base_dyn_inst.hh revision 8850
1/* 2 * Copyright (c) 2011 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2004-2006 The Regents of The University of Michigan 15 * Copyright (c) 2009 The University of Edinburgh 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * Authors: Kevin Lim 42 * Timothy M. Jones 43 */ 44 45#ifndef __CPU_BASE_DYN_INST_HH__ 46#define __CPU_BASE_DYN_INST_HH__ 47 48#include <bitset> 49#include <list> 50#include <string> 51#include <queue> 52 53#include "arch/utility.hh" 54#include "base/fast_alloc.hh" 55#include "base/trace.hh" 56#include "config/the_isa.hh" 57#include "config/use_checker.hh" 58#include "cpu/o3/comm.hh" 59#include "cpu/exetrace.hh" 60#include "cpu/inst_seq.hh" 61#include "cpu/op_class.hh" 62#include "cpu/static_inst.hh" 63#include "cpu/translation.hh" 64#include "mem/packet.hh" 65#include "sim/byteswap.hh" 66#include "sim/fault_fwd.hh" 67#include "sim/system.hh" 68#include "sim/tlb.hh" 69 70/** 71 * @file 72 * Defines a dynamic instruction context. 73 */ 74 75template <class Impl> 76class BaseDynInst : public FastAlloc, public RefCounted 77{ 78 public: 79 // Typedef for the CPU. 80 typedef typename Impl::CPUType ImplCPU; 81 typedef typename ImplCPU::ImplState ImplState; 82 83 // Logical register index type. 84 typedef TheISA::RegIndex RegIndex; 85 // Integer register type. 86 typedef TheISA::IntReg IntReg; 87 // Floating point register type. 88 typedef TheISA::FloatReg FloatReg; 89 90 // The DynInstPtr type. 91 typedef typename Impl::DynInstPtr DynInstPtr; 92 typedef RefCountingPtr<BaseDynInst<Impl> > BaseDynInstPtr; 93 94 // The list of instructions iterator type. 95 typedef typename std::list<DynInstPtr>::iterator ListIt; 96 97 enum { 98 MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs 99 MaxInstDestRegs = TheISA::MaxInstDestRegs, /// Max dest regs 100 }; 101 102 /** The StaticInst used by this BaseDynInst. */ 103 StaticInstPtr staticInst; 104 StaticInstPtr macroop; 105 106 //////////////////////////////////////////// 107 // 108 // INSTRUCTION EXECUTION 109 // 110 //////////////////////////////////////////// 111 /** InstRecord that tracks this instructions. */ 112 Trace::InstRecord *traceData; 113 114 void demapPage(Addr vaddr, uint64_t asn) 115 { 116 cpu->demapPage(vaddr, asn); 117 } 118 void demapInstPage(Addr vaddr, uint64_t asn) 119 { 120 cpu->demapPage(vaddr, asn); 121 } 122 void demapDataPage(Addr vaddr, uint64_t asn) 123 { 124 cpu->demapPage(vaddr, asn); 125 } 126 127 Fault readMem(Addr addr, uint8_t *data, unsigned size, unsigned flags); 128 129 Fault writeMem(uint8_t *data, unsigned size, 130 Addr addr, unsigned flags, uint64_t *res); 131 132 /** Splits a request in two if it crosses a dcache block. */ 133 void splitRequest(RequestPtr req, RequestPtr &sreqLow, 134 RequestPtr &sreqHigh); 135 136 /** Initiate a DTB address translation. */ 137 void initiateTranslation(RequestPtr req, RequestPtr sreqLow, 138 RequestPtr sreqHigh, uint64_t *res, 139 BaseTLB::Mode mode); 140 141 /** Finish a DTB address translation. */ 142 void finishTranslation(WholeTranslationState *state); 143 144 /** True if the DTB address translation has started. */ 145 bool translationStarted; 146 147 /** True if the DTB address translation has completed. */ 148 bool translationCompleted; 149 150 /** True if this address was found to match a previous load and they issued 151 * out of order. If that happend, then it's only a problem if an incoming 152 * snoop invalidate modifies the line, in which case we need to squash. 153 * If nothing modified the line the order doesn't matter. 154 */ 155 bool possibleLoadViolation; 156 157 /** True if the address hit a external snoop while sitting in the LSQ. 158 * If this is true and a older instruction sees it, this instruction must 159 * reexecute 160 */ 161 bool hitExternalSnoop; 162 163 /** 164 * Returns true if the DTB address translation is being delayed due to a hw 165 * page table walk. 166 */ 167 bool isTranslationDelayed() const 168 { 169 return (translationStarted && !translationCompleted); 170 } 171 172 /** 173 * Saved memory requests (needed when the DTB address translation is 174 * delayed due to a hw page table walk). 175 */ 176 RequestPtr savedReq; 177 RequestPtr savedSreqLow; 178 RequestPtr savedSreqHigh; 179 180#if USE_CHECKER 181 // Need a copy of main request pointer to verify on writes. 182 RequestPtr reqToVerify; 183#endif //USE_CHECKER 184 185 /** @todo: Consider making this private. */ 186 public: 187 /** The sequence number of the instruction. */ 188 InstSeqNum seqNum; 189 190 enum Status { 191 IqEntry, /// Instruction is in the IQ 192 RobEntry, /// Instruction is in the ROB 193 LsqEntry, /// Instruction is in the LSQ 194 Completed, /// Instruction has completed 195 ResultReady, /// Instruction has its result 196 CanIssue, /// Instruction can issue and execute 197 Issued, /// Instruction has issued 198 Executed, /// Instruction has executed 199 CanCommit, /// Instruction can commit 200 AtCommit, /// Instruction has reached commit 201 Committed, /// Instruction has committed 202 Squashed, /// Instruction is squashed 203 SquashedInIQ, /// Instruction is squashed in the IQ 204 SquashedInLSQ, /// Instruction is squashed in the LSQ 205 SquashedInROB, /// Instruction is squashed in the ROB 206 RecoverInst, /// Is a recover instruction 207 BlockingInst, /// Is a blocking instruction 208 ThreadsyncWait, /// Is a thread synchronization instruction 209 SerializeBefore, /// Needs to serialize on 210 /// instructions ahead of it 211 SerializeAfter, /// Needs to serialize instructions behind it 212 SerializeHandled, /// Serialization has been handled 213 NumStatus 214 }; 215 216 /** The status of this BaseDynInst. Several bits can be set. */ 217 std::bitset<NumStatus> status; 218 219 /** The thread this instruction is from. */ 220 ThreadID threadNumber; 221 222 /** data address space ID, for loads & stores. */ 223 short asid; 224 225 /** How many source registers are ready. */ 226 unsigned readyRegs; 227 228 /** Pointer to the Impl's CPU object. */ 229 ImplCPU *cpu; 230 231 /** Pointer to the thread state. */ 232 ImplState *thread; 233 234 /** The kind of fault this instruction has generated. */ 235 Fault fault; 236 237 /** Pointer to the data for the memory access. */ 238 uint8_t *memData; 239 240 /** The effective virtual address (lds & stores only). */ 241 Addr effAddr; 242 243 /** The size of the request */ 244 Addr effSize; 245 246 /** Is the effective virtual address valid. */ 247 bool effAddrValid; 248 249 /** The effective physical address. */ 250 Addr physEffAddr; 251 252 /** The memory request flags (from translation). */ 253 unsigned memReqFlags; 254 255 union Result { 256 uint64_t integer; 257 double dbl; 258 void set(uint64_t i) { integer = i; } 259 void set(double d) { dbl = d; } 260 void get(uint64_t& i) { i = integer; } 261 void get(double& d) { d = dbl; } 262 }; 263 264 /** The result of the instruction; assumes an instruction can have many 265 * destination registers. 266 */ 267 std::queue<Result> instResult; 268 269 /** Records changes to result? */ 270 bool recordResult; 271 272 /** Did this instruction execute, or is it predicated false */ 273 bool predicate; 274 275 protected: 276 /** PC state for this instruction. */ 277 TheISA::PCState pc; 278 279 /** Predicted PC state after this instruction. */ 280 TheISA::PCState predPC; 281 282 /** If this is a branch that was predicted taken */ 283 bool predTaken; 284 285 public: 286 287#ifdef DEBUG 288 void dumpSNList(); 289#endif 290 291 /** Whether or not the source register is ready. 292 * @todo: Not sure this should be here vs the derived class. 293 */ 294 bool _readySrcRegIdx[MaxInstSrcRegs]; 295 296 protected: 297 /** Flattened register index of the destination registers of this 298 * instruction. 299 */ 300 TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs]; 301 302 /** Flattened register index of the source registers of this 303 * instruction. 304 */ 305 TheISA::RegIndex _flatSrcRegIdx[TheISA::MaxInstSrcRegs]; 306 307 /** Physical register index of the destination registers of this 308 * instruction. 309 */ 310 PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs]; 311 312 /** Physical register index of the source registers of this 313 * instruction. 314 */ 315 PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs]; 316 317 /** Physical register index of the previous producers of the 318 * architected destinations. 319 */ 320 PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs]; 321 322 public: 323 324 /** Returns the physical register index of the i'th destination 325 * register. 326 */ 327 PhysRegIndex renamedDestRegIdx(int idx) const 328 { 329 return _destRegIdx[idx]; 330 } 331 332 /** Returns the physical register index of the i'th source register. */ 333 PhysRegIndex renamedSrcRegIdx(int idx) const 334 { 335 return _srcRegIdx[idx]; 336 } 337 338 /** Returns the flattened register index of the i'th destination 339 * register. 340 */ 341 TheISA::RegIndex flattenedDestRegIdx(int idx) const 342 { 343 return _flatDestRegIdx[idx]; 344 } 345 346 /** Returns the flattened register index of the i'th source register */ 347 TheISA::RegIndex flattenedSrcRegIdx(int idx) const 348 { 349 return _flatSrcRegIdx[idx]; 350 } 351 352 /** Returns the physical register index of the previous physical register 353 * that remapped to the same logical register index. 354 */ 355 PhysRegIndex prevDestRegIdx(int idx) const 356 { 357 return _prevDestRegIdx[idx]; 358 } 359 360 /** Renames a destination register to a physical register. Also records 361 * the previous physical register that the logical register mapped to. 362 */ 363 void renameDestReg(int idx, 364 PhysRegIndex renamed_dest, 365 PhysRegIndex previous_rename) 366 { 367 _destRegIdx[idx] = renamed_dest; 368 _prevDestRegIdx[idx] = previous_rename; 369 } 370 371 /** Renames a source logical register to the physical register which 372 * has/will produce that logical register's result. 373 * @todo: add in whether or not the source register is ready. 374 */ 375 void renameSrcReg(int idx, PhysRegIndex renamed_src) 376 { 377 _srcRegIdx[idx] = renamed_src; 378 } 379 380 /** Flattens a source architectural register index into a logical index. 381 */ 382 void flattenSrcReg(int idx, TheISA::RegIndex flattened_src) 383 { 384 _flatSrcRegIdx[idx] = flattened_src; 385 } 386 387 /** Flattens a destination architectural register index into a logical 388 * index. 389 */ 390 void flattenDestReg(int idx, TheISA::RegIndex flattened_dest) 391 { 392 _flatDestRegIdx[idx] = flattened_dest; 393 } 394 /** BaseDynInst constructor given a binary instruction. 395 * @param staticInst A StaticInstPtr to the underlying instruction. 396 * @param pc The PC state for the instruction. 397 * @param predPC The predicted next PC state for the instruction. 398 * @param seq_num The sequence number of the instruction. 399 * @param cpu Pointer to the instruction's CPU. 400 */ 401 BaseDynInst(StaticInstPtr staticInst, StaticInstPtr macroop, 402 TheISA::PCState pc, TheISA::PCState predPC, 403 InstSeqNum seq_num, ImplCPU *cpu); 404 405 /** BaseDynInst constructor given a StaticInst pointer. 406 * @param _staticInst The StaticInst for this BaseDynInst. 407 */ 408 BaseDynInst(StaticInstPtr staticInst, StaticInstPtr macroop); 409 410 /** BaseDynInst destructor. */ 411 ~BaseDynInst(); 412 413 private: 414 /** Function to initialize variables in the constructors. */ 415 void initVars(); 416 417 public: 418 /** Dumps out contents of this BaseDynInst. */ 419 void dump(); 420 421 /** Dumps out contents of this BaseDynInst into given string. */ 422 void dump(std::string &outstring); 423 424 /** Read this CPU's ID. */ 425 int cpuId() { return cpu->cpuId(); } 426 427 /** Read this CPU's data requestor ID */ 428 MasterID masterId() { return cpu->dataMasterId(); } 429 430 /** Read this context's system-wide ID **/ 431 int contextId() { return thread->contextId(); } 432 433 /** Returns the fault type. */ 434 Fault getFault() { return fault; } 435 436 /** Checks whether or not this instruction has had its branch target 437 * calculated yet. For now it is not utilized and is hacked to be 438 * always false. 439 * @todo: Actually use this instruction. 440 */ 441 bool doneTargCalc() { return false; } 442 443 /** Set the predicted target of this current instruction. */ 444 void setPredTarg(const TheISA::PCState &_predPC) 445 { 446 predPC = _predPC; 447 } 448 449 const TheISA::PCState &readPredTarg() { return predPC; } 450 451 /** Returns the predicted PC immediately after the branch. */ 452 Addr predInstAddr() { return predPC.instAddr(); } 453 454 /** Returns the predicted PC two instructions after the branch */ 455 Addr predNextInstAddr() { return predPC.nextInstAddr(); } 456 457 /** Returns the predicted micro PC after the branch */ 458 Addr predMicroPC() { return predPC.microPC(); } 459 460 /** Returns whether the instruction was predicted taken or not. */ 461 bool readPredTaken() 462 { 463 return predTaken; 464 } 465 466 void setPredTaken(bool predicted_taken) 467 { 468 predTaken = predicted_taken; 469 } 470 471 /** Returns whether the instruction mispredicted. */ 472 bool mispredicted() 473 { 474 TheISA::PCState tempPC = pc; 475 TheISA::advancePC(tempPC, staticInst); 476 return !(tempPC == predPC); 477 } 478 479 // 480 // Instruction types. Forward checks to StaticInst object. 481 // 482 bool isNop() const { return staticInst->isNop(); } 483 bool isMemRef() const { return staticInst->isMemRef(); } 484 bool isLoad() const { return staticInst->isLoad(); } 485 bool isStore() const { return staticInst->isStore(); } 486 bool isStoreConditional() const 487 { return staticInst->isStoreConditional(); } 488 bool isInstPrefetch() const { return staticInst->isInstPrefetch(); } 489 bool isDataPrefetch() const { return staticInst->isDataPrefetch(); } 490 bool isInteger() const { return staticInst->isInteger(); } 491 bool isFloating() const { return staticInst->isFloating(); } 492 bool isControl() const { return staticInst->isControl(); } 493 bool isCall() const { return staticInst->isCall(); } 494 bool isReturn() const { return staticInst->isReturn(); } 495 bool isDirectCtrl() const { return staticInst->isDirectCtrl(); } 496 bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); } 497 bool isCondCtrl() const { return staticInst->isCondCtrl(); } 498 bool isUncondCtrl() const { return staticInst->isUncondCtrl(); } 499 bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); } 500 bool isThreadSync() const { return staticInst->isThreadSync(); } 501 bool isSerializing() const { return staticInst->isSerializing(); } 502 bool isSerializeBefore() const 503 { return staticInst->isSerializeBefore() || status[SerializeBefore]; } 504 bool isSerializeAfter() const 505 { return staticInst->isSerializeAfter() || status[SerializeAfter]; } 506 bool isSquashAfter() const { return staticInst->isSquashAfter(); } 507 bool isMemBarrier() const { return staticInst->isMemBarrier(); } 508 bool isWriteBarrier() const { return staticInst->isWriteBarrier(); } 509 bool isNonSpeculative() const { return staticInst->isNonSpeculative(); } 510 bool isQuiesce() const { return staticInst->isQuiesce(); } 511 bool isIprAccess() const { return staticInst->isIprAccess(); } 512 bool isUnverifiable() const { return staticInst->isUnverifiable(); } 513 bool isSyscall() const { return staticInst->isSyscall(); } 514 bool isMacroop() const { return staticInst->isMacroop(); } 515 bool isMicroop() const { return staticInst->isMicroop(); } 516 bool isDelayedCommit() const { return staticInst->isDelayedCommit(); } 517 bool isLastMicroop() const { return staticInst->isLastMicroop(); } 518 bool isFirstMicroop() const { return staticInst->isFirstMicroop(); } 519 bool isMicroBranch() const { return staticInst->isMicroBranch(); } 520 521 /** Temporarily sets this instruction as a serialize before instruction. */ 522 void setSerializeBefore() { status.set(SerializeBefore); } 523 524 /** Clears the serializeBefore part of this instruction. */ 525 void clearSerializeBefore() { status.reset(SerializeBefore); } 526 527 /** Checks if this serializeBefore is only temporarily set. */ 528 bool isTempSerializeBefore() { return status[SerializeBefore]; } 529 530 /** Temporarily sets this instruction as a serialize after instruction. */ 531 void setSerializeAfter() { status.set(SerializeAfter); } 532 533 /** Clears the serializeAfter part of this instruction.*/ 534 void clearSerializeAfter() { status.reset(SerializeAfter); } 535 536 /** Checks if this serializeAfter is only temporarily set. */ 537 bool isTempSerializeAfter() { return status[SerializeAfter]; } 538 539 /** Sets the serialization part of this instruction as handled. */ 540 void setSerializeHandled() { status.set(SerializeHandled); } 541 542 /** Checks if the serialization part of this instruction has been 543 * handled. This does not apply to the temporary serializing 544 * state; it only applies to this instruction's own permanent 545 * serializing state. 546 */ 547 bool isSerializeHandled() { return status[SerializeHandled]; } 548 549 /** Returns the opclass of this instruction. */ 550 OpClass opClass() const { return staticInst->opClass(); } 551 552 /** Returns the branch target address. */ 553 TheISA::PCState branchTarget() const 554 { return staticInst->branchTarget(pc); } 555 556 /** Returns the number of source registers. */ 557 int8_t numSrcRegs() const { return staticInst->numSrcRegs(); } 558 559 /** Returns the number of destination registers. */ 560 int8_t numDestRegs() const { return staticInst->numDestRegs(); } 561 562 // the following are used to track physical register usage 563 // for machines with separate int & FP reg files 564 int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); } 565 int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); } 566 567 /** Returns the logical register index of the i'th destination register. */ 568 RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); } 569 570 /** Returns the logical register index of the i'th source register. */ 571 RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); } 572 573 /** Pops a result off the instResult queue */ 574 template <class T> 575 void popResult(T& t) 576 { 577 if (!instResult.empty()) { 578 instResult.front().get(t); 579 instResult.pop(); 580 } 581 } 582 583 /** Read the most recent result stored by this instruction */ 584 template <class T> 585 void readResult(T& t) 586 { 587 instResult.back().get(t); 588 } 589 590 /** Pushes a result onto the instResult queue */ 591 template <class T> 592 void setResult(T t) 593 { 594 if (recordResult) { 595 Result instRes; 596 instRes.set(t); 597 instResult.push(instRes); 598 } 599 } 600 601 /** Records an integer register being set to a value. */ 602 void setIntRegOperand(const StaticInst *si, int idx, uint64_t val) 603 { 604 setResult<uint64_t>(val); 605 } 606 607 /** Records an fp register being set to a value. */ 608 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val, 609 int width) 610 { 611 if (width == 32 || width == 64) { 612 setResult<double>(val); 613 } else { 614 panic("Unsupported width!"); 615 } 616 } 617 618 /** Records an fp register being set to a value. */ 619 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val) 620 { 621 setResult<double>(val); 622 } 623 624 /** Records an fp register being set to an integer value. */ 625 void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val, 626 int width) 627 { 628 setResult<uint64_t>(val); 629 } 630 631 /** Records an fp register being set to an integer value. */ 632 void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val) 633 { 634 setResult<uint64_t>(val); 635 } 636 637 /** Records that one of the source registers is ready. */ 638 void markSrcRegReady(); 639 640 /** Marks a specific register as ready. */ 641 void markSrcRegReady(RegIndex src_idx); 642 643 /** Returns if a source register is ready. */ 644 bool isReadySrcRegIdx(int idx) const 645 { 646 return this->_readySrcRegIdx[idx]; 647 } 648 649 /** Sets this instruction as completed. */ 650 void setCompleted() { status.set(Completed); } 651 652 /** Returns whether or not this instruction is completed. */ 653 bool isCompleted() const { return status[Completed]; } 654 655 /** Marks the result as ready. */ 656 void setResultReady() { status.set(ResultReady); } 657 658 /** Returns whether or not the result is ready. */ 659 bool isResultReady() const { return status[ResultReady]; } 660 661 /** Sets this instruction as ready to issue. */ 662 void setCanIssue() { status.set(CanIssue); } 663 664 /** Returns whether or not this instruction is ready to issue. */ 665 bool readyToIssue() const { return status[CanIssue]; } 666 667 /** Clears this instruction being able to issue. */ 668 void clearCanIssue() { status.reset(CanIssue); } 669 670 /** Sets this instruction as issued from the IQ. */ 671 void setIssued() { status.set(Issued); } 672 673 /** Returns whether or not this instruction has issued. */ 674 bool isIssued() const { return status[Issued]; } 675 676 /** Clears this instruction as being issued. */ 677 void clearIssued() { status.reset(Issued); } 678 679 /** Sets this instruction as executed. */ 680 void setExecuted() { status.set(Executed); } 681 682 /** Returns whether or not this instruction has executed. */ 683 bool isExecuted() const { return status[Executed]; } 684 685 /** Sets this instruction as ready to commit. */ 686 void setCanCommit() { status.set(CanCommit); } 687 688 /** Clears this instruction as being ready to commit. */ 689 void clearCanCommit() { status.reset(CanCommit); } 690 691 /** Returns whether or not this instruction is ready to commit. */ 692 bool readyToCommit() const { return status[CanCommit]; } 693 694 void setAtCommit() { status.set(AtCommit); } 695 696 bool isAtCommit() { return status[AtCommit]; } 697 698 /** Sets this instruction as committed. */ 699 void setCommitted() { status.set(Committed); } 700 701 /** Returns whether or not this instruction is committed. */ 702 bool isCommitted() const { return status[Committed]; } 703 704 /** Sets this instruction as squashed. */ 705 void setSquashed() { status.set(Squashed); } 706 707 /** Returns whether or not this instruction is squashed. */ 708 bool isSquashed() const { return status[Squashed]; } 709 710 //Instruction Queue Entry 711 //----------------------- 712 /** Sets this instruction as a entry the IQ. */ 713 void setInIQ() { status.set(IqEntry); } 714 715 /** Sets this instruction as a entry the IQ. */ 716 void clearInIQ() { status.reset(IqEntry); } 717 718 /** Returns whether or not this instruction has issued. */ 719 bool isInIQ() const { return status[IqEntry]; } 720 721 /** Sets this instruction as squashed in the IQ. */ 722 void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);} 723 724 /** Returns whether or not this instruction is squashed in the IQ. */ 725 bool isSquashedInIQ() const { return status[SquashedInIQ]; } 726 727 728 //Load / Store Queue Functions 729 //----------------------- 730 /** Sets this instruction as a entry the LSQ. */ 731 void setInLSQ() { status.set(LsqEntry); } 732 733 /** Sets this instruction as a entry the LSQ. */ 734 void removeInLSQ() { status.reset(LsqEntry); } 735 736 /** Returns whether or not this instruction is in the LSQ. */ 737 bool isInLSQ() const { return status[LsqEntry]; } 738 739 /** Sets this instruction as squashed in the LSQ. */ 740 void setSquashedInLSQ() { status.set(SquashedInLSQ);} 741 742 /** Returns whether or not this instruction is squashed in the LSQ. */ 743 bool isSquashedInLSQ() const { return status[SquashedInLSQ]; } 744 745 746 //Reorder Buffer Functions 747 //----------------------- 748 /** Sets this instruction as a entry the ROB. */ 749 void setInROB() { status.set(RobEntry); } 750 751 /** Sets this instruction as a entry the ROB. */ 752 void clearInROB() { status.reset(RobEntry); } 753 754 /** Returns whether or not this instruction is in the ROB. */ 755 bool isInROB() const { return status[RobEntry]; } 756 757 /** Sets this instruction as squashed in the ROB. */ 758 void setSquashedInROB() { status.set(SquashedInROB); } 759 760 /** Returns whether or not this instruction is squashed in the ROB. */ 761 bool isSquashedInROB() const { return status[SquashedInROB]; } 762 763 /** Read the PC state of this instruction. */ 764 const TheISA::PCState pcState() const { return pc; } 765 766 /** Set the PC state of this instruction. */ 767 const void pcState(const TheISA::PCState &val) { pc = val; } 768 769 /** Read the PC of this instruction. */ 770 const Addr instAddr() const { return pc.instAddr(); } 771 772 /** Read the PC of the next instruction. */ 773 const Addr nextInstAddr() const { return pc.nextInstAddr(); } 774 775 /**Read the micro PC of this instruction. */ 776 const Addr microPC() const { return pc.microPC(); } 777 778 bool readPredicate() 779 { 780 return predicate; 781 } 782 783 void setPredicate(bool val) 784 { 785 predicate = val; 786 787 if (traceData) { 788 traceData->setPredicate(val); 789 } 790 } 791 792 /** Sets the ASID. */ 793 void setASID(short addr_space_id) { asid = addr_space_id; } 794 795 /** Sets the thread id. */ 796 void setTid(ThreadID tid) { threadNumber = tid; } 797 798 /** Sets the pointer to the thread state. */ 799 void setThreadState(ImplState *state) { thread = state; } 800 801 /** Returns the thread context. */ 802 ThreadContext *tcBase() { return thread->getTC(); } 803 804 private: 805 /** Instruction effective address. 806 * @todo: Consider if this is necessary or not. 807 */ 808 Addr instEffAddr; 809 810 /** Whether or not the effective address calculation is completed. 811 * @todo: Consider if this is necessary or not. 812 */ 813 bool eaCalcDone; 814 815 /** Is this instruction's memory access uncacheable. */ 816 bool isUncacheable; 817 818 /** Has this instruction generated a memory request. */ 819 bool reqMade; 820 821 public: 822 /** Sets the effective address. */ 823 void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; } 824 825 /** Returns the effective address. */ 826 const Addr &getEA() const { return instEffAddr; } 827 828 /** Returns whether or not the eff. addr. calculation has been completed. */ 829 bool doneEACalc() { return eaCalcDone; } 830 831 /** Returns whether or not the eff. addr. source registers are ready. */ 832 bool eaSrcsReady(); 833 834 /** Whether or not the memory operation is done. */ 835 bool memOpDone; 836 837 /** Is this instruction's memory access uncacheable. */ 838 bool uncacheable() { return isUncacheable; } 839 840 /** Has this instruction generated a memory request. */ 841 bool hasRequest() { return reqMade; } 842 843 public: 844 /** Load queue index. */ 845 int16_t lqIdx; 846 847 /** Store queue index. */ 848 int16_t sqIdx; 849 850 /** Iterator pointing to this BaseDynInst in the list of all insts. */ 851 ListIt instListIt; 852 853 /** Returns iterator to this instruction in the list of all insts. */ 854 ListIt &getInstListIt() { return instListIt; } 855 856 /** Sets iterator for this instruction in the list of all insts. */ 857 void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; } 858 859 public: 860 /** Returns the number of consecutive store conditional failures. */ 861 unsigned readStCondFailures() 862 { return thread->storeCondFailures; } 863 864 /** Sets the number of consecutive store conditional failures. */ 865 void setStCondFailures(unsigned sc_failures) 866 { thread->storeCondFailures = sc_failures; } 867}; 868 869template<class Impl> 870Fault 871BaseDynInst<Impl>::readMem(Addr addr, uint8_t *data, 872 unsigned size, unsigned flags) 873{ 874 reqMade = true; 875 Request *req = NULL; 876 Request *sreqLow = NULL; 877 Request *sreqHigh = NULL; 878 879 if (reqMade && translationStarted) { 880 req = savedReq; 881 sreqLow = savedSreqLow; 882 sreqHigh = savedSreqHigh; 883 } else { 884 req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(), 885 thread->contextId(), threadNumber); 886 887 // Only split the request if the ISA supports unaligned accesses. 888 if (TheISA::HasUnalignedMemAcc) { 889 splitRequest(req, sreqLow, sreqHigh); 890 } 891 initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read); 892 } 893 894 if (translationCompleted) { 895 if (fault == NoFault) { 896 effAddr = req->getVaddr(); 897 effSize = size; 898 effAddrValid = true; 899#if USE_CHECKER 900 if (reqToVerify != NULL) { 901 delete reqToVerify; 902 } 903 reqToVerify = new Request(*req); 904#endif //USE_CHECKER 905 fault = cpu->read(req, sreqLow, sreqHigh, data, lqIdx); 906 } else { 907 // Commit will have to clean up whatever happened. Set this 908 // instruction as executed. 909 this->setExecuted(); 910 } 911 912 if (fault != NoFault) { 913 // Return a fixed value to keep simulation deterministic even 914 // along misspeculated paths. 915 if (data) 916 bzero(data, size); 917 } 918 } 919 920 if (traceData) { 921 traceData->setAddr(addr); 922 } 923 924 return fault; 925} 926 927template<class Impl> 928Fault 929BaseDynInst<Impl>::writeMem(uint8_t *data, unsigned size, 930 Addr addr, unsigned flags, uint64_t *res) 931{ 932 if (traceData) { 933 traceData->setAddr(addr); 934 } 935 936 reqMade = true; 937 Request *req = NULL; 938 Request *sreqLow = NULL; 939 Request *sreqHigh = NULL; 940 941 if (reqMade && translationStarted) { 942 req = savedReq; 943 sreqLow = savedSreqLow; 944 sreqHigh = savedSreqHigh; 945 } else { 946 req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(), 947 thread->contextId(), threadNumber); 948 949 // Only split the request if the ISA supports unaligned accesses. 950 if (TheISA::HasUnalignedMemAcc) { 951 splitRequest(req, sreqLow, sreqHigh); 952 } 953 initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write); 954 } 955 956 if (fault == NoFault && translationCompleted) { 957 effAddr = req->getVaddr(); 958 effSize = size; 959 effAddrValid = true; 960#if USE_CHECKER 961 if (reqToVerify != NULL) { 962 delete reqToVerify; 963 } 964 reqToVerify = new Request(*req); 965#endif // USE_CHECKER 966 fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx); 967 } 968 969 return fault; 970} 971 972template<class Impl> 973inline void 974BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow, 975 RequestPtr &sreqHigh) 976{ 977 // Check to see if the request crosses the next level block boundary. 978 unsigned block_size = cpu->getDataPort().peerBlockSize(); 979 Addr addr = req->getVaddr(); 980 Addr split_addr = roundDown(addr + req->getSize() - 1, block_size); 981 assert(split_addr <= addr || split_addr - addr < block_size); 982 983 // Spans two blocks. 984 if (split_addr > addr) { 985 req->splitOnVaddr(split_addr, sreqLow, sreqHigh); 986 } 987} 988 989template<class Impl> 990inline void 991BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow, 992 RequestPtr sreqHigh, uint64_t *res, 993 BaseTLB::Mode mode) 994{ 995 translationStarted = true; 996 997 if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) { 998 WholeTranslationState *state = 999 new WholeTranslationState(req, NULL, res, mode); 1000 1001 // One translation if the request isn't split. 1002 DataTranslation<BaseDynInstPtr> *trans = 1003 new DataTranslation<BaseDynInstPtr>(this, state); 1004 cpu->dtb->translateTiming(req, thread->getTC(), trans, mode); 1005 if (!translationCompleted) { 1006 // Save memory requests. 1007 savedReq = state->mainReq; 1008 savedSreqLow = state->sreqLow; 1009 savedSreqHigh = state->sreqHigh; 1010 } 1011 } else { 1012 WholeTranslationState *state = 1013 new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode); 1014 1015 // Two translations when the request is split. 1016 DataTranslation<BaseDynInstPtr> *stransLow = 1017 new DataTranslation<BaseDynInstPtr>(this, state, 0); 1018 DataTranslation<BaseDynInstPtr> *stransHigh = 1019 new DataTranslation<BaseDynInstPtr>(this, state, 1); 1020 1021 cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode); 1022 cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode); 1023 if (!translationCompleted) { 1024 // Save memory requests. 1025 savedReq = state->mainReq; 1026 savedSreqLow = state->sreqLow; 1027 savedSreqHigh = state->sreqHigh; 1028 } 1029 } 1030} 1031 1032template<class Impl> 1033inline void 1034BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state) 1035{ 1036 fault = state->getFault(); 1037 1038 if (state->isUncacheable()) 1039 isUncacheable = true; 1040 1041 if (fault == NoFault) { 1042 physEffAddr = state->getPaddr(); 1043 memReqFlags = state->getFlags(); 1044 1045 if (state->mainReq->isCondSwap()) { 1046 assert(state->res); 1047 state->mainReq->setExtraData(*state->res); 1048 } 1049 1050 } else { 1051 state->deleteReqs(); 1052 } 1053 delete state; 1054 1055 translationCompleted = true; 1056} 1057 1058#endif // __CPU_BASE_DYN_INST_HH__ 1059