#define HANDLE_ARRAY(len) \ 935 case KVM_REG_SIZE_U ## len: { \ 936 uint8_t value[len / 8]; \ 937 getOneReg(id, value); \ 938 ccprintf(ss, "[0x%x", value[0]); \ 939 for (int i = 1; i < len / 8; ++i) \ 940 ccprintf(ss, ", 0x%x", value[i]); \ 941 ccprintf(ss, "]"); \ 942 } break 943 944 switch (id & KVM_REG_SIZE_MASK) { 945 HANDLE_INTTYPE(8); 946 HANDLE_INTTYPE(16); 947 HANDLE_INTTYPE(32); 948 HANDLE_INTTYPE(64); 949 HANDLE_ARRAY(128); 950 HANDLE_ARRAY(256); 951 HANDLE_ARRAY(512); 952 HANDLE_ARRAY(1024); 953 default: 954 ss << "??"; 955 } 956 957#undef HANDLE_INTTYPE 958#undef HANDLE_ARRAY 959 960 return ss.str(); 961#else 962 panic("KVM_GET_ONE_REG is unsupported on this platform.\n"); 963#endif 964} 965 966void 967BaseKvmCPU::syncThreadContext() 968{ 969 if (!kvmStateDirty) 970 return; 971 972 assert(!threadContextDirty); 973 974 updateThreadContext(); 975 kvmStateDirty = false; 976} 977 978void 979BaseKvmCPU::syncKvmState() 980{ 981 if (!threadContextDirty) 982 return; 983 984 assert(!kvmStateDirty); 985 986 updateKvmState(); 987 threadContextDirty = false; 988} 989 990Tick 991BaseKvmCPU::handleKvmExit() 992{ 993 DPRINTF(KvmRun, "handleKvmExit (exit_reason: %i)\n", _kvmRun->exit_reason); 994 assert(_status == RunningService); 995 996 // Switch into the running state by default. Individual handlers 997 // can override this. 998 _status = Running; 999 switch (_kvmRun->exit_reason) { 1000 case KVM_EXIT_UNKNOWN: 1001 return handleKvmExitUnknown(); 1002 1003 case KVM_EXIT_EXCEPTION: 1004 return handleKvmExitException(); 1005 1006 case KVM_EXIT_IO: 1007 { 1008 ++numIO; 1009 Tick ticks = handleKvmExitIO(); 1010 _status = dataPort.nextIOState(); 1011 return ticks; 1012 } 1013 1014 case KVM_EXIT_HYPERCALL: 1015 ++numHypercalls; 1016 return handleKvmExitHypercall(); 1017 1018 case KVM_EXIT_HLT: 1019 /* The guest has halted and is waiting for interrupts */ 1020 DPRINTF(Kvm, "handleKvmExitHalt\n"); 1021 ++numHalt; 1022 1023 // Suspend the thread until the next interrupt arrives 1024 thread->suspend(); 1025 1026 // This is actually ignored since the thread is suspended. 1027 return 0; 1028 1029 case KVM_EXIT_MMIO: 1030 { 1031 /* Service memory mapped IO requests */ 1032 DPRINTF(KvmIO, "KVM: Handling MMIO (w: %u, addr: 0x%x, len: %u)\n", 1033 _kvmRun->mmio.is_write, 1034 _kvmRun->mmio.phys_addr, _kvmRun->mmio.len); 1035 1036 ++numMMIO; 1037 Tick ticks = doMMIOAccess(_kvmRun->mmio.phys_addr, _kvmRun->mmio.data, 1038 _kvmRun->mmio.len, _kvmRun->mmio.is_write); 1039 // doMMIOAccess could have triggered a suspend, in which case we don't 1040 // want to overwrite the _status. 1041 if (_status != Idle) 1042 _status = dataPort.nextIOState(); 1043 return ticks; 1044 } 1045 1046 case KVM_EXIT_IRQ_WINDOW_OPEN: 1047 return handleKvmExitIRQWindowOpen(); 1048 1049 case KVM_EXIT_FAIL_ENTRY: 1050 return handleKvmExitFailEntry(); 1051 1052 case KVM_EXIT_INTR: 1053 /* KVM was interrupted by a signal, restart it in the next 1054 * tick. */ 1055 return 0; 1056 1057 case KVM_EXIT_INTERNAL_ERROR: 1058 panic("KVM: Internal error (suberror: %u)\n", 1059 _kvmRun->internal.suberror); 1060 1061 default: 1062 dump(); 1063 panic("KVM: Unexpected exit (exit_reason: %u)\n", _kvmRun->exit_reason); 1064 } 1065} 1066 1067Tick 1068BaseKvmCPU::handleKvmExitIO() 1069{ 1070 panic("KVM: Unhandled guest IO (dir: %i, size: %i, port: 0x%x, count: %i)\n", 1071 _kvmRun->io.direction, _kvmRun->io.size, 1072 _kvmRun->io.port, _kvmRun->io.count); 1073} 1074 1075Tick 1076BaseKvmCPU::handleKvmExitHypercall() 1077{ 1078 panic("KVM: Unhandled hypercall\n"); 1079} 1080 1081Tick 1082BaseKvmCPU::handleKvmExitIRQWindowOpen() 1083{ 1084 warn("KVM: Unhandled IRQ window.\n"); 1085 return 0; 1086} 1087 1088 1089Tick 1090BaseKvmCPU::handleKvmExitUnknown() 1091{ 1092 dump(); 1093 panic("KVM: Unknown error when starting vCPU (hw reason: 0x%llx)\n", 1094 _kvmRun->hw.hardware_exit_reason); 1095} 1096 1097Tick 1098BaseKvmCPU::handleKvmExitException() 1099{ 1100 dump(); 1101 panic("KVM: Got exception when starting vCPU " 1102 "(exception: %u, error_code: %u)\n", 1103 _kvmRun->ex.exception, _kvmRun->ex.error_code); 1104} 1105 1106Tick 1107BaseKvmCPU::handleKvmExitFailEntry() 1108{ 1109 dump(); 1110 panic("KVM: Failed to enter virtualized mode (hw reason: 0x%llx)\n", 1111 _kvmRun->fail_entry.hardware_entry_failure_reason); 1112} 1113 1114Tick 1115BaseKvmCPU::doMMIOAccess(Addr paddr, void *data, int size, bool write) 1116{ 1117 ThreadContext *tc(thread->getTC()); 1118 syncThreadContext(); 1119 1120 RequestPtr mmio_req = std::make_shared<Request>( 1121 paddr, size, Request::UNCACHEABLE, dataMasterId()); 1122 1123 mmio_req->setContext(tc->contextId()); 1124 // Some architectures do need to massage physical addresses a bit 1125 // before they are inserted into the memory system. This enables 1126 // APIC accesses on x86 and m5ops where supported through a MMIO 1127 // interface. 1128 BaseTLB::Mode tlb_mode(write ? BaseTLB::Write : BaseTLB::Read); 1129 Fault fault(tc->getDTBPtr()->finalizePhysical(mmio_req, tc, tlb_mode)); 1130 if (fault != NoFault) 1131 warn("Finalization of MMIO address failed: %s\n", fault->name()); 1132 1133 1134 const MemCmd cmd(write ? MemCmd::WriteReq : MemCmd::ReadReq); 1135 PacketPtr pkt = new Packet(mmio_req, cmd); 1136 pkt->dataStatic(data); 1137 1138 if (mmio_req->isMmappedIpr()) { 1139 // We currently assume that there is no need to migrate to a 1140 // different event queue when doing IPRs. Currently, IPRs are 1141 // only used for m5ops, so it should be a valid assumption. 1142 const Cycles ipr_delay(write ? 1143 TheISA::handleIprWrite(tc, pkt) : 1144 TheISA::handleIprRead(tc, pkt)); 1145 threadContextDirty = true; 1146 delete pkt; 1147 return clockPeriod() * ipr_delay; 1148 } else { 1149 // Temporarily lock and migrate to the device event queue to 1150 // prevent races in multi-core mode. 1151 EventQueue::ScopedMigration migrate(deviceEventQueue()); 1152 1153 return dataPort.submitIO(pkt); 1154 } 1155} 1156 1157void 1158BaseKvmCPU::setSignalMask(const sigset_t *mask) 1159{ 1160 std::unique_ptr<struct kvm_signal_mask> kvm_mask; 1161 1162 if (mask) { 1163 kvm_mask.reset((struct kvm_signal_mask *)operator new( 1164 sizeof(struct kvm_signal_mask) + sizeof(*mask))); 1165 // The kernel and the user-space headers have different ideas 1166 // about the size of sigset_t. This seems like a massive hack, 1167 // but is actually what qemu does. 1168 assert(sizeof(*mask) >= 8); 1169 kvm_mask->len = 8; 1170 memcpy(kvm_mask->sigset, mask, kvm_mask->len); 1171 } 1172 1173 if (ioctl(KVM_SET_SIGNAL_MASK, (void *)kvm_mask.get()) == -1) 1174 panic("KVM: Failed to set vCPU signal mask (errno: %i)\n", 1175 errno); 1176} 1177 1178int 1179BaseKvmCPU::ioctl(int request, long p1) const 1180{ 1181 if (vcpuFD == -1) 1182 panic("KVM: CPU ioctl called before initialization\n"); 1183 1184 return ::ioctl(vcpuFD, request, p1); 1185} 1186 1187Tick 1188BaseKvmCPU::flushCoalescedMMIO() 1189{ 1190 if (!mmioRing) 1191 return 0; 1192 1193 DPRINTF(KvmIO, "KVM: Flushing the coalesced MMIO ring buffer\n"); 1194 1195 // TODO: We might need to do synchronization when we start to 1196 // support multiple CPUs 1197 Tick ticks(0); 1198 while (mmioRing->first != mmioRing->last) { 1199 struct kvm_coalesced_mmio &ent( 1200 mmioRing->coalesced_mmio[mmioRing->first]); 1201 1202 DPRINTF(KvmIO, "KVM: Handling coalesced MMIO (addr: 0x%x, len: %u)\n", 1203 ent.phys_addr, ent.len); 1204 1205 ++numCoalescedMMIO; 1206 ticks += doMMIOAccess(ent.phys_addr, ent.data, ent.len, true); 1207 1208 mmioRing->first = (mmioRing->first + 1) % KVM_COALESCED_MMIO_MAX; 1209 } 1210 1211 return ticks; 1212} 1213 1214/** 1215 * Dummy handler for KVM kick signals. 1216 * 1217 * @note This function is usually not called since the kernel doesn't 1218 * seem to deliver signals when the signal is only unmasked when 1219 * running in KVM. This doesn't matter though since we are only 1220 * interested in getting KVM to exit, which happens as expected. See 1221 * setupSignalHandler() and kvmRun() for details about KVM signal 1222 * handling. 1223 */ 1224static void 1225onKickSignal(int signo, siginfo_t *si, void *data) 1226{ 1227} 1228 1229void 1230BaseKvmCPU::setupSignalHandler() 1231{ 1232 struct sigaction sa; 1233 1234 memset(&sa, 0, sizeof(sa)); 1235 sa.sa_sigaction = onKickSignal; 1236 sa.sa_flags = SA_SIGINFO | SA_RESTART; 1237 if (sigaction(KVM_KICK_SIGNAL, &sa, NULL) == -1) 1238 panic("KVM: Failed to setup vCPU timer signal handler\n"); 1239 1240 sigset_t sigset; 1241 if (pthread_sigmask(SIG_BLOCK, NULL, &sigset) == -1) 1242 panic("KVM: Failed get signal mask\n"); 1243 1244 // Request KVM to setup the same signal mask as we're currently 1245 // running with except for the KVM control signal. We'll sometimes 1246 // need to raise the KVM_KICK_SIGNAL to cause immediate exits from 1247 // KVM after servicing IO requests. See kvmRun(). 1248 sigdelset(&sigset, KVM_KICK_SIGNAL); 1249 setSignalMask(&sigset); 1250 1251 // Mask our control signals so they aren't delivered unless we're 1252 // actually executing inside KVM. 1253 sigaddset(&sigset, KVM_KICK_SIGNAL); 1254 if (pthread_sigmask(SIG_SETMASK, &sigset, NULL) == -1) 1255 panic("KVM: Failed mask the KVM control signals\n"); 1256} 1257 1258bool 1259BaseKvmCPU::discardPendingSignal(int signum) const 1260{ 1261 int discardedSignal; 1262 1263 // Setting the timeout to zero causes sigtimedwait to return 1264 // immediately. 1265 struct timespec timeout; 1266 timeout.tv_sec = 0; 1267 timeout.tv_nsec = 0; 1268 1269 sigset_t sigset; 1270 sigemptyset(&sigset); 1271 sigaddset(&sigset, signum); 1272 1273 do { 1274 discardedSignal = sigtimedwait(&sigset, NULL, &timeout); 1275 } while (discardedSignal == -1 && errno == EINTR); 1276 1277 if (discardedSignal == signum) 1278 return true; 1279 else if (discardedSignal == -1 && errno == EAGAIN) 1280 return false; 1281 else 1282 panic("Unexpected return value from sigtimedwait: %i (errno: %i)\n", 1283 discardedSignal, errno); 1284} 1285 1286void 1287BaseKvmCPU::setupCounters() 1288{ 1289 DPRINTF(Kvm, "Attaching cycle counter...\n"); 1290 PerfKvmCounterConfig cfgCycles(PERF_TYPE_HARDWARE, 1291 PERF_COUNT_HW_CPU_CYCLES); 1292 cfgCycles.disabled(true) 1293 .pinned(true); 1294 1295 // Try to exclude the host. We set both exclude_hv and 1296 // exclude_host since different architectures use slightly 1297 // different APIs in the kernel. 1298 cfgCycles.exclude_hv(true) 1299 .exclude_host(true); 1300 1301 if (perfControlledByTimer) { 1302 // We need to configure the cycles counter to send overflows 1303 // since we are going to use it to trigger timer signals that 1304 // trap back into m5 from KVM. In practice, this means that we 1305 // need to set some non-zero sample period that gets 1306 // overridden when the timer is armed. 1307 cfgCycles.wakeupEvents(1) 1308 .samplePeriod(42); 1309 } 1310 1311 hwCycles.attach(cfgCycles, 1312 0); // TID (0 => currentThread) 1313 1314 setupInstCounter(); 1315} 1316 1317bool 1318BaseKvmCPU::tryDrain() 1319{ 1320 if (drainState() != DrainState::Draining) 1321 return false; 1322 1323 if (!archIsDrained()) { 1324 DPRINTF(Drain, "tryDrain: Architecture code is not ready.\n"); 1325 return false; 1326 } 1327 1328 if (_status == Idle || _status == Running) { 1329 DPRINTF(Drain, 1330 "tryDrain: CPU transitioned into the Idle state, drain done\n"); 1331 signalDrainDone(); 1332 return true; 1333 } else { 1334 DPRINTF(Drain, "tryDrain: CPU not ready.\n"); 1335 return false; 1336 } 1337} 1338 1339void 1340BaseKvmCPU::ioctlRun() 1341{ 1342 if (ioctl(KVM_RUN) == -1) { 1343 if (errno != EINTR) 1344 panic("KVM: Failed to start virtual CPU (errno: %i)\n", 1345 errno); 1346 } 1347} 1348 1349void 1350BaseKvmCPU::setupInstStop() 1351{ 1352 if (comInstEventQueue[0]->empty()) { 1353 setupInstCounter(0); 1354 } else { 1355 const uint64_t next(comInstEventQueue[0]->nextTick()); 1356 1357 assert(next > ctrInsts); 1358 setupInstCounter(next - ctrInsts); 1359 } 1360} 1361 1362void 1363BaseKvmCPU::setupInstCounter(uint64_t period) 1364{ 1365 // No need to do anything if we aren't attaching for the first 1366 // time or the period isn't changing. 1367 if (period == activeInstPeriod && hwInstructions.attached()) 1368 return; 1369 1370 PerfKvmCounterConfig cfgInstructions(PERF_TYPE_HARDWARE, 1371 PERF_COUNT_HW_INSTRUCTIONS); 1372 1373 // Try to exclude the host. We set both exclude_hv and 1374 // exclude_host since different architectures use slightly 1375 // different APIs in the kernel. 1376 cfgInstructions.exclude_hv(true) 1377 .exclude_host(true); 1378 1379 if (period) { 1380 // Setup a sampling counter if that has been requested. 1381 cfgInstructions.wakeupEvents(1) 1382 .samplePeriod(period); 1383 } 1384 1385 // We need to detach and re-attach the counter to reliably change 1386 // sampling settings. See PerfKvmCounter::period() for details. 1387 if (hwInstructions.attached()) 1388 hwInstructions.detach(); 1389 assert(hwCycles.attached()); 1390 hwInstructions.attach(cfgInstructions, 1391 0, // TID (0 => currentThread) 1392 hwCycles); 1393 1394 if (period) 1395 hwInstructions.enableSignals(KVM_KICK_SIGNAL); 1396 1397 activeInstPeriod = period; 1398} 1399