base.cc revision 10098:484f50943e13
1/*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Sandberg
38 */
39
40#include <linux/kvm.h>
41#include <sys/ioctl.h>
42#include <sys/mman.h>
43#include <unistd.h>
44
45#include <cerrno>
46#include <csignal>
47#include <ostream>
48
49#include "arch/mmapped_ipr.hh"
50#include "arch/utility.hh"
51#include "cpu/kvm/base.hh"
52#include "debug/Checkpoint.hh"
53#include "debug/Drain.hh"
54#include "debug/Kvm.hh"
55#include "debug/KvmIO.hh"
56#include "debug/KvmRun.hh"
57#include "params/BaseKvmCPU.hh"
58#include "sim/process.hh"
59#include "sim/system.hh"
60
61#include <signal.h>
62
63/* Used by some KVM macros */
64#define PAGE_SIZE pageSize
65
66static volatile __thread bool timerOverflowed = false;
67
68BaseKvmCPU::BaseKvmCPU(BaseKvmCPUParams *params)
69    : BaseCPU(params),
70      vm(*params->kvmVM),
71      _status(Idle),
72      dataPort(name() + ".dcache_port", this),
73      instPort(name() + ".icache_port", this),
74      threadContextDirty(true),
75      kvmStateDirty(false),
76      vcpuID(vm.allocVCPUID()), vcpuFD(-1), vcpuMMapSize(0),
77      _kvmRun(NULL), mmioRing(NULL),
78      pageSize(sysconf(_SC_PAGE_SIZE)),
79      tickEvent(*this),
80      activeInstPeriod(0),
81      perfControlledByTimer(params->usePerfOverflow),
82      hostFactor(params->hostFactor),
83      drainManager(NULL),
84      ctrInsts(0)
85{
86    if (pageSize == -1)
87        panic("KVM: Failed to determine host page size (%i)\n",
88              errno);
89
90    thread = new SimpleThread(this, 0, params->system,
91                              params->itb, params->dtb, params->isa[0]);
92    thread->setStatus(ThreadContext::Halted);
93    tc = thread->getTC();
94    threadContexts.push_back(tc);
95}
96
97BaseKvmCPU::~BaseKvmCPU()
98{
99    if (_kvmRun)
100        munmap(_kvmRun, vcpuMMapSize);
101    close(vcpuFD);
102}
103
104void
105BaseKvmCPU::init()
106{
107    BaseCPU::init();
108
109    if (numThreads != 1)
110        fatal("KVM: Multithreading not supported");
111
112    tc->initMemProxies(tc);
113
114    // initialize CPU, including PC
115    if (FullSystem && !switchedOut())
116        TheISA::initCPU(tc, tc->contextId());
117
118    mmio_req.setThreadContext(tc->contextId(), 0);
119}
120
121void
122BaseKvmCPU::startup()
123{
124    const BaseKvmCPUParams * const p(
125        dynamic_cast<const BaseKvmCPUParams *>(params()));
126
127    Kvm &kvm(vm.kvm);
128
129    BaseCPU::startup();
130
131    assert(vcpuFD == -1);
132
133    // Tell the VM that a CPU is about to start.
134    vm.cpuStartup();
135
136    // We can't initialize KVM CPUs in BaseKvmCPU::init() since we are
137    // not guaranteed that the parent KVM VM has initialized at that
138    // point. Initialize virtual CPUs here instead.
139    vcpuFD = vm.createVCPU(vcpuID);
140
141    // Map the KVM run structure */
142    vcpuMMapSize = kvm.getVCPUMMapSize();
143    _kvmRun = (struct kvm_run *)mmap(0, vcpuMMapSize,
144                                     PROT_READ | PROT_WRITE, MAP_SHARED,
145                                     vcpuFD, 0);
146    if (_kvmRun == MAP_FAILED)
147        panic("KVM: Failed to map run data structure\n");
148
149    // Setup a pointer to the MMIO ring buffer if coalesced MMIO is
150    // available. The offset into the KVM's communication page is
151    // provided by the coalesced MMIO capability.
152    int mmioOffset(kvm.capCoalescedMMIO());
153    if (!p->useCoalescedMMIO) {
154        inform("KVM: Coalesced MMIO disabled by config.\n");
155    } else if (mmioOffset) {
156        inform("KVM: Coalesced IO available\n");
157        mmioRing = (struct kvm_coalesced_mmio_ring *)(
158            (char *)_kvmRun + (mmioOffset * pageSize));
159    } else {
160        inform("KVM: Coalesced not supported by host OS\n");
161    }
162
163    thread->startup();
164
165    Event *startupEvent(
166        new EventWrapper<BaseKvmCPU,
167                         &BaseKvmCPU::startupThread>(this, true));
168    schedule(startupEvent, curTick());
169}
170
171void
172BaseKvmCPU::startupThread()
173{
174    // Do thread-specific initialization. We need to setup signal
175    // delivery for counters and timers from within the thread that
176    // will execute the event queue to ensure that signals are
177    // delivered to the right threads.
178    const BaseKvmCPUParams * const p(
179        dynamic_cast<const BaseKvmCPUParams *>(params()));
180
181    // Setup signal handlers. This has to be done after the vCPU is
182    // created since it manipulates the vCPU signal mask.
183    setupSignalHandler();
184
185    setupCounters();
186
187    if (p->usePerfOverflow)
188        runTimer.reset(new PerfKvmTimer(hwCycles,
189                                        KVM_TIMER_SIGNAL,
190                                        p->hostFactor,
191                                        p->hostFreq));
192    else
193        runTimer.reset(new PosixKvmTimer(KVM_TIMER_SIGNAL, CLOCK_MONOTONIC,
194                                         p->hostFactor,
195                                         p->hostFreq));
196
197}
198
199void
200BaseKvmCPU::regStats()
201{
202    using namespace Stats;
203
204    BaseCPU::regStats();
205
206    numInsts
207        .name(name() + ".committedInsts")
208        .desc("Number of instructions committed")
209        ;
210
211    numVMExits
212        .name(name() + ".numVMExits")
213        .desc("total number of KVM exits")
214        ;
215
216    numVMHalfEntries
217        .name(name() + ".numVMHalfEntries")
218        .desc("number of KVM entries to finalize pending operations")
219        ;
220
221    numExitSignal
222        .name(name() + ".numExitSignal")
223        .desc("exits due to signal delivery")
224        ;
225
226    numMMIO
227        .name(name() + ".numMMIO")
228        .desc("number of VM exits due to memory mapped IO")
229        ;
230
231    numCoalescedMMIO
232        .name(name() + ".numCoalescedMMIO")
233        .desc("number of coalesced memory mapped IO requests")
234        ;
235
236    numIO
237        .name(name() + ".numIO")
238        .desc("number of VM exits due to legacy IO")
239        ;
240
241    numHalt
242        .name(name() + ".numHalt")
243        .desc("number of VM exits due to wait for interrupt instructions")
244        ;
245
246    numInterrupts
247        .name(name() + ".numInterrupts")
248        .desc("number of interrupts delivered")
249        ;
250
251    numHypercalls
252        .name(name() + ".numHypercalls")
253        .desc("number of hypercalls")
254        ;
255}
256
257void
258BaseKvmCPU::serializeThread(std::ostream &os, ThreadID tid)
259{
260    if (DTRACE(Checkpoint)) {
261        DPRINTF(Checkpoint, "KVM: Serializing thread %i:\n", tid);
262        dump();
263    }
264
265    assert(tid == 0);
266    assert(_status == Idle);
267    thread->serialize(os);
268}
269
270void
271BaseKvmCPU::unserializeThread(Checkpoint *cp, const std::string &section,
272                              ThreadID tid)
273{
274    DPRINTF(Checkpoint, "KVM: Unserialize thread %i:\n", tid);
275
276    assert(tid == 0);
277    assert(_status == Idle);
278    thread->unserialize(cp, section);
279    threadContextDirty = true;
280}
281
282unsigned int
283BaseKvmCPU::drain(DrainManager *dm)
284{
285    if (switchedOut())
286        return 0;
287
288    DPRINTF(Drain, "BaseKvmCPU::drain\n");
289    switch (_status) {
290      case Running:
291        // The base KVM code is normally ready when it is in the
292        // Running state, but the architecture specific code might be
293        // of a different opinion. This may happen when the CPU been
294        // notified of an event that hasn't been accepted by the vCPU
295        // yet.
296        if (!archIsDrained()) {
297            drainManager = dm;
298            return 1;
299        }
300
301        // The state of the CPU is consistent, so we don't need to do
302        // anything special to drain it. We simply de-schedule the
303        // tick event and enter the Idle state to prevent nasty things
304        // like MMIOs from happening.
305        if (tickEvent.scheduled())
306            deschedule(tickEvent);
307        _status = Idle;
308
309        /** FALLTHROUGH */
310      case Idle:
311        // Idle, no need to drain
312        assert(!tickEvent.scheduled());
313
314        // Sync the thread context here since we'll need it when we
315        // switch CPUs or checkpoint the CPU.
316        syncThreadContext();
317
318        return 0;
319
320      case RunningServiceCompletion:
321        // The CPU has just requested a service that was handled in
322        // the RunningService state, but the results have still not
323        // been reported to the CPU. Now, we /could/ probably just
324        // update the register state ourselves instead of letting KVM
325        // handle it, but that would be tricky. Instead, we enter KVM
326        // and let it do its stuff.
327        drainManager = dm;
328
329        DPRINTF(Drain, "KVM CPU is waiting for service completion, "
330                "requesting drain.\n");
331        return 1;
332
333      case RunningService:
334        // We need to drain since the CPU is waiting for service (e.g., MMIOs)
335        drainManager = dm;
336
337        DPRINTF(Drain, "KVM CPU is waiting for service, requesting drain.\n");
338        return 1;
339
340      default:
341        panic("KVM: Unhandled CPU state in drain()\n");
342        return 0;
343    }
344}
345
346void
347BaseKvmCPU::drainResume()
348{
349    assert(!tickEvent.scheduled());
350
351    // We might have been switched out. In that case, we don't need to
352    // do anything.
353    if (switchedOut())
354        return;
355
356    DPRINTF(Kvm, "drainResume\n");
357    verifyMemoryMode();
358
359    // The tick event is de-scheduled as a part of the draining
360    // process. Re-schedule it if the thread context is active.
361    if (tc->status() == ThreadContext::Active) {
362        schedule(tickEvent, nextCycle());
363        _status = Running;
364    } else {
365        _status = Idle;
366    }
367}
368
369void
370BaseKvmCPU::switchOut()
371{
372    DPRINTF(Kvm, "switchOut\n");
373
374    BaseCPU::switchOut();
375
376    // We should have drained prior to executing a switchOut, which
377    // means that the tick event shouldn't be scheduled and the CPU is
378    // idle.
379    assert(!tickEvent.scheduled());
380    assert(_status == Idle);
381}
382
383void
384BaseKvmCPU::takeOverFrom(BaseCPU *cpu)
385{
386    DPRINTF(Kvm, "takeOverFrom\n");
387
388    BaseCPU::takeOverFrom(cpu);
389
390    // We should have drained prior to executing a switchOut, which
391    // means that the tick event shouldn't be scheduled and the CPU is
392    // idle.
393    assert(!tickEvent.scheduled());
394    assert(_status == Idle);
395    assert(threadContexts.size() == 1);
396
397    // Force an update of the KVM state here instead of flagging the
398    // TC as dirty. This is not ideal from a performance point of
399    // view, but it makes debugging easier as it allows meaningful KVM
400    // state to be dumped before and after a takeover.
401    updateKvmState();
402    threadContextDirty = false;
403}
404
405void
406BaseKvmCPU::verifyMemoryMode() const
407{
408    if (!(system->isAtomicMode() && system->bypassCaches())) {
409        fatal("The KVM-based CPUs requires the memory system to be in the "
410              "'atomic_noncaching' mode.\n");
411    }
412}
413
414void
415BaseKvmCPU::wakeup()
416{
417    DPRINTF(Kvm, "wakeup()\n");
418
419    if (thread->status() != ThreadContext::Suspended)
420        return;
421
422    thread->activate();
423}
424
425void
426BaseKvmCPU::activateContext(ThreadID thread_num, Cycles delay)
427{
428    DPRINTF(Kvm, "ActivateContext %d (%d cycles)\n", thread_num, delay);
429
430    assert(thread_num == 0);
431    assert(thread);
432
433    assert(_status == Idle);
434    assert(!tickEvent.scheduled());
435
436    numCycles += ticksToCycles(thread->lastActivate - thread->lastSuspend);
437
438    schedule(tickEvent, clockEdge(delay));
439    _status = Running;
440}
441
442
443void
444BaseKvmCPU::suspendContext(ThreadID thread_num)
445{
446    DPRINTF(Kvm, "SuspendContext %d\n", thread_num);
447
448    assert(thread_num == 0);
449    assert(thread);
450
451    if (_status == Idle)
452        return;
453
454    assert(_status == Running);
455
456    // The tick event may no be scheduled if the quest has requested
457    // the monitor to wait for interrupts. The normal CPU models can
458    // get their tick events descheduled by quiesce instructions, but
459    // that can't happen here.
460    if (tickEvent.scheduled())
461        deschedule(tickEvent);
462
463    _status = Idle;
464}
465
466void
467BaseKvmCPU::deallocateContext(ThreadID thread_num)
468{
469    // for now, these are equivalent
470    suspendContext(thread_num);
471}
472
473void
474BaseKvmCPU::haltContext(ThreadID thread_num)
475{
476    // for now, these are equivalent
477    suspendContext(thread_num);
478}
479
480ThreadContext *
481BaseKvmCPU::getContext(int tn)
482{
483    assert(tn == 0);
484    syncThreadContext();
485    return tc;
486}
487
488
489Counter
490BaseKvmCPU::totalInsts() const
491{
492    return ctrInsts;
493}
494
495Counter
496BaseKvmCPU::totalOps() const
497{
498    hack_once("Pretending totalOps is equivalent to totalInsts()\n");
499    return ctrInsts;
500}
501
502void
503BaseKvmCPU::dump()
504{
505    inform("State dumping not implemented.");
506}
507
508void
509BaseKvmCPU::tick()
510{
511    Tick delay(0);
512    assert(_status != Idle);
513
514    switch (_status) {
515      case RunningService:
516        // handleKvmExit() will determine the next state of the CPU
517        delay = handleKvmExit();
518
519        if (tryDrain())
520            _status = Idle;
521        break;
522
523      case RunningServiceCompletion:
524      case Running: {
525          EventQueue *q = curEventQueue();
526          Tick ticksToExecute(q->nextTick() - curTick());
527
528          // We might need to update the KVM state.
529          syncKvmState();
530
531          // Setup any pending instruction count breakpoints using
532          // PerfEvent.
533          setupInstStop();
534
535          DPRINTF(KvmRun, "Entering KVM...\n");
536          if (drainManager) {
537              // Force an immediate exit from KVM after completing
538              // pending operations. The architecture-specific code
539              // takes care to run until it is in a state where it can
540              // safely be drained.
541              delay = kvmRunDrain();
542          } else {
543              delay = kvmRun(ticksToExecute);
544          }
545
546          // Entering into KVM implies that we'll have to reload the thread
547          // context from KVM if we want to access it. Flag the KVM state as
548          // dirty with respect to the cached thread context.
549          kvmStateDirty = true;
550
551          // Enter into the RunningService state unless the
552          // simulation was stopped by a timer.
553          if (_kvmRun->exit_reason !=  KVM_EXIT_INTR) {
554              _status = RunningService;
555          } else {
556              ++numExitSignal;
557              _status = Running;
558          }
559
560          // Service any pending instruction events. The vCPU should
561          // have exited in time for the event using the instruction
562          // counter configured by setupInstStop().
563          comInstEventQueue[0]->serviceEvents(ctrInsts);
564          system->instEventQueue.serviceEvents(system->totalNumInsts);
565
566          if (tryDrain())
567              _status = Idle;
568      } break;
569
570      default:
571        panic("BaseKvmCPU entered tick() in an illegal state (%i)\n",
572              _status);
573    }
574
575    // Schedule a new tick if we are still running
576    if (_status != Idle)
577        schedule(tickEvent, clockEdge(ticksToCycles(delay)));
578}
579
580Tick
581BaseKvmCPU::kvmRunDrain()
582{
583    // By default, the only thing we need to drain is a pending IO
584    // operation which assumes that we are in the
585    // RunningServiceCompletion state.
586    assert(_status == RunningServiceCompletion);
587
588    // Deliver the data from the pending IO operation and immediately
589    // exit.
590    return kvmRun(0);
591}
592
593uint64_t
594BaseKvmCPU::getHostCycles() const
595{
596    return hwCycles.read();
597}
598
599Tick
600BaseKvmCPU::kvmRun(Tick ticks)
601{
602    Tick ticksExecuted;
603    DPRINTF(KvmRun, "KVM: Executing for %i ticks\n", ticks);
604    timerOverflowed = false;
605
606    if (ticks == 0) {
607        // Settings ticks == 0 is a special case which causes an entry
608        // into KVM that finishes pending operations (e.g., IO) and
609        // then immediately exits.
610        DPRINTF(KvmRun, "KVM: Delivering IO without full guest entry\n");
611
612        ++numVMHalfEntries;
613
614        // This signal is always masked while we are executing in gem5
615        // and gets unmasked temporarily as soon as we enter into
616        // KVM. See setSignalMask() and setupSignalHandler().
617        raise(KVM_TIMER_SIGNAL);
618
619        // Enter into KVM. KVM will check for signals after completing
620        // pending operations (IO). Since the KVM_TIMER_SIGNAL is
621        // pending, this forces an immediate exit into gem5 again. We
622        // don't bother to setup timers since this shouldn't actually
623        // execute any code in the guest.
624        ioctlRun();
625
626        // We always execute at least one cycle to prevent the
627        // BaseKvmCPU::tick() to be rescheduled on the same tick
628        // twice.
629        ticksExecuted = clockPeriod();
630    } else {
631        if (ticks < runTimer->resolution()) {
632            DPRINTF(KvmRun, "KVM: Adjusting tick count (%i -> %i)\n",
633                    ticks, runTimer->resolution());
634            ticks = runTimer->resolution();
635        }
636
637        // Get hardware statistics after synchronizing contexts. The KVM
638        // state update might affect guest cycle counters.
639        uint64_t baseCycles(getHostCycles());
640        uint64_t baseInstrs(hwInstructions.read());
641
642        // Arm the run timer and start the cycle timer if it isn't
643        // controlled by the overflow timer. Starting/stopping the cycle
644        // timer automatically starts the other perf timers as they are in
645        // the same counter group.
646        runTimer->arm(ticks);
647        if (!perfControlledByTimer)
648            hwCycles.start();
649
650        ioctlRun();
651
652        runTimer->disarm();
653        if (!perfControlledByTimer)
654            hwCycles.stop();
655
656        // The timer signal may have been delivered after we exited
657        // from KVM. It will be pending in that case since it is
658        // masked when we aren't executing in KVM. Discard it to make
659        // sure we don't deliver it immediately next time we try to
660        // enter into KVM.
661        discardPendingSignal(KVM_TIMER_SIGNAL);
662        discardPendingSignal(KVM_INST_SIGNAL);
663
664        const uint64_t hostCyclesExecuted(getHostCycles() - baseCycles);
665        const uint64_t simCyclesExecuted(hostCyclesExecuted * hostFactor);
666        const uint64_t instsExecuted(hwInstructions.read() - baseInstrs);
667        ticksExecuted = runTimer->ticksFromHostCycles(hostCyclesExecuted);
668
669        if (ticksExecuted < ticks &&
670            timerOverflowed &&
671            _kvmRun->exit_reason == KVM_EXIT_INTR) {
672            // TODO: We should probably do something clever here...
673            warn("KVM: Early timer event, requested %i ticks but got %i ticks.\n",
674                 ticks, ticksExecuted);
675        }
676
677        /* Update statistics */
678        numCycles += simCyclesExecuted;;
679        numInsts += instsExecuted;
680        ctrInsts += instsExecuted;
681        system->totalNumInsts += instsExecuted;
682
683        DPRINTF(KvmRun,
684                "KVM: Executed %i instructions in %i cycles "
685                "(%i ticks, sim cycles: %i).\n",
686                instsExecuted, hostCyclesExecuted, ticksExecuted, simCyclesExecuted);
687    }
688
689    ++numVMExits;
690
691    return ticksExecuted + flushCoalescedMMIO();
692}
693
694void
695BaseKvmCPU::kvmNonMaskableInterrupt()
696{
697    ++numInterrupts;
698    if (ioctl(KVM_NMI) == -1)
699        panic("KVM: Failed to deliver NMI to virtual CPU\n");
700}
701
702void
703BaseKvmCPU::kvmInterrupt(const struct kvm_interrupt &interrupt)
704{
705    ++numInterrupts;
706    if (ioctl(KVM_INTERRUPT, (void *)&interrupt) == -1)
707        panic("KVM: Failed to deliver interrupt to virtual CPU\n");
708}
709
710void
711BaseKvmCPU::getRegisters(struct kvm_regs &regs) const
712{
713    if (ioctl(KVM_GET_REGS, &regs) == -1)
714        panic("KVM: Failed to get guest registers\n");
715}
716
717void
718BaseKvmCPU::setRegisters(const struct kvm_regs &regs)
719{
720    if (ioctl(KVM_SET_REGS, (void *)&regs) == -1)
721        panic("KVM: Failed to set guest registers\n");
722}
723
724void
725BaseKvmCPU::getSpecialRegisters(struct kvm_sregs &regs) const
726{
727    if (ioctl(KVM_GET_SREGS, &regs) == -1)
728        panic("KVM: Failed to get guest special registers\n");
729}
730
731void
732BaseKvmCPU::setSpecialRegisters(const struct kvm_sregs &regs)
733{
734    if (ioctl(KVM_SET_SREGS, (void *)&regs) == -1)
735        panic("KVM: Failed to set guest special registers\n");
736}
737
738void
739BaseKvmCPU::getFPUState(struct kvm_fpu &state) const
740{
741    if (ioctl(KVM_GET_FPU, &state) == -1)
742        panic("KVM: Failed to get guest FPU state\n");
743}
744
745void
746BaseKvmCPU::setFPUState(const struct kvm_fpu &state)
747{
748    if (ioctl(KVM_SET_FPU, (void *)&state) == -1)
749        panic("KVM: Failed to set guest FPU state\n");
750}
751
752
753void
754BaseKvmCPU::setOneReg(uint64_t id, const void *addr)
755{
756#ifdef KVM_SET_ONE_REG
757    struct kvm_one_reg reg;
758    reg.id = id;
759    reg.addr = (uint64_t)addr;
760
761    if (ioctl(KVM_SET_ONE_REG, &reg) == -1) {
762        panic("KVM: Failed to set register (0x%x) value (errno: %i)\n",
763              id, errno);
764    }
765#else
766    panic("KVM_SET_ONE_REG is unsupported on this platform.\n");
767#endif
768}
769
770void
771BaseKvmCPU::getOneReg(uint64_t id, void *addr) const
772{
773#ifdef KVM_GET_ONE_REG
774    struct kvm_one_reg reg;
775    reg.id = id;
776    reg.addr = (uint64_t)addr;
777
778    if (ioctl(KVM_GET_ONE_REG, &reg) == -1) {
779        panic("KVM: Failed to get register (0x%x) value (errno: %i)\n",
780              id, errno);
781    }
782#else
783    panic("KVM_GET_ONE_REG is unsupported on this platform.\n");
784#endif
785}
786
787std::string
788BaseKvmCPU::getAndFormatOneReg(uint64_t id) const
789{
790#ifdef KVM_GET_ONE_REG
791    std::ostringstream ss;
792
793    ss.setf(std::ios::hex, std::ios::basefield);
794    ss.setf(std::ios::showbase);
795#define HANDLE_INTTYPE(len)                      \
796    case KVM_REG_SIZE_U ## len: {                \
797        uint ## len ## _t value;                 \
798        getOneReg(id, &value);                   \
799        ss << value;                             \
800    }  break
801
802#define HANDLE_ARRAY(len)                       \
803    case KVM_REG_SIZE_U ## len: {               \
804        uint8_t value[len / 8];                 \
805        getOneReg(id, value);                   \
806        ss << "[" << value[0];                  \
807        for (int i = 1; i < len  / 8; ++i)      \
808            ss << ", " << value[i];             \
809        ss << "]";                              \
810      } break
811
812    switch (id & KVM_REG_SIZE_MASK) {
813        HANDLE_INTTYPE(8);
814        HANDLE_INTTYPE(16);
815        HANDLE_INTTYPE(32);
816        HANDLE_INTTYPE(64);
817        HANDLE_ARRAY(128);
818        HANDLE_ARRAY(256);
819        HANDLE_ARRAY(512);
820        HANDLE_ARRAY(1024);
821      default:
822        ss << "??";
823    }
824
825#undef HANDLE_INTTYPE
826#undef HANDLE_ARRAY
827
828    return ss.str();
829#else
830    panic("KVM_GET_ONE_REG is unsupported on this platform.\n");
831#endif
832}
833
834void
835BaseKvmCPU::syncThreadContext()
836{
837    if (!kvmStateDirty)
838        return;
839
840    assert(!threadContextDirty);
841
842    updateThreadContext();
843    kvmStateDirty = false;
844}
845
846void
847BaseKvmCPU::syncKvmState()
848{
849    if (!threadContextDirty)
850        return;
851
852    assert(!kvmStateDirty);
853
854    updateKvmState();
855    threadContextDirty = false;
856}
857
858Tick
859BaseKvmCPU::handleKvmExit()
860{
861    DPRINTF(KvmRun, "handleKvmExit (exit_reason: %i)\n", _kvmRun->exit_reason);
862    assert(_status == RunningService);
863
864    // Switch into the running state by default. Individual handlers
865    // can override this.
866    _status = Running;
867    switch (_kvmRun->exit_reason) {
868      case KVM_EXIT_UNKNOWN:
869        return handleKvmExitUnknown();
870
871      case KVM_EXIT_EXCEPTION:
872        return handleKvmExitException();
873
874      case KVM_EXIT_IO:
875        _status = RunningServiceCompletion;
876        ++numIO;
877        return handleKvmExitIO();
878
879      case KVM_EXIT_HYPERCALL:
880        ++numHypercalls;
881        return handleKvmExitHypercall();
882
883      case KVM_EXIT_HLT:
884        /* The guest has halted and is waiting for interrupts */
885        DPRINTF(Kvm, "handleKvmExitHalt\n");
886        ++numHalt;
887
888        // Suspend the thread until the next interrupt arrives
889        thread->suspend();
890
891        // This is actually ignored since the thread is suspended.
892        return 0;
893
894      case KVM_EXIT_MMIO:
895        _status = RunningServiceCompletion;
896        /* Service memory mapped IO requests */
897        DPRINTF(KvmIO, "KVM: Handling MMIO (w: %u, addr: 0x%x, len: %u)\n",
898                _kvmRun->mmio.is_write,
899                _kvmRun->mmio.phys_addr, _kvmRun->mmio.len);
900
901        ++numMMIO;
902        return doMMIOAccess(_kvmRun->mmio.phys_addr, _kvmRun->mmio.data,
903                            _kvmRun->mmio.len, _kvmRun->mmio.is_write);
904
905      case KVM_EXIT_IRQ_WINDOW_OPEN:
906        return handleKvmExitIRQWindowOpen();
907
908      case KVM_EXIT_FAIL_ENTRY:
909        return handleKvmExitFailEntry();
910
911      case KVM_EXIT_INTR:
912        /* KVM was interrupted by a signal, restart it in the next
913         * tick. */
914        return 0;
915
916      case KVM_EXIT_INTERNAL_ERROR:
917        panic("KVM: Internal error (suberror: %u)\n",
918              _kvmRun->internal.suberror);
919
920      default:
921        dump();
922        panic("KVM: Unexpected exit (exit_reason: %u)\n", _kvmRun->exit_reason);
923    }
924}
925
926Tick
927BaseKvmCPU::handleKvmExitIO()
928{
929    panic("KVM: Unhandled guest IO (dir: %i, size: %i, port: 0x%x, count: %i)\n",
930          _kvmRun->io.direction, _kvmRun->io.size,
931          _kvmRun->io.port, _kvmRun->io.count);
932}
933
934Tick
935BaseKvmCPU::handleKvmExitHypercall()
936{
937    panic("KVM: Unhandled hypercall\n");
938}
939
940Tick
941BaseKvmCPU::handleKvmExitIRQWindowOpen()
942{
943    warn("KVM: Unhandled IRQ window.\n");
944    return 0;
945}
946
947
948Tick
949BaseKvmCPU::handleKvmExitUnknown()
950{
951    dump();
952    panic("KVM: Unknown error when starting vCPU (hw reason: 0x%llx)\n",
953          _kvmRun->hw.hardware_exit_reason);
954}
955
956Tick
957BaseKvmCPU::handleKvmExitException()
958{
959    dump();
960    panic("KVM: Got exception when starting vCPU "
961          "(exception: %u, error_code: %u)\n",
962          _kvmRun->ex.exception, _kvmRun->ex.error_code);
963}
964
965Tick
966BaseKvmCPU::handleKvmExitFailEntry()
967{
968    dump();
969    panic("KVM: Failed to enter virtualized mode (hw reason: 0x%llx)\n",
970          _kvmRun->fail_entry.hardware_entry_failure_reason);
971}
972
973Tick
974BaseKvmCPU::doMMIOAccess(Addr paddr, void *data, int size, bool write)
975{
976    ThreadContext *tc(thread->getTC());
977    syncThreadContext();
978
979    mmio_req.setPhys(paddr, size, Request::UNCACHEABLE, dataMasterId());
980    // Some architectures do need to massage physical addresses a bit
981    // before they are inserted into the memory system. This enables
982    // APIC accesses on x86 and m5ops where supported through a MMIO
983    // interface.
984    BaseTLB::Mode tlb_mode(write ? BaseTLB::Write : BaseTLB::Read);
985    Fault fault(tc->getDTBPtr()->finalizePhysical(&mmio_req, tc, tlb_mode));
986    if (fault != NoFault)
987        warn("Finalization of MMIO address failed: %s\n", fault->name());
988
989
990    const MemCmd cmd(write ? MemCmd::WriteReq : MemCmd::ReadReq);
991    Packet pkt(&mmio_req, cmd);
992    pkt.dataStatic(data);
993
994    if (mmio_req.isMmappedIpr()) {
995        const Cycles ipr_delay(write ?
996                             TheISA::handleIprWrite(tc, &pkt) :
997                             TheISA::handleIprRead(tc, &pkt));
998        return clockPeriod() * ipr_delay;
999    } else {
1000        return dataPort.sendAtomic(&pkt);
1001    }
1002}
1003
1004void
1005BaseKvmCPU::setSignalMask(const sigset_t *mask)
1006{
1007    std::unique_ptr<struct kvm_signal_mask> kvm_mask;
1008
1009    if (mask) {
1010        kvm_mask.reset((struct kvm_signal_mask *)operator new(
1011                           sizeof(struct kvm_signal_mask) + sizeof(*mask)));
1012        // The kernel and the user-space headers have different ideas
1013        // about the size of sigset_t. This seems like a massive hack,
1014        // but is actually what qemu does.
1015        assert(sizeof(*mask) >= 8);
1016        kvm_mask->len = 8;
1017        memcpy(kvm_mask->sigset, mask, kvm_mask->len);
1018    }
1019
1020    if (ioctl(KVM_SET_SIGNAL_MASK, (void *)kvm_mask.get()) == -1)
1021        panic("KVM: Failed to set vCPU signal mask (errno: %i)\n",
1022              errno);
1023}
1024
1025int
1026BaseKvmCPU::ioctl(int request, long p1) const
1027{
1028    if (vcpuFD == -1)
1029        panic("KVM: CPU ioctl called before initialization\n");
1030
1031    return ::ioctl(vcpuFD, request, p1);
1032}
1033
1034Tick
1035BaseKvmCPU::flushCoalescedMMIO()
1036{
1037    if (!mmioRing)
1038        return 0;
1039
1040    DPRINTF(KvmIO, "KVM: Flushing the coalesced MMIO ring buffer\n");
1041
1042    // TODO: We might need to do synchronization when we start to
1043    // support multiple CPUs
1044    Tick ticks(0);
1045    while (mmioRing->first != mmioRing->last) {
1046        struct kvm_coalesced_mmio &ent(
1047            mmioRing->coalesced_mmio[mmioRing->first]);
1048
1049        DPRINTF(KvmIO, "KVM: Handling coalesced MMIO (addr: 0x%x, len: %u)\n",
1050                ent.phys_addr, ent.len);
1051
1052        ++numCoalescedMMIO;
1053        ticks += doMMIOAccess(ent.phys_addr, ent.data, ent.len, true);
1054
1055        mmioRing->first = (mmioRing->first + 1) % KVM_COALESCED_MMIO_MAX;
1056    }
1057
1058    return ticks;
1059}
1060
1061/**
1062 * Cycle timer overflow when running in KVM. Forces the KVM syscall to
1063 * exit with EINTR and allows us to run the event queue.
1064 *
1065 * @warn This function might not be called since some kernels don't
1066 * seem to deliver signals when the signal is only unmasked when
1067 * running in KVM. This doesn't matter though since we are only
1068 * interested in getting KVM to exit, which happens as expected. See
1069 * setupSignalHandler() and kvmRun() for details about KVM signal
1070 * handling.
1071 */
1072static void
1073onTimerOverflow(int signo, siginfo_t *si, void *data)
1074{
1075    timerOverflowed = true;
1076}
1077
1078/**
1079 * Instruction counter overflow when running in KVM. Forces the KVM
1080 * syscall to exit with EINTR and allows us to handle instruction
1081 * count events.
1082 */
1083static void
1084onInstEvent(int signo, siginfo_t *si, void *data)
1085{
1086}
1087
1088void
1089BaseKvmCPU::setupSignalHandler()
1090{
1091    struct sigaction sa;
1092
1093    memset(&sa, 0, sizeof(sa));
1094    sa.sa_sigaction = onTimerOverflow;
1095    sa.sa_flags = SA_SIGINFO | SA_RESTART;
1096    if (sigaction(KVM_TIMER_SIGNAL, &sa, NULL) == -1)
1097        panic("KVM: Failed to setup vCPU timer signal handler\n");
1098
1099    memset(&sa, 0, sizeof(sa));
1100    sa.sa_sigaction = onInstEvent;
1101    sa.sa_flags = SA_SIGINFO | SA_RESTART;
1102    if (sigaction(KVM_INST_SIGNAL, &sa, NULL) == -1)
1103        panic("KVM: Failed to setup vCPU instruction signal handler\n");
1104
1105    sigset_t sigset;
1106    if (pthread_sigmask(SIG_BLOCK, NULL, &sigset) == -1)
1107        panic("KVM: Failed get signal mask\n");
1108
1109    // Request KVM to setup the same signal mask as we're currently
1110    // running with except for the KVM control signals. We'll
1111    // sometimes need to raise the KVM_TIMER_SIGNAL to cause immediate
1112    // exits from KVM after servicing IO requests. See kvmRun().
1113    sigdelset(&sigset, KVM_TIMER_SIGNAL);
1114    sigdelset(&sigset, KVM_INST_SIGNAL);
1115    setSignalMask(&sigset);
1116
1117    // Mask our control signals so they aren't delivered unless we're
1118    // actually executing inside KVM.
1119    sigaddset(&sigset, KVM_TIMER_SIGNAL);
1120    sigaddset(&sigset, KVM_INST_SIGNAL);
1121    if (pthread_sigmask(SIG_SETMASK, &sigset, NULL) == -1)
1122        panic("KVM: Failed mask the KVM control signals\n");
1123}
1124
1125bool
1126BaseKvmCPU::discardPendingSignal(int signum) const
1127{
1128    int discardedSignal;
1129
1130    // Setting the timeout to zero causes sigtimedwait to return
1131    // immediately.
1132    struct timespec timeout;
1133    timeout.tv_sec = 0;
1134    timeout.tv_nsec = 0;
1135
1136    sigset_t sigset;
1137    sigemptyset(&sigset);
1138    sigaddset(&sigset, signum);
1139
1140    do {
1141        discardedSignal = sigtimedwait(&sigset, NULL, &timeout);
1142    } while (discardedSignal == -1 && errno == EINTR);
1143
1144    if (discardedSignal == signum)
1145        return true;
1146    else if (discardedSignal == -1 && errno == EAGAIN)
1147        return false;
1148    else
1149        panic("Unexpected return value from sigtimedwait: %i (errno: %i)\n",
1150              discardedSignal, errno);
1151}
1152
1153void
1154BaseKvmCPU::setupCounters()
1155{
1156    DPRINTF(Kvm, "Attaching cycle counter...\n");
1157    PerfKvmCounterConfig cfgCycles(PERF_TYPE_HARDWARE,
1158                                PERF_COUNT_HW_CPU_CYCLES);
1159    cfgCycles.disabled(true)
1160        .pinned(true);
1161
1162    // Try to exclude the host. We set both exclude_hv and
1163    // exclude_host since different architectures use slightly
1164    // different APIs in the kernel.
1165    cfgCycles.exclude_hv(true)
1166        .exclude_host(true);
1167
1168    if (perfControlledByTimer) {
1169        // We need to configure the cycles counter to send overflows
1170        // since we are going to use it to trigger timer signals that
1171        // trap back into m5 from KVM. In practice, this means that we
1172        // need to set some non-zero sample period that gets
1173        // overridden when the timer is armed.
1174        cfgCycles.wakeupEvents(1)
1175            .samplePeriod(42);
1176    }
1177
1178    hwCycles.attach(cfgCycles,
1179                    0); // TID (0 => currentThread)
1180
1181    setupInstCounter();
1182}
1183
1184bool
1185BaseKvmCPU::tryDrain()
1186{
1187    if (!drainManager)
1188        return false;
1189
1190    if (!archIsDrained()) {
1191        DPRINTF(Drain, "tryDrain: Architecture code is not ready.\n");
1192        return false;
1193    }
1194
1195    if (_status == Idle || _status == Running) {
1196        DPRINTF(Drain,
1197                "tryDrain: CPU transitioned into the Idle state, drain done\n");
1198        drainManager->signalDrainDone();
1199        drainManager = NULL;
1200        return true;
1201    } else {
1202        DPRINTF(Drain, "tryDrain: CPU not ready.\n");
1203        return false;
1204    }
1205}
1206
1207void
1208BaseKvmCPU::ioctlRun()
1209{
1210    if (ioctl(KVM_RUN) == -1) {
1211        if (errno != EINTR)
1212            panic("KVM: Failed to start virtual CPU (errno: %i)\n",
1213                  errno);
1214    }
1215}
1216
1217void
1218BaseKvmCPU::setupInstStop()
1219{
1220    if (comInstEventQueue[0]->empty()) {
1221        setupInstCounter(0);
1222    } else {
1223        const uint64_t next(comInstEventQueue[0]->nextTick());
1224
1225        assert(next > ctrInsts);
1226        setupInstCounter(next - ctrInsts);
1227    }
1228}
1229
1230void
1231BaseKvmCPU::setupInstCounter(uint64_t period)
1232{
1233    // No need to do anything if we aren't attaching for the first
1234    // time or the period isn't changing.
1235    if (period == activeInstPeriod && hwInstructions.attached())
1236        return;
1237
1238    PerfKvmCounterConfig cfgInstructions(PERF_TYPE_HARDWARE,
1239                                         PERF_COUNT_HW_INSTRUCTIONS);
1240
1241    // Try to exclude the host. We set both exclude_hv and
1242    // exclude_host since different architectures use slightly
1243    // different APIs in the kernel.
1244    cfgInstructions.exclude_hv(true)
1245        .exclude_host(true);
1246
1247    if (period) {
1248        // Setup a sampling counter if that has been requested.
1249        cfgInstructions.wakeupEvents(1)
1250            .samplePeriod(period);
1251    }
1252
1253    // We need to detach and re-attach the counter to reliably change
1254    // sampling settings. See PerfKvmCounter::period() for details.
1255    if (hwInstructions.attached())
1256        hwInstructions.detach();
1257    assert(hwCycles.attached());
1258    hwInstructions.attach(cfgInstructions,
1259                          0, // TID (0 => currentThread)
1260                          hwCycles);
1261
1262    if (period)
1263        hwInstructions.enableSignals(KVM_INST_SIGNAL);
1264
1265    activeInstPeriod = period;
1266}
1267