base_dyn_inst.hh revision 8850:ed91b534ed04
1/*
2 * Copyright (c) 2011 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * Copyright (c) 2009 The University of Edinburgh
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 *          Timothy M. Jones
43 */
44
45#ifndef __CPU_BASE_DYN_INST_HH__
46#define __CPU_BASE_DYN_INST_HH__
47
48#include <bitset>
49#include <list>
50#include <string>
51#include <queue>
52
53#include "arch/utility.hh"
54#include "base/fast_alloc.hh"
55#include "base/trace.hh"
56#include "config/the_isa.hh"
57#include "config/use_checker.hh"
58#include "cpu/o3/comm.hh"
59#include "cpu/exetrace.hh"
60#include "cpu/inst_seq.hh"
61#include "cpu/op_class.hh"
62#include "cpu/static_inst.hh"
63#include "cpu/translation.hh"
64#include "mem/packet.hh"
65#include "sim/byteswap.hh"
66#include "sim/fault_fwd.hh"
67#include "sim/system.hh"
68#include "sim/tlb.hh"
69
70/**
71 * @file
72 * Defines a dynamic instruction context.
73 */
74
75template <class Impl>
76class BaseDynInst : public FastAlloc, public RefCounted
77{
78  public:
79    // Typedef for the CPU.
80    typedef typename Impl::CPUType ImplCPU;
81    typedef typename ImplCPU::ImplState ImplState;
82
83    // Logical register index type.
84    typedef TheISA::RegIndex RegIndex;
85    // Integer register type.
86    typedef TheISA::IntReg IntReg;
87    // Floating point register type.
88    typedef TheISA::FloatReg FloatReg;
89
90    // The DynInstPtr type.
91    typedef typename Impl::DynInstPtr DynInstPtr;
92    typedef RefCountingPtr<BaseDynInst<Impl> > BaseDynInstPtr;
93
94    // The list of instructions iterator type.
95    typedef typename std::list<DynInstPtr>::iterator ListIt;
96
97    enum {
98        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,        /// Max source regs
99        MaxInstDestRegs = TheISA::MaxInstDestRegs,      /// Max dest regs
100    };
101
102    /** The StaticInst used by this BaseDynInst. */
103    StaticInstPtr staticInst;
104    StaticInstPtr macroop;
105
106    ////////////////////////////////////////////
107    //
108    // INSTRUCTION EXECUTION
109    //
110    ////////////////////////////////////////////
111    /** InstRecord that tracks this instructions. */
112    Trace::InstRecord *traceData;
113
114    void demapPage(Addr vaddr, uint64_t asn)
115    {
116        cpu->demapPage(vaddr, asn);
117    }
118    void demapInstPage(Addr vaddr, uint64_t asn)
119    {
120        cpu->demapPage(vaddr, asn);
121    }
122    void demapDataPage(Addr vaddr, uint64_t asn)
123    {
124        cpu->demapPage(vaddr, asn);
125    }
126
127    Fault readMem(Addr addr, uint8_t *data, unsigned size, unsigned flags);
128
129    Fault writeMem(uint8_t *data, unsigned size,
130                   Addr addr, unsigned flags, uint64_t *res);
131
132    /** Splits a request in two if it crosses a dcache block. */
133    void splitRequest(RequestPtr req, RequestPtr &sreqLow,
134                      RequestPtr &sreqHigh);
135
136    /** Initiate a DTB address translation. */
137    void initiateTranslation(RequestPtr req, RequestPtr sreqLow,
138                             RequestPtr sreqHigh, uint64_t *res,
139                             BaseTLB::Mode mode);
140
141    /** Finish a DTB address translation. */
142    void finishTranslation(WholeTranslationState *state);
143
144    /** True if the DTB address translation has started. */
145    bool translationStarted;
146
147    /** True if the DTB address translation has completed. */
148    bool translationCompleted;
149
150    /** True if this address was found to match a previous load and they issued
151     * out of order. If that happend, then it's only a problem if an incoming
152     * snoop invalidate modifies the line, in which case we need to squash.
153     * If nothing modified the line the order doesn't matter.
154     */
155    bool possibleLoadViolation;
156
157    /** True if the address hit a external snoop while sitting in the LSQ.
158     * If this is true and a older instruction sees it, this instruction must
159     * reexecute
160     */
161    bool hitExternalSnoop;
162
163    /**
164     * Returns true if the DTB address translation is being delayed due to a hw
165     * page table walk.
166     */
167    bool isTranslationDelayed() const
168    {
169        return (translationStarted && !translationCompleted);
170    }
171
172    /**
173     * Saved memory requests (needed when the DTB address translation is
174     * delayed due to a hw page table walk).
175     */
176    RequestPtr savedReq;
177    RequestPtr savedSreqLow;
178    RequestPtr savedSreqHigh;
179
180#if USE_CHECKER
181    // Need a copy of main request pointer to verify on writes.
182    RequestPtr reqToVerify;
183#endif //USE_CHECKER
184
185    /** @todo: Consider making this private. */
186  public:
187    /** The sequence number of the instruction. */
188    InstSeqNum seqNum;
189
190    enum Status {
191        IqEntry,                 /// Instruction is in the IQ
192        RobEntry,                /// Instruction is in the ROB
193        LsqEntry,                /// Instruction is in the LSQ
194        Completed,               /// Instruction has completed
195        ResultReady,             /// Instruction has its result
196        CanIssue,                /// Instruction can issue and execute
197        Issued,                  /// Instruction has issued
198        Executed,                /// Instruction has executed
199        CanCommit,               /// Instruction can commit
200        AtCommit,                /// Instruction has reached commit
201        Committed,               /// Instruction has committed
202        Squashed,                /// Instruction is squashed
203        SquashedInIQ,            /// Instruction is squashed in the IQ
204        SquashedInLSQ,           /// Instruction is squashed in the LSQ
205        SquashedInROB,           /// Instruction is squashed in the ROB
206        RecoverInst,             /// Is a recover instruction
207        BlockingInst,            /// Is a blocking instruction
208        ThreadsyncWait,          /// Is a thread synchronization instruction
209        SerializeBefore,         /// Needs to serialize on
210                                 /// instructions ahead of it
211        SerializeAfter,          /// Needs to serialize instructions behind it
212        SerializeHandled,        /// Serialization has been handled
213        NumStatus
214    };
215
216    /** The status of this BaseDynInst.  Several bits can be set. */
217    std::bitset<NumStatus> status;
218
219    /** The thread this instruction is from. */
220    ThreadID threadNumber;
221
222    /** data address space ID, for loads & stores. */
223    short asid;
224
225    /** How many source registers are ready. */
226    unsigned readyRegs;
227
228    /** Pointer to the Impl's CPU object. */
229    ImplCPU *cpu;
230
231    /** Pointer to the thread state. */
232    ImplState *thread;
233
234    /** The kind of fault this instruction has generated. */
235    Fault fault;
236
237    /** Pointer to the data for the memory access. */
238    uint8_t *memData;
239
240    /** The effective virtual address (lds & stores only). */
241    Addr effAddr;
242
243    /** The size of the request */
244    Addr effSize;
245
246    /** Is the effective virtual address valid. */
247    bool effAddrValid;
248
249    /** The effective physical address. */
250    Addr physEffAddr;
251
252    /** The memory request flags (from translation). */
253    unsigned memReqFlags;
254
255    union Result {
256        uint64_t integer;
257        double dbl;
258        void set(uint64_t i) { integer = i; }
259        void set(double d) { dbl = d; }
260        void get(uint64_t& i) { i = integer; }
261        void get(double& d) { d = dbl; }
262    };
263
264    /** The result of the instruction; assumes an instruction can have many
265     *  destination registers.
266     */
267    std::queue<Result> instResult;
268
269    /** Records changes to result? */
270    bool recordResult;
271
272    /** Did this instruction execute, or is it predicated false */
273    bool predicate;
274
275  protected:
276    /** PC state for this instruction. */
277    TheISA::PCState pc;
278
279    /** Predicted PC state after this instruction. */
280    TheISA::PCState predPC;
281
282    /** If this is a branch that was predicted taken */
283    bool predTaken;
284
285  public:
286
287#ifdef DEBUG
288    void dumpSNList();
289#endif
290
291    /** Whether or not the source register is ready.
292     *  @todo: Not sure this should be here vs the derived class.
293     */
294    bool _readySrcRegIdx[MaxInstSrcRegs];
295
296  protected:
297    /** Flattened register index of the destination registers of this
298     *  instruction.
299     */
300    TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
301
302    /** Flattened register index of the source registers of this
303     *  instruction.
304     */
305    TheISA::RegIndex _flatSrcRegIdx[TheISA::MaxInstSrcRegs];
306
307    /** Physical register index of the destination registers of this
308     *  instruction.
309     */
310    PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
311
312    /** Physical register index of the source registers of this
313     *  instruction.
314     */
315    PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
316
317    /** Physical register index of the previous producers of the
318     *  architected destinations.
319     */
320    PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
321
322  public:
323
324    /** Returns the physical register index of the i'th destination
325     *  register.
326     */
327    PhysRegIndex renamedDestRegIdx(int idx) const
328    {
329        return _destRegIdx[idx];
330    }
331
332    /** Returns the physical register index of the i'th source register. */
333    PhysRegIndex renamedSrcRegIdx(int idx) const
334    {
335        return _srcRegIdx[idx];
336    }
337
338    /** Returns the flattened register index of the i'th destination
339     *  register.
340     */
341    TheISA::RegIndex flattenedDestRegIdx(int idx) const
342    {
343        return _flatDestRegIdx[idx];
344    }
345
346    /** Returns the flattened register index of the i'th source register */
347    TheISA::RegIndex flattenedSrcRegIdx(int idx) const
348    {
349        return _flatSrcRegIdx[idx];
350    }
351
352    /** Returns the physical register index of the previous physical register
353     *  that remapped to the same logical register index.
354     */
355    PhysRegIndex prevDestRegIdx(int idx) const
356    {
357        return _prevDestRegIdx[idx];
358    }
359
360    /** Renames a destination register to a physical register.  Also records
361     *  the previous physical register that the logical register mapped to.
362     */
363    void renameDestReg(int idx,
364                       PhysRegIndex renamed_dest,
365                       PhysRegIndex previous_rename)
366    {
367        _destRegIdx[idx] = renamed_dest;
368        _prevDestRegIdx[idx] = previous_rename;
369    }
370
371    /** Renames a source logical register to the physical register which
372     *  has/will produce that logical register's result.
373     *  @todo: add in whether or not the source register is ready.
374     */
375    void renameSrcReg(int idx, PhysRegIndex renamed_src)
376    {
377        _srcRegIdx[idx] = renamed_src;
378    }
379
380    /** Flattens a source architectural register index into a logical index.
381     */
382    void flattenSrcReg(int idx, TheISA::RegIndex flattened_src)
383    {
384        _flatSrcRegIdx[idx] = flattened_src;
385    }
386
387    /** Flattens a destination architectural register index into a logical
388     * index.
389     */
390    void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
391    {
392        _flatDestRegIdx[idx] = flattened_dest;
393    }
394    /** BaseDynInst constructor given a binary instruction.
395     *  @param staticInst A StaticInstPtr to the underlying instruction.
396     *  @param pc The PC state for the instruction.
397     *  @param predPC The predicted next PC state for the instruction.
398     *  @param seq_num The sequence number of the instruction.
399     *  @param cpu Pointer to the instruction's CPU.
400     */
401    BaseDynInst(StaticInstPtr staticInst, StaticInstPtr macroop,
402                TheISA::PCState pc, TheISA::PCState predPC,
403                InstSeqNum seq_num, ImplCPU *cpu);
404
405    /** BaseDynInst constructor given a StaticInst pointer.
406     *  @param _staticInst The StaticInst for this BaseDynInst.
407     */
408    BaseDynInst(StaticInstPtr staticInst, StaticInstPtr macroop);
409
410    /** BaseDynInst destructor. */
411    ~BaseDynInst();
412
413  private:
414    /** Function to initialize variables in the constructors. */
415    void initVars();
416
417  public:
418    /** Dumps out contents of this BaseDynInst. */
419    void dump();
420
421    /** Dumps out contents of this BaseDynInst into given string. */
422    void dump(std::string &outstring);
423
424    /** Read this CPU's ID. */
425    int cpuId() { return cpu->cpuId(); }
426
427    /** Read this CPU's data requestor ID */
428    MasterID masterId() { return cpu->dataMasterId(); }
429
430    /** Read this context's system-wide ID **/
431    int contextId() { return thread->contextId(); }
432
433    /** Returns the fault type. */
434    Fault getFault() { return fault; }
435
436    /** Checks whether or not this instruction has had its branch target
437     *  calculated yet.  For now it is not utilized and is hacked to be
438     *  always false.
439     *  @todo: Actually use this instruction.
440     */
441    bool doneTargCalc() { return false; }
442
443    /** Set the predicted target of this current instruction. */
444    void setPredTarg(const TheISA::PCState &_predPC)
445    {
446        predPC = _predPC;
447    }
448
449    const TheISA::PCState &readPredTarg() { return predPC; }
450
451    /** Returns the predicted PC immediately after the branch. */
452    Addr predInstAddr() { return predPC.instAddr(); }
453
454    /** Returns the predicted PC two instructions after the branch */
455    Addr predNextInstAddr() { return predPC.nextInstAddr(); }
456
457    /** Returns the predicted micro PC after the branch */
458    Addr predMicroPC() { return predPC.microPC(); }
459
460    /** Returns whether the instruction was predicted taken or not. */
461    bool readPredTaken()
462    {
463        return predTaken;
464    }
465
466    void setPredTaken(bool predicted_taken)
467    {
468        predTaken = predicted_taken;
469    }
470
471    /** Returns whether the instruction mispredicted. */
472    bool mispredicted()
473    {
474        TheISA::PCState tempPC = pc;
475        TheISA::advancePC(tempPC, staticInst);
476        return !(tempPC == predPC);
477    }
478
479    //
480    //  Instruction types.  Forward checks to StaticInst object.
481    //
482    bool isNop()          const { return staticInst->isNop(); }
483    bool isMemRef()       const { return staticInst->isMemRef(); }
484    bool isLoad()         const { return staticInst->isLoad(); }
485    bool isStore()        const { return staticInst->isStore(); }
486    bool isStoreConditional() const
487    { return staticInst->isStoreConditional(); }
488    bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
489    bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
490    bool isInteger()      const { return staticInst->isInteger(); }
491    bool isFloating()     const { return staticInst->isFloating(); }
492    bool isControl()      const { return staticInst->isControl(); }
493    bool isCall()         const { return staticInst->isCall(); }
494    bool isReturn()       const { return staticInst->isReturn(); }
495    bool isDirectCtrl()   const { return staticInst->isDirectCtrl(); }
496    bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
497    bool isCondCtrl()     const { return staticInst->isCondCtrl(); }
498    bool isUncondCtrl()   const { return staticInst->isUncondCtrl(); }
499    bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
500    bool isThreadSync()   const { return staticInst->isThreadSync(); }
501    bool isSerializing()  const { return staticInst->isSerializing(); }
502    bool isSerializeBefore() const
503    { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
504    bool isSerializeAfter() const
505    { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
506    bool isSquashAfter() const { return staticInst->isSquashAfter(); }
507    bool isMemBarrier()   const { return staticInst->isMemBarrier(); }
508    bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
509    bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
510    bool isQuiesce() const { return staticInst->isQuiesce(); }
511    bool isIprAccess() const { return staticInst->isIprAccess(); }
512    bool isUnverifiable() const { return staticInst->isUnverifiable(); }
513    bool isSyscall() const { return staticInst->isSyscall(); }
514    bool isMacroop() const { return staticInst->isMacroop(); }
515    bool isMicroop() const { return staticInst->isMicroop(); }
516    bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
517    bool isLastMicroop() const { return staticInst->isLastMicroop(); }
518    bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
519    bool isMicroBranch() const { return staticInst->isMicroBranch(); }
520
521    /** Temporarily sets this instruction as a serialize before instruction. */
522    void setSerializeBefore() { status.set(SerializeBefore); }
523
524    /** Clears the serializeBefore part of this instruction. */
525    void clearSerializeBefore() { status.reset(SerializeBefore); }
526
527    /** Checks if this serializeBefore is only temporarily set. */
528    bool isTempSerializeBefore() { return status[SerializeBefore]; }
529
530    /** Temporarily sets this instruction as a serialize after instruction. */
531    void setSerializeAfter() { status.set(SerializeAfter); }
532
533    /** Clears the serializeAfter part of this instruction.*/
534    void clearSerializeAfter() { status.reset(SerializeAfter); }
535
536    /** Checks if this serializeAfter is only temporarily set. */
537    bool isTempSerializeAfter() { return status[SerializeAfter]; }
538
539    /** Sets the serialization part of this instruction as handled. */
540    void setSerializeHandled() { status.set(SerializeHandled); }
541
542    /** Checks if the serialization part of this instruction has been
543     *  handled.  This does not apply to the temporary serializing
544     *  state; it only applies to this instruction's own permanent
545     *  serializing state.
546     */
547    bool isSerializeHandled() { return status[SerializeHandled]; }
548
549    /** Returns the opclass of this instruction. */
550    OpClass opClass() const { return staticInst->opClass(); }
551
552    /** Returns the branch target address. */
553    TheISA::PCState branchTarget() const
554    { return staticInst->branchTarget(pc); }
555
556    /** Returns the number of source registers. */
557    int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
558
559    /** Returns the number of destination registers. */
560    int8_t numDestRegs() const { return staticInst->numDestRegs(); }
561
562    // the following are used to track physical register usage
563    // for machines with separate int & FP reg files
564    int8_t numFPDestRegs()  const { return staticInst->numFPDestRegs(); }
565    int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
566
567    /** Returns the logical register index of the i'th destination register. */
568    RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
569
570    /** Returns the logical register index of the i'th source register. */
571    RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
572
573    /** Pops a result off the instResult queue */
574    template <class T>
575    void popResult(T& t)
576    {
577        if (!instResult.empty()) {
578            instResult.front().get(t);
579            instResult.pop();
580        }
581    }
582
583    /** Read the most recent result stored by this instruction */
584    template <class T>
585    void readResult(T& t)
586    {
587        instResult.back().get(t);
588    }
589
590    /** Pushes a result onto the instResult queue */
591    template <class T>
592    void setResult(T t)
593    {
594        if (recordResult) {
595            Result instRes;
596            instRes.set(t);
597            instResult.push(instRes);
598        }
599    }
600
601    /** Records an integer register being set to a value. */
602    void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
603    {
604        setResult<uint64_t>(val);
605    }
606
607    /** Records an fp register being set to a value. */
608    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
609                            int width)
610    {
611        if (width == 32 || width == 64) {
612            setResult<double>(val);
613        } else {
614            panic("Unsupported width!");
615        }
616    }
617
618    /** Records an fp register being set to a value. */
619    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
620    {
621        setResult<double>(val);
622    }
623
624    /** Records an fp register being set to an integer value. */
625    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
626                                int width)
627    {
628        setResult<uint64_t>(val);
629    }
630
631    /** Records an fp register being set to an integer value. */
632    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
633    {
634        setResult<uint64_t>(val);
635    }
636
637    /** Records that one of the source registers is ready. */
638    void markSrcRegReady();
639
640    /** Marks a specific register as ready. */
641    void markSrcRegReady(RegIndex src_idx);
642
643    /** Returns if a source register is ready. */
644    bool isReadySrcRegIdx(int idx) const
645    {
646        return this->_readySrcRegIdx[idx];
647    }
648
649    /** Sets this instruction as completed. */
650    void setCompleted() { status.set(Completed); }
651
652    /** Returns whether or not this instruction is completed. */
653    bool isCompleted() const { return status[Completed]; }
654
655    /** Marks the result as ready. */
656    void setResultReady() { status.set(ResultReady); }
657
658    /** Returns whether or not the result is ready. */
659    bool isResultReady() const { return status[ResultReady]; }
660
661    /** Sets this instruction as ready to issue. */
662    void setCanIssue() { status.set(CanIssue); }
663
664    /** Returns whether or not this instruction is ready to issue. */
665    bool readyToIssue() const { return status[CanIssue]; }
666
667    /** Clears this instruction being able to issue. */
668    void clearCanIssue() { status.reset(CanIssue); }
669
670    /** Sets this instruction as issued from the IQ. */
671    void setIssued() { status.set(Issued); }
672
673    /** Returns whether or not this instruction has issued. */
674    bool isIssued() const { return status[Issued]; }
675
676    /** Clears this instruction as being issued. */
677    void clearIssued() { status.reset(Issued); }
678
679    /** Sets this instruction as executed. */
680    void setExecuted() { status.set(Executed); }
681
682    /** Returns whether or not this instruction has executed. */
683    bool isExecuted() const { return status[Executed]; }
684
685    /** Sets this instruction as ready to commit. */
686    void setCanCommit() { status.set(CanCommit); }
687
688    /** Clears this instruction as being ready to commit. */
689    void clearCanCommit() { status.reset(CanCommit); }
690
691    /** Returns whether or not this instruction is ready to commit. */
692    bool readyToCommit() const { return status[CanCommit]; }
693
694    void setAtCommit() { status.set(AtCommit); }
695
696    bool isAtCommit() { return status[AtCommit]; }
697
698    /** Sets this instruction as committed. */
699    void setCommitted() { status.set(Committed); }
700
701    /** Returns whether or not this instruction is committed. */
702    bool isCommitted() const { return status[Committed]; }
703
704    /** Sets this instruction as squashed. */
705    void setSquashed() { status.set(Squashed); }
706
707    /** Returns whether or not this instruction is squashed. */
708    bool isSquashed() const { return status[Squashed]; }
709
710    //Instruction Queue Entry
711    //-----------------------
712    /** Sets this instruction as a entry the IQ. */
713    void setInIQ() { status.set(IqEntry); }
714
715    /** Sets this instruction as a entry the IQ. */
716    void clearInIQ() { status.reset(IqEntry); }
717
718    /** Returns whether or not this instruction has issued. */
719    bool isInIQ() const { return status[IqEntry]; }
720
721    /** Sets this instruction as squashed in the IQ. */
722    void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
723
724    /** Returns whether or not this instruction is squashed in the IQ. */
725    bool isSquashedInIQ() const { return status[SquashedInIQ]; }
726
727
728    //Load / Store Queue Functions
729    //-----------------------
730    /** Sets this instruction as a entry the LSQ. */
731    void setInLSQ() { status.set(LsqEntry); }
732
733    /** Sets this instruction as a entry the LSQ. */
734    void removeInLSQ() { status.reset(LsqEntry); }
735
736    /** Returns whether or not this instruction is in the LSQ. */
737    bool isInLSQ() const { return status[LsqEntry]; }
738
739    /** Sets this instruction as squashed in the LSQ. */
740    void setSquashedInLSQ() { status.set(SquashedInLSQ);}
741
742    /** Returns whether or not this instruction is squashed in the LSQ. */
743    bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
744
745
746    //Reorder Buffer Functions
747    //-----------------------
748    /** Sets this instruction as a entry the ROB. */
749    void setInROB() { status.set(RobEntry); }
750
751    /** Sets this instruction as a entry the ROB. */
752    void clearInROB() { status.reset(RobEntry); }
753
754    /** Returns whether or not this instruction is in the ROB. */
755    bool isInROB() const { return status[RobEntry]; }
756
757    /** Sets this instruction as squashed in the ROB. */
758    void setSquashedInROB() { status.set(SquashedInROB); }
759
760    /** Returns whether or not this instruction is squashed in the ROB. */
761    bool isSquashedInROB() const { return status[SquashedInROB]; }
762
763    /** Read the PC state of this instruction. */
764    const TheISA::PCState pcState() const { return pc; }
765
766    /** Set the PC state of this instruction. */
767    const void pcState(const TheISA::PCState &val) { pc = val; }
768
769    /** Read the PC of this instruction. */
770    const Addr instAddr() const { return pc.instAddr(); }
771
772    /** Read the PC of the next instruction. */
773    const Addr nextInstAddr() const { return pc.nextInstAddr(); }
774
775    /**Read the micro PC of this instruction. */
776    const Addr microPC() const { return pc.microPC(); }
777
778    bool readPredicate()
779    {
780        return predicate;
781    }
782
783    void setPredicate(bool val)
784    {
785        predicate = val;
786
787        if (traceData) {
788            traceData->setPredicate(val);
789        }
790    }
791
792    /** Sets the ASID. */
793    void setASID(short addr_space_id) { asid = addr_space_id; }
794
795    /** Sets the thread id. */
796    void setTid(ThreadID tid) { threadNumber = tid; }
797
798    /** Sets the pointer to the thread state. */
799    void setThreadState(ImplState *state) { thread = state; }
800
801    /** Returns the thread context. */
802    ThreadContext *tcBase() { return thread->getTC(); }
803
804  private:
805    /** Instruction effective address.
806     *  @todo: Consider if this is necessary or not.
807     */
808    Addr instEffAddr;
809
810    /** Whether or not the effective address calculation is completed.
811     *  @todo: Consider if this is necessary or not.
812     */
813    bool eaCalcDone;
814
815    /** Is this instruction's memory access uncacheable. */
816    bool isUncacheable;
817
818    /** Has this instruction generated a memory request. */
819    bool reqMade;
820
821  public:
822    /** Sets the effective address. */
823    void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
824
825    /** Returns the effective address. */
826    const Addr &getEA() const { return instEffAddr; }
827
828    /** Returns whether or not the eff. addr. calculation has been completed. */
829    bool doneEACalc() { return eaCalcDone; }
830
831    /** Returns whether or not the eff. addr. source registers are ready. */
832    bool eaSrcsReady();
833
834    /** Whether or not the memory operation is done. */
835    bool memOpDone;
836
837    /** Is this instruction's memory access uncacheable. */
838    bool uncacheable() { return isUncacheable; }
839
840    /** Has this instruction generated a memory request. */
841    bool hasRequest() { return reqMade; }
842
843  public:
844    /** Load queue index. */
845    int16_t lqIdx;
846
847    /** Store queue index. */
848    int16_t sqIdx;
849
850    /** Iterator pointing to this BaseDynInst in the list of all insts. */
851    ListIt instListIt;
852
853    /** Returns iterator to this instruction in the list of all insts. */
854    ListIt &getInstListIt() { return instListIt; }
855
856    /** Sets iterator for this instruction in the list of all insts. */
857    void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
858
859  public:
860    /** Returns the number of consecutive store conditional failures. */
861    unsigned readStCondFailures()
862    { return thread->storeCondFailures; }
863
864    /** Sets the number of consecutive store conditional failures. */
865    void setStCondFailures(unsigned sc_failures)
866    { thread->storeCondFailures = sc_failures; }
867};
868
869template<class Impl>
870Fault
871BaseDynInst<Impl>::readMem(Addr addr, uint8_t *data,
872                           unsigned size, unsigned flags)
873{
874    reqMade = true;
875    Request *req = NULL;
876    Request *sreqLow = NULL;
877    Request *sreqHigh = NULL;
878
879    if (reqMade && translationStarted) {
880        req = savedReq;
881        sreqLow = savedSreqLow;
882        sreqHigh = savedSreqHigh;
883    } else {
884        req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(),
885                          thread->contextId(), threadNumber);
886
887        // Only split the request if the ISA supports unaligned accesses.
888        if (TheISA::HasUnalignedMemAcc) {
889            splitRequest(req, sreqLow, sreqHigh);
890        }
891        initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
892    }
893
894    if (translationCompleted) {
895        if (fault == NoFault) {
896            effAddr = req->getVaddr();
897            effSize = size;
898            effAddrValid = true;
899#if USE_CHECKER
900            if (reqToVerify != NULL) {
901                delete reqToVerify;
902            }
903            reqToVerify = new Request(*req);
904#endif //USE_CHECKER
905            fault = cpu->read(req, sreqLow, sreqHigh, data, lqIdx);
906        } else {
907            // Commit will have to clean up whatever happened.  Set this
908            // instruction as executed.
909            this->setExecuted();
910        }
911
912        if (fault != NoFault) {
913            // Return a fixed value to keep simulation deterministic even
914            // along misspeculated paths.
915            if (data)
916                bzero(data, size);
917        }
918    }
919
920    if (traceData) {
921        traceData->setAddr(addr);
922    }
923
924    return fault;
925}
926
927template<class Impl>
928Fault
929BaseDynInst<Impl>::writeMem(uint8_t *data, unsigned size,
930                            Addr addr, unsigned flags, uint64_t *res)
931{
932    if (traceData) {
933        traceData->setAddr(addr);
934    }
935
936    reqMade = true;
937    Request *req = NULL;
938    Request *sreqLow = NULL;
939    Request *sreqHigh = NULL;
940
941    if (reqMade && translationStarted) {
942        req = savedReq;
943        sreqLow = savedSreqLow;
944        sreqHigh = savedSreqHigh;
945    } else {
946        req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(),
947                          thread->contextId(), threadNumber);
948
949        // Only split the request if the ISA supports unaligned accesses.
950        if (TheISA::HasUnalignedMemAcc) {
951            splitRequest(req, sreqLow, sreqHigh);
952        }
953        initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
954    }
955
956    if (fault == NoFault && translationCompleted) {
957        effAddr = req->getVaddr();
958        effSize = size;
959        effAddrValid = true;
960#if USE_CHECKER
961        if (reqToVerify != NULL) {
962            delete reqToVerify;
963        }
964        reqToVerify = new Request(*req);
965#endif // USE_CHECKER
966        fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
967    }
968
969    return fault;
970}
971
972template<class Impl>
973inline void
974BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow,
975                                RequestPtr &sreqHigh)
976{
977    // Check to see if the request crosses the next level block boundary.
978    unsigned block_size = cpu->getDataPort().peerBlockSize();
979    Addr addr = req->getVaddr();
980    Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
981    assert(split_addr <= addr || split_addr - addr < block_size);
982
983    // Spans two blocks.
984    if (split_addr > addr) {
985        req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
986    }
987}
988
989template<class Impl>
990inline void
991BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow,
992                                       RequestPtr sreqHigh, uint64_t *res,
993                                       BaseTLB::Mode mode)
994{
995    translationStarted = true;
996
997    if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
998        WholeTranslationState *state =
999            new WholeTranslationState(req, NULL, res, mode);
1000
1001        // One translation if the request isn't split.
1002        DataTranslation<BaseDynInstPtr> *trans =
1003            new DataTranslation<BaseDynInstPtr>(this, state);
1004        cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
1005        if (!translationCompleted) {
1006            // Save memory requests.
1007            savedReq = state->mainReq;
1008            savedSreqLow = state->sreqLow;
1009            savedSreqHigh = state->sreqHigh;
1010        }
1011    } else {
1012        WholeTranslationState *state =
1013            new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);
1014
1015        // Two translations when the request is split.
1016        DataTranslation<BaseDynInstPtr> *stransLow =
1017            new DataTranslation<BaseDynInstPtr>(this, state, 0);
1018        DataTranslation<BaseDynInstPtr> *stransHigh =
1019            new DataTranslation<BaseDynInstPtr>(this, state, 1);
1020
1021        cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
1022        cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);
1023        if (!translationCompleted) {
1024            // Save memory requests.
1025            savedReq = state->mainReq;
1026            savedSreqLow = state->sreqLow;
1027            savedSreqHigh = state->sreqHigh;
1028        }
1029    }
1030}
1031
1032template<class Impl>
1033inline void
1034BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state)
1035{
1036    fault = state->getFault();
1037
1038    if (state->isUncacheable())
1039        isUncacheable = true;
1040
1041    if (fault == NoFault) {
1042        physEffAddr = state->getPaddr();
1043        memReqFlags = state->getFlags();
1044
1045        if (state->mainReq->isCondSwap()) {
1046            assert(state->res);
1047            state->mainReq->setExtraData(*state->res);
1048        }
1049
1050    } else {
1051        state->deleteReqs();
1052    }
1053    delete state;
1054
1055    translationCompleted = true;
1056}
1057
1058#endif // __CPU_BASE_DYN_INST_HH__
1059