1/* 2 * Copyright (c) 2011, 2016 ARM Limited 3 * Copyright (c) 2013 Advanced Micro Devices, Inc. 4 * All rights reserved 5 * 6 * The license below extends only to copyright in the software and shall 7 * not be construed as granting a license to any other intellectual 8 * property including but not limited to intellectual property relating 9 * to a hardware implementation of the functionality of the software 10 * licensed hereunder. You may use the software subject to the license 11 * terms below provided that you ensure that this notice is replicated 12 * unmodified and in its entirety in all distributions of the software, 13 * modified or unmodified, in source code or in binary form. 14 * 15 * Copyright (c) 2006 The Regents of The University of Michigan 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * Authors: Kevin Lim 42 * Geoffrey Blake 43 */ 44 45#ifndef __CPU_CHECKER_CPU_IMPL_HH__ 46#define __CPU_CHECKER_CPU_IMPL_HH__ 47 48#include <list> 49#include <string> 50 51#include "arch/isa_traits.hh" 52#include "arch/vtophys.hh" 53#include "base/refcnt.hh" 54#include "config/the_isa.hh" 55#include "cpu/base_dyn_inst.hh" 56#include "cpu/exetrace.hh" 57#include "cpu/reg_class.hh" 58#include "cpu/simple_thread.hh" 59#include "cpu/static_inst.hh" 60#include "cpu/thread_context.hh" 61#include "cpu/checker/cpu.hh" 62#include "debug/Checker.hh" 63#include "sim/full_system.hh" 64#include "sim/sim_object.hh" 65#include "sim/stats.hh" 66 67using namespace std; 68using namespace TheISA; 69 70template <class Impl> 71void 72Checker<Impl>::advancePC(const Fault &fault) 73{ 74 if (fault != NoFault) { 75 curMacroStaticInst = StaticInst::nullStaticInstPtr; 76 fault->invoke(tc, curStaticInst); 77 thread->decoder.reset(); 78 } else { 79 if (curStaticInst) { 80 if (curStaticInst->isLastMicroop()) 81 curMacroStaticInst = StaticInst::nullStaticInstPtr; 82 TheISA::PCState pcState = thread->pcState(); 83 TheISA::advancePC(pcState, curStaticInst); 84 thread->pcState(pcState); 85 DPRINTF(Checker, "Advancing PC to %s.\n", thread->pcState()); 86 } 87 } 88} 89////////////////////////////////////////////////// 90 91template <class Impl> 92void 93Checker<Impl>::handlePendingInt() 94{ 95 DPRINTF(Checker, "IRQ detected at PC: %s with %d insts in buffer\n", 96 thread->pcState(), instList.size()); 97 DynInstPtr boundaryInst = NULL; 98 if (!instList.empty()) { 99 // Set the instructions as completed and verify as much as possible. 100 DynInstPtr inst; 101 typename std::list<DynInstPtr>::iterator itr; 102 103 for (itr = instList.begin(); itr != instList.end(); itr++) { 104 (*itr)->setCompleted(); 105 } 106 107 inst = instList.front(); 108 boundaryInst = instList.back(); 109 verify(inst); // verify the instructions 110 inst = NULL; 111 } 112 if ((!boundaryInst && curMacroStaticInst && 113 curStaticInst->isDelayedCommit() && 114 !curStaticInst->isLastMicroop()) || 115 (boundaryInst && boundaryInst->isDelayedCommit() && 116 !boundaryInst->isLastMicroop())) { 117 panic("%lli: Trying to take an interrupt in middle of " 118 "a non-interuptable instruction!", curTick()); 119 } 120 boundaryInst = NULL; 121 thread->decoder.reset(); 122 curMacroStaticInst = StaticInst::nullStaticInstPtr; 123} 124 125template <class Impl> 126void 127Checker<Impl>::verify(const DynInstPtr &completed_inst) 128{ 129 DynInstPtr inst; 130 131 // Make sure serializing instructions are actually 132 // seen as serializing to commit. instList should be 133 // empty in these cases. 134 if ((completed_inst->isSerializing() || 135 completed_inst->isSerializeBefore()) && 136 (!instList.empty() ? 137 (instList.front()->seqNum != completed_inst->seqNum) : 0)) { 138 panic("%lli: Instruction sn:%lli at PC %s is serializing before but is" 139 " entering instList with other instructions\n", curTick(), 140 completed_inst->seqNum, completed_inst->pcState()); 141 } 142 143 // Either check this instruction, or add it to a list of 144 // instructions waiting to be checked. Instructions must be 145 // checked in program order, so if a store has committed yet not 146 // completed, there may be some instructions that are waiting 147 // behind it that have completed and must be checked. 148 if (!instList.empty()) { 149 if (youngestSN < completed_inst->seqNum) { 150 DPRINTF(Checker, "Adding instruction [sn:%lli] PC:%s to list\n", 151 completed_inst->seqNum, completed_inst->pcState()); 152 instList.push_back(completed_inst); 153 youngestSN = completed_inst->seqNum; 154 } 155 156 if (!instList.front()->isCompleted()) { 157 return; 158 } else { 159 inst = instList.front(); 160 instList.pop_front(); 161 } 162 } else { 163 if (!completed_inst->isCompleted()) { 164 if (youngestSN < completed_inst->seqNum) { 165 DPRINTF(Checker, "Adding instruction [sn:%lli] PC:%s to list\n", 166 completed_inst->seqNum, completed_inst->pcState()); 167 instList.push_back(completed_inst); 168 youngestSN = completed_inst->seqNum; 169 } 170 return; 171 } else { 172 if (youngestSN < completed_inst->seqNum) { 173 inst = completed_inst; 174 youngestSN = completed_inst->seqNum; 175 } else { 176 return; 177 } 178 } 179 } 180 181 // Make sure a serializing instruction is actually seen as 182 // serializing. instList should be empty here 183 if (inst->isSerializeAfter() && !instList.empty()) { 184 panic("%lli: Instruction sn:%lli at PC %s is serializing after but is" 185 " exiting instList with other instructions\n", curTick(), 186 completed_inst->seqNum, completed_inst->pcState()); 187 } 188 unverifiedInst = inst; 189 inst = NULL; 190 191 // Try to check all instructions that are completed, ending if we 192 // run out of instructions to check or if an instruction is not 193 // yet completed. 194 while (1) { 195 DPRINTF(Checker, "Processing instruction [sn:%lli] PC:%s.\n", 196 unverifiedInst->seqNum, unverifiedInst->pcState()); 197 unverifiedReq = NULL; 198 unverifiedReq = unverifiedInst->reqToVerify; 199 unverifiedMemData = unverifiedInst->memData; 200 // Make sure results queue is empty 201 while (!result.empty()) { 202 result.pop(); 203 } 204 numCycles++; 205 206 Fault fault = NoFault; 207 208 // maintain $r0 semantics 209 thread->setIntReg(ZeroReg, 0); 210#if THE_ISA == ALPHA_ISA 211 thread->setFloatReg(ZeroReg, 0); 212#endif 213 214 // Check if any recent PC changes match up with anything we 215 // expect to happen. This is mostly to check if traps or 216 // PC-based events have occurred in both the checker and CPU. 217 if (changedPC) { 218 DPRINTF(Checker, "Changed PC recently to %s\n", 219 thread->pcState()); 220 if (willChangePC) { 221 if (newPCState == thread->pcState()) { 222 DPRINTF(Checker, "Changed PC matches expected PC\n"); 223 } else { 224 warn("%lli: Changed PC does not match expected PC, " 225 "changed: %s, expected: %s", 226 curTick(), thread->pcState(), newPCState); 227 CheckerCPU::handleError(); 228 } 229 willChangePC = false; 230 } 231 changedPC = false; 232 } 233 234 // Try to fetch the instruction 235 uint64_t fetchOffset = 0; 236 bool fetchDone = false; 237 238 while (!fetchDone) { 239 Addr fetch_PC = thread->instAddr(); 240 fetch_PC = (fetch_PC & PCMask) + fetchOffset; 241 242 MachInst machInst; 243 244 // If not in the middle of a macro instruction 245 if (!curMacroStaticInst) { 246 // set up memory request for instruction fetch 247 auto mem_req = std::make_shared<Request>( 248 unverifiedInst->threadNumber, fetch_PC, 249 sizeof(MachInst), 0, masterId, fetch_PC, 250 thread->contextId()); 251 252 mem_req->setVirt(0, fetch_PC, sizeof(MachInst), 253 Request::INST_FETCH, masterId, 254 thread->instAddr()); 255 256 fault = itb->translateFunctional( 257 mem_req, tc, BaseTLB::Execute); 258 259 if (fault != NoFault) { 260 if (unverifiedInst->getFault() == NoFault) { 261 // In this case the instruction was not a dummy 262 // instruction carrying an ITB fault. In the single 263 // threaded case the ITB should still be able to 264 // translate this instruction; in the SMT case it's 265 // possible that its ITB entry was kicked out. 266 warn("%lli: Instruction PC %s was not found in the " 267 "ITB!", curTick(), thread->pcState()); 268 handleError(unverifiedInst); 269 270 // go to the next instruction 271 advancePC(NoFault); 272 273 // Give up on an ITB fault.. 274 unverifiedInst = NULL; 275 return; 276 } else { 277 // The instruction is carrying an ITB fault. Handle 278 // the fault and see if our results match the CPU on 279 // the next tick(). 280 fault = unverifiedInst->getFault(); 281 break; 282 } 283 } else { 284 PacketPtr pkt = new Packet(mem_req, MemCmd::ReadReq); 285 286 pkt->dataStatic(&machInst); 287 icachePort->sendFunctional(pkt); 288 machInst = gtoh(machInst); 289 290 delete pkt; 291 } 292 } 293 294 if (fault == NoFault) { 295 TheISA::PCState pcState = thread->pcState(); 296 297 if (isRomMicroPC(pcState.microPC())) { 298 fetchDone = true; 299 curStaticInst = 300 microcodeRom.fetchMicroop(pcState.microPC(), NULL); 301 } else if (!curMacroStaticInst) { 302 //We're not in the middle of a macro instruction 303 StaticInstPtr instPtr = nullptr; 304 305 //Predecode, ie bundle up an ExtMachInst 306 //If more fetch data is needed, pass it in. 307 Addr fetchPC = (pcState.instAddr() & PCMask) + fetchOffset; 308 thread->decoder.moreBytes(pcState, fetchPC, machInst); 309 310 //If an instruction is ready, decode it. 311 //Otherwise, we'll have to fetch beyond the 312 //MachInst at the current pc. 313 if (thread->decoder.instReady()) { 314 fetchDone = true; 315 instPtr = thread->decoder.decode(pcState); 316 thread->pcState(pcState); 317 } else { 318 fetchDone = false; 319 fetchOffset += sizeof(TheISA::MachInst); 320 } 321 322 //If we decoded an instruction and it's microcoded, 323 //start pulling out micro ops 324 if (instPtr && instPtr->isMacroop()) { 325 curMacroStaticInst = instPtr; 326 curStaticInst = 327 instPtr->fetchMicroop(pcState.microPC()); 328 } else { 329 curStaticInst = instPtr; 330 } 331 } else { 332 // Read the next micro op from the macro-op 333 curStaticInst = 334 curMacroStaticInst->fetchMicroop(pcState.microPC()); 335 fetchDone = true; 336 } 337 } 338 } 339 // reset decoder on Checker 340 thread->decoder.reset(); 341 342 // Check Checker and CPU get same instruction, and record 343 // any faults the CPU may have had. 344 Fault unverifiedFault; 345 if (fault == NoFault) { 346 unverifiedFault = unverifiedInst->getFault(); 347 348 // Checks that the instruction matches what we expected it to be. 349 // Checks both the machine instruction and the PC. 350 validateInst(unverifiedInst); 351 } 352 353 // keep an instruction count 354 numInst++; 355 356 357 // Either the instruction was a fault and we should process the fault, 358 // or we should just go ahead execute the instruction. This assumes 359 // that the instruction is properly marked as a fault. 360 if (fault == NoFault) { 361 // Execute Checker instruction and trace 362 if (!unverifiedInst->isUnverifiable()) { 363 Trace::InstRecord *traceData = tracer->getInstRecord(curTick(), 364 tc, 365 curStaticInst, 366 pcState(), 367 curMacroStaticInst); 368 fault = curStaticInst->execute(this, traceData); 369 if (traceData) { 370 traceData->dump(); 371 delete traceData; 372 } 373 } 374 375 if (fault == NoFault && unverifiedFault == NoFault) { 376 thread->funcExeInst++; 377 // Checks to make sure instrution results are correct. 378 validateExecution(unverifiedInst); 379 380 if (curStaticInst->isLoad()) { 381 ++numLoad; 382 } 383 } else if (fault != NoFault && unverifiedFault == NoFault) { 384 panic("%lli: sn: %lli at PC: %s took a fault in checker " 385 "but not in driver CPU\n", curTick(), 386 unverifiedInst->seqNum, unverifiedInst->pcState()); 387 } else if (fault == NoFault && unverifiedFault != NoFault) { 388 panic("%lli: sn: %lli at PC: %s took a fault in driver " 389 "CPU but not in checker\n", curTick(), 390 unverifiedInst->seqNum, unverifiedInst->pcState()); 391 } 392 } 393 394 // Take any faults here 395 if (fault != NoFault) { 396 if (FullSystem) { 397 fault->invoke(tc, curStaticInst); 398 willChangePC = true; 399 newPCState = thread->pcState(); 400 DPRINTF(Checker, "Fault, PC is now %s\n", newPCState); 401 curMacroStaticInst = StaticInst::nullStaticInstPtr; 402 } 403 } else { 404 advancePC(fault); 405 } 406 407 if (FullSystem) { 408 // @todo: Determine if these should happen only if the 409 // instruction hasn't faulted. In the SimpleCPU case this may 410 // not be true, but in the O3 case this may be true. 411 Addr oldpc; 412 int count = 0; 413 do { 414 oldpc = thread->instAddr(); 415 system->pcEventQueue.service(tc); 416 count++; 417 } while (oldpc != thread->instAddr()); 418 if (count > 1) { 419 willChangePC = true; 420 newPCState = thread->pcState(); 421 DPRINTF(Checker, "PC Event, PC is now %s\n", newPCState); 422 } 423 } 424 425 // @todo: Optionally can check all registers. (Or just those 426 // that have been modified). 427 validateState(); 428 429 // Continue verifying instructions if there's another completed 430 // instruction waiting to be verified. 431 if (instList.empty()) { 432 break; 433 } else if (instList.front()->isCompleted()) { 434 unverifiedInst = NULL; 435 unverifiedInst = instList.front(); 436 instList.pop_front(); 437 } else { 438 break; 439 } 440 } 441 unverifiedInst = NULL; 442} 443 444template <class Impl> 445void 446Checker<Impl>::switchOut() 447{ 448 instList.clear(); 449} 450 451template <class Impl> 452void 453Checker<Impl>::takeOverFrom(BaseCPU *oldCPU) 454{ 455} 456 457template <class Impl> 458void 459Checker<Impl>::validateInst(const DynInstPtr &inst) 460{ 461 if (inst->instAddr() != thread->instAddr()) { 462 warn("%lli: PCs do not match! Inst: %s, checker: %s", 463 curTick(), inst->pcState(), thread->pcState()); 464 if (changedPC) { 465 warn("%lli: Changed PCs recently, may not be an error", 466 curTick()); 467 } else { 468 handleError(inst); 469 } 470 } 471 472 if (curStaticInst != inst->staticInst) { 473 warn("%lli: StaticInstPtrs don't match. (%s, %s).\n", curTick(), 474 curStaticInst->getName(), inst->staticInst->getName()); 475 } 476} 477 478template <class Impl> 479void 480Checker<Impl>::validateExecution(const DynInstPtr &inst) 481{ 482 InstResult checker_val; 483 InstResult inst_val; 484 int idx = -1; 485 bool result_mismatch = false; 486 bool scalar_mismatch = false; 487 bool vector_mismatch = false; 488 489 if (inst->isUnverifiable()) { 490 // Unverifiable instructions assume they were executed 491 // properly by the CPU. Grab the result from the 492 // instruction and write it to the register. 493 copyResult(inst, InstResult(0ul, InstResult::ResultType::Scalar), idx); 494 } else if (inst->numDestRegs() > 0 && !result.empty()) { 495 DPRINTF(Checker, "Dest regs %d, number of checker dest regs %d\n", 496 inst->numDestRegs(), result.size()); 497 for (int i = 0; i < inst->numDestRegs() && !result.empty(); i++) { 498 checker_val = result.front(); 499 result.pop(); 500 inst_val = inst->popResult( 501 InstResult(0ul, InstResult::ResultType::Scalar)); 502 if (checker_val != inst_val) { 503 result_mismatch = true; 504 idx = i; 505 scalar_mismatch = checker_val.isScalar(); 506 vector_mismatch = checker_val.isVector(); 507 panic_if(!(scalar_mismatch || vector_mismatch), 508 "Unknown type of result\n"); 509 } 510 } 511 } // Checker CPU checks all the saved results in the dyninst passed by 512 // the cpu model being checked against the saved results present in 513 // the static inst executed in the Checker. Sometimes the number 514 // of saved results differs between the dyninst and static inst, but 515 // this is ok and not a bug. May be worthwhile to try and correct this. 516 517 if (result_mismatch) { 518 if (scalar_mismatch) { 519 warn("%lli: Instruction results (%i) do not match! (Values may" 520 " not actually be integers) Inst: %#x, checker: %#x", 521 curTick(), idx, inst_val.asIntegerNoAssert(), 522 checker_val.asInteger()); 523 } 524 525 // It's useful to verify load values from memory, but in MP 526 // systems the value obtained at execute may be different than 527 // the value obtained at completion. Similarly DMA can 528 // present the same problem on even UP systems. Thus there is 529 // the option to only warn on loads having a result error. 530 // The load/store queue in Detailed CPU can also cause problems 531 // if load/store forwarding is allowed. 532 if (inst->isLoad() && warnOnlyOnLoadError) { 533 copyResult(inst, inst_val, idx); 534 } else { 535 handleError(inst); 536 } 537 } 538 539 if (inst->nextInstAddr() != thread->nextInstAddr()) { 540 warn("%lli: Instruction next PCs do not match! Inst: %#x, " 541 "checker: %#x", 542 curTick(), inst->nextInstAddr(), thread->nextInstAddr()); 543 handleError(inst); 544 } 545 546 // Checking side effect registers can be difficult if they are not 547 // checked simultaneously with the execution of the instruction. 548 // This is because other valid instructions may have modified 549 // these registers in the meantime, and their values are not 550 // stored within the DynInst. 551 while (!miscRegIdxs.empty()) { 552 int misc_reg_idx = miscRegIdxs.front(); 553 miscRegIdxs.pop(); 554 555 if (inst->tcBase()->readMiscRegNoEffect(misc_reg_idx) != 556 thread->readMiscRegNoEffect(misc_reg_idx)) { 557 warn("%lli: Misc reg idx %i (side effect) does not match! " 558 "Inst: %#x, checker: %#x", 559 curTick(), misc_reg_idx, 560 inst->tcBase()->readMiscRegNoEffect(misc_reg_idx), 561 thread->readMiscRegNoEffect(misc_reg_idx)); 562 handleError(inst); 563 } 564 } 565} 566 567 568// This function is weird, if it is called it means the Checker and 569// O3 have diverged, so panic is called for now. It may be useful 570// to resynch states and continue if the divergence is a false positive 571template <class Impl> 572void 573Checker<Impl>::validateState() 574{ 575 if (updateThisCycle) { 576 // Change this back to warn if divergences end up being false positives 577 panic("%lli: Instruction PC %#x results didn't match up, copying all " 578 "registers from main CPU", curTick(), unverifiedInst->instAddr()); 579 580 // Terribly convoluted way to make sure O3 model does not implode 581 bool no_squash_from_TC = unverifiedInst->thread->noSquashFromTC; 582 unverifiedInst->thread->noSquashFromTC = true; 583 584 // Heavy-weight copying of all registers 585 thread->copyArchRegs(unverifiedInst->tcBase()); 586 unverifiedInst->thread->noSquashFromTC = no_squash_from_TC; 587 588 // Set curStaticInst to unverifiedInst->staticInst 589 curStaticInst = unverifiedInst->staticInst; 590 // Also advance the PC. Hopefully no PC-based events happened. 591 advancePC(NoFault); 592 updateThisCycle = false; 593 } 594} 595 596template <class Impl> 597void 598Checker<Impl>::copyResult(const DynInstPtr &inst, 599 const InstResult& mismatch_val, int start_idx) 600{ 601 // We've already popped one dest off the queue, 602 // so do the fix-up then start with the next dest reg; 603 if (start_idx >= 0) { 604 const RegId& idx = inst->destRegIdx(start_idx); 605 switch (idx.classValue()) { 606 case IntRegClass: 607 panic_if(!mismatch_val.isScalar(), "Unexpected type of result"); 608 thread->setIntReg(idx.index(), mismatch_val.asInteger()); 609 break; 610 case FloatRegClass: 611 panic_if(!mismatch_val.isScalar(), "Unexpected type of result"); 612 thread->setFloatReg(idx.index(), mismatch_val.asInteger()); 613 break; 614 case VecRegClass: 615 panic_if(!mismatch_val.isVector(), "Unexpected type of result"); 616 thread->setVecReg(idx, mismatch_val.asVector()); 617 break; 618 case VecElemClass: 619 panic_if(!mismatch_val.isVecElem(), 620 "Unexpected type of result"); 621 thread->setVecElem(idx, mismatch_val.asVectorElem()); 622 break; 623 case CCRegClass: 624 panic_if(!mismatch_val.isScalar(), "Unexpected type of result"); 625 thread->setCCReg(idx.index(), mismatch_val.asInteger()); 626 break; 627 case MiscRegClass: 628 panic_if(!mismatch_val.isScalar(), "Unexpected type of result"); 629 thread->setMiscReg(idx.index(), mismatch_val.asInteger()); 630 break; 631 default: 632 panic("Unknown register class: %d", (int)idx.classValue()); 633 } 634 } 635 start_idx++; 636 InstResult res; 637 for (int i = start_idx; i < inst->numDestRegs(); i++) { 638 const RegId& idx = inst->destRegIdx(i); 639 res = inst->popResult(); 640 switch (idx.classValue()) { 641 case IntRegClass: 642 panic_if(!res.isScalar(), "Unexpected type of result"); 643 thread->setIntReg(idx.index(), res.asInteger()); 644 break; 645 case FloatRegClass: 646 panic_if(!res.isScalar(), "Unexpected type of result"); 647 thread->setFloatReg(idx.index(), res.asInteger()); 648 break; 649 case VecRegClass: 650 panic_if(!res.isVector(), "Unexpected type of result"); 651 thread->setVecReg(idx, res.asVector()); 652 break; 653 case VecElemClass: 654 panic_if(!res.isVecElem(), "Unexpected type of result"); 655 thread->setVecElem(idx, res.asVectorElem()); 656 break; 657 case CCRegClass: 658 panic_if(!res.isScalar(), "Unexpected type of result"); 659 thread->setCCReg(idx.index(), res.asInteger()); 660 break; 661 case MiscRegClass: 662 panic_if(res.isValid(), "MiscReg expecting invalid result"); 663 // Try to get the proper misc register index for ARM here... 664 thread->setMiscReg(idx.index(), 0); 665 break; 666 // else Register is out of range... 667 default: 668 panic("Unknown register class: %d", (int)idx.classValue()); 669 } 670 } 671} 672 673template <class Impl> 674void 675Checker<Impl>::dumpAndExit(const DynInstPtr &inst) 676{ 677 cprintf("Error detected, instruction information:\n"); 678 cprintf("PC:%s, nextPC:%#x\n[sn:%lli]\n[tid:%i]\n" 679 "Completed:%i\n", 680 inst->pcState(), 681 inst->nextInstAddr(), 682 inst->seqNum, 683 inst->threadNumber, 684 inst->isCompleted()); 685 inst->dump(); 686 CheckerCPU::dumpAndExit(); 687} 688 689template <class Impl> 690void 691Checker<Impl>::dumpInsts() 692{ 693 int num = 0; 694 695 InstListIt inst_list_it = --(instList.end()); 696 697 cprintf("Inst list size: %i\n", instList.size()); 698 699 while (inst_list_it != instList.end()) 700 { 701 cprintf("Instruction:%i\n", 702 num); 703 704 cprintf("PC:%s\n[sn:%lli]\n[tid:%i]\n" 705 "Completed:%i\n", 706 (*inst_list_it)->pcState(), 707 (*inst_list_it)->seqNum, 708 (*inst_list_it)->threadNumber, 709 (*inst_list_it)->isCompleted()); 710 711 cprintf("\n"); 712 713 inst_list_it--; 714 ++num; 715 } 716 717} 718 719#endif//__CPU_CHECKER_CPU_IMPL_HH__ 720