base_dyn_inst.hh revision 8545
1/*
2 * Copyright (c) 2011 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * Copyright (c) 2009 The University of Edinburgh
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 *          Timothy M. Jones
43 */
44
45#ifndef __CPU_BASE_DYN_INST_HH__
46#define __CPU_BASE_DYN_INST_HH__
47
48#include <bitset>
49#include <list>
50#include <string>
51
52#include "arch/faults.hh"
53#include "arch/utility.hh"
54#include "base/fast_alloc.hh"
55#include "base/trace.hh"
56#include "config/full_system.hh"
57#include "config/the_isa.hh"
58#include "cpu/o3/comm.hh"
59#include "cpu/exetrace.hh"
60#include "cpu/inst_seq.hh"
61#include "cpu/op_class.hh"
62#include "cpu/static_inst.hh"
63#include "cpu/translation.hh"
64#include "mem/packet.hh"
65#include "sim/byteswap.hh"
66#include "sim/system.hh"
67#include "sim/tlb.hh"
68
69/**
70 * @file
71 * Defines a dynamic instruction context.
72 */
73
74template <class Impl>
75class BaseDynInst : public FastAlloc, public RefCounted
76{
77  public:
78    // Typedef for the CPU.
79    typedef typename Impl::CPUType ImplCPU;
80    typedef typename ImplCPU::ImplState ImplState;
81
82    // Logical register index type.
83    typedef TheISA::RegIndex RegIndex;
84    // Integer register type.
85    typedef TheISA::IntReg IntReg;
86    // Floating point register type.
87    typedef TheISA::FloatReg FloatReg;
88
89    // The DynInstPtr type.
90    typedef typename Impl::DynInstPtr DynInstPtr;
91    typedef RefCountingPtr<BaseDynInst<Impl> > BaseDynInstPtr;
92
93    // The list of instructions iterator type.
94    typedef typename std::list<DynInstPtr>::iterator ListIt;
95
96    enum {
97        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,        /// Max source regs
98        MaxInstDestRegs = TheISA::MaxInstDestRegs,      /// Max dest regs
99    };
100
101    /** The StaticInst used by this BaseDynInst. */
102    StaticInstPtr staticInst;
103    StaticInstPtr macroop;
104
105    ////////////////////////////////////////////
106    //
107    // INSTRUCTION EXECUTION
108    //
109    ////////////////////////////////////////////
110    /** InstRecord that tracks this instructions. */
111    Trace::InstRecord *traceData;
112
113    void demapPage(Addr vaddr, uint64_t asn)
114    {
115        cpu->demapPage(vaddr, asn);
116    }
117    void demapInstPage(Addr vaddr, uint64_t asn)
118    {
119        cpu->demapPage(vaddr, asn);
120    }
121    void demapDataPage(Addr vaddr, uint64_t asn)
122    {
123        cpu->demapPage(vaddr, asn);
124    }
125
126    Fault readMem(Addr addr, uint8_t *data, unsigned size, unsigned flags);
127
128    Fault writeMem(uint8_t *data, unsigned size,
129                   Addr addr, unsigned flags, uint64_t *res);
130
131    /** Splits a request in two if it crosses a dcache block. */
132    void splitRequest(RequestPtr req, RequestPtr &sreqLow,
133                      RequestPtr &sreqHigh);
134
135    /** Initiate a DTB address translation. */
136    void initiateTranslation(RequestPtr req, RequestPtr sreqLow,
137                             RequestPtr sreqHigh, uint64_t *res,
138                             BaseTLB::Mode mode);
139
140    /** Finish a DTB address translation. */
141    void finishTranslation(WholeTranslationState *state);
142
143    /** True if the DTB address translation has started. */
144    bool translationStarted;
145
146    /** True if the DTB address translation has completed. */
147    bool translationCompleted;
148
149    /** True if this address was found to match a previous load and they issued
150     * out of order. If that happend, then it's only a problem if an incoming
151     * snoop invalidate modifies the line, in which case we need to squash.
152     * If nothing modified the line the order doesn't matter.
153     */
154    bool possibleLoadViolation;
155
156    /** True if the address hit a external snoop while sitting in the LSQ.
157     * If this is true and a older instruction sees it, this instruction must
158     * reexecute
159     */
160    bool hitExternalSnoop;
161
162    /**
163     * Returns true if the DTB address translation is being delayed due to a hw
164     * page table walk.
165     */
166    bool isTranslationDelayed() const
167    {
168        return (translationStarted && !translationCompleted);
169    }
170
171    /**
172     * Saved memory requests (needed when the DTB address translation is
173     * delayed due to a hw page table walk).
174     */
175    RequestPtr savedReq;
176    RequestPtr savedSreqLow;
177    RequestPtr savedSreqHigh;
178
179    /** @todo: Consider making this private. */
180  public:
181    /** The sequence number of the instruction. */
182    InstSeqNum seqNum;
183
184    enum Status {
185        IqEntry,                 /// Instruction is in the IQ
186        RobEntry,                /// Instruction is in the ROB
187        LsqEntry,                /// Instruction is in the LSQ
188        Completed,               /// Instruction has completed
189        ResultReady,             /// Instruction has its result
190        CanIssue,                /// Instruction can issue and execute
191        Issued,                  /// Instruction has issued
192        Executed,                /// Instruction has executed
193        CanCommit,               /// Instruction can commit
194        AtCommit,                /// Instruction has reached commit
195        Committed,               /// Instruction has committed
196        Squashed,                /// Instruction is squashed
197        SquashedInIQ,            /// Instruction is squashed in the IQ
198        SquashedInLSQ,           /// Instruction is squashed in the LSQ
199        SquashedInROB,           /// Instruction is squashed in the ROB
200        RecoverInst,             /// Is a recover instruction
201        BlockingInst,            /// Is a blocking instruction
202        ThreadsyncWait,          /// Is a thread synchronization instruction
203        SerializeBefore,         /// Needs to serialize on
204                                 /// instructions ahead of it
205        SerializeAfter,          /// Needs to serialize instructions behind it
206        SerializeHandled,        /// Serialization has been handled
207        NumStatus
208    };
209
210    /** The status of this BaseDynInst.  Several bits can be set. */
211    std::bitset<NumStatus> status;
212
213    /** The thread this instruction is from. */
214    ThreadID threadNumber;
215
216    /** data address space ID, for loads & stores. */
217    short asid;
218
219    /** How many source registers are ready. */
220    unsigned readyRegs;
221
222    /** Pointer to the Impl's CPU object. */
223    ImplCPU *cpu;
224
225    /** Pointer to the thread state. */
226    ImplState *thread;
227
228    /** The kind of fault this instruction has generated. */
229    Fault fault;
230
231    /** Pointer to the data for the memory access. */
232    uint8_t *memData;
233
234    /** The effective virtual address (lds & stores only). */
235    Addr effAddr;
236
237    /** The size of the request */
238    Addr effSize;
239
240    /** Is the effective virtual address valid. */
241    bool effAddrValid;
242
243    /** The effective physical address. */
244    Addr physEffAddr;
245
246    /** The memory request flags (from translation). */
247    unsigned memReqFlags;
248
249    union Result {
250        uint64_t integer;
251//        float fp;
252        double dbl;
253    };
254
255    /** The result of the instruction; assumes for now that there's only one
256     *  destination register.
257     */
258    Result instResult;
259
260    /** Records changes to result? */
261    bool recordResult;
262
263    /** Did this instruction execute, or is it predicated false */
264    bool predicate;
265
266  protected:
267    /** PC state for this instruction. */
268    TheISA::PCState pc;
269
270    /** Predicted PC state after this instruction. */
271    TheISA::PCState predPC;
272
273    /** If this is a branch that was predicted taken */
274    bool predTaken;
275
276  public:
277
278#ifdef DEBUG
279    void dumpSNList();
280#endif
281
282    /** Whether or not the source register is ready.
283     *  @todo: Not sure this should be here vs the derived class.
284     */
285    bool _readySrcRegIdx[MaxInstSrcRegs];
286
287  protected:
288    /** Flattened register index of the destination registers of this
289     *  instruction.
290     */
291    TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
292
293    /** Flattened register index of the source registers of this
294     *  instruction.
295     */
296    TheISA::RegIndex _flatSrcRegIdx[TheISA::MaxInstSrcRegs];
297
298    /** Physical register index of the destination registers of this
299     *  instruction.
300     */
301    PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
302
303    /** Physical register index of the source registers of this
304     *  instruction.
305     */
306    PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
307
308    /** Physical register index of the previous producers of the
309     *  architected destinations.
310     */
311    PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
312
313  public:
314
315    /** Returns the physical register index of the i'th destination
316     *  register.
317     */
318    PhysRegIndex renamedDestRegIdx(int idx) const
319    {
320        return _destRegIdx[idx];
321    }
322
323    /** Returns the physical register index of the i'th source register. */
324    PhysRegIndex renamedSrcRegIdx(int idx) const
325    {
326        return _srcRegIdx[idx];
327    }
328
329    /** Returns the flattened register index of the i'th destination
330     *  register.
331     */
332    TheISA::RegIndex flattenedDestRegIdx(int idx) const
333    {
334        return _flatDestRegIdx[idx];
335    }
336
337    /** Returns the flattened register index of the i'th source register */
338    TheISA::RegIndex flattenedSrcRegIdx(int idx) const
339    {
340        return _flatSrcRegIdx[idx];
341    }
342
343    /** Returns the physical register index of the previous physical register
344     *  that remapped to the same logical register index.
345     */
346    PhysRegIndex prevDestRegIdx(int idx) const
347    {
348        return _prevDestRegIdx[idx];
349    }
350
351    /** Renames a destination register to a physical register.  Also records
352     *  the previous physical register that the logical register mapped to.
353     */
354    void renameDestReg(int idx,
355                       PhysRegIndex renamed_dest,
356                       PhysRegIndex previous_rename)
357    {
358        _destRegIdx[idx] = renamed_dest;
359        _prevDestRegIdx[idx] = previous_rename;
360    }
361
362    /** Renames a source logical register to the physical register which
363     *  has/will produce that logical register's result.
364     *  @todo: add in whether or not the source register is ready.
365     */
366    void renameSrcReg(int idx, PhysRegIndex renamed_src)
367    {
368        _srcRegIdx[idx] = renamed_src;
369    }
370
371    /** Flattens a source architectural register index into a logical index.
372     */
373    void flattenSrcReg(int idx, TheISA::RegIndex flattened_src)
374    {
375        _flatSrcRegIdx[idx] = flattened_src;
376    }
377
378    /** Flattens a destination architectural register index into a logical
379     * index.
380     */
381    void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
382    {
383        _flatDestRegIdx[idx] = flattened_dest;
384    }
385    /** BaseDynInst constructor given a binary instruction.
386     *  @param staticInst A StaticInstPtr to the underlying instruction.
387     *  @param pc The PC state for the instruction.
388     *  @param predPC The predicted next PC state for the instruction.
389     *  @param seq_num The sequence number of the instruction.
390     *  @param cpu Pointer to the instruction's CPU.
391     */
392    BaseDynInst(StaticInstPtr staticInst, StaticInstPtr macroop,
393                TheISA::PCState pc, TheISA::PCState predPC,
394                InstSeqNum seq_num, ImplCPU *cpu);
395
396    /** BaseDynInst constructor given a StaticInst pointer.
397     *  @param _staticInst The StaticInst for this BaseDynInst.
398     */
399    BaseDynInst(StaticInstPtr staticInst, StaticInstPtr macroop);
400
401    /** BaseDynInst destructor. */
402    ~BaseDynInst();
403
404  private:
405    /** Function to initialize variables in the constructors. */
406    void initVars();
407
408  public:
409    /** Dumps out contents of this BaseDynInst. */
410    void dump();
411
412    /** Dumps out contents of this BaseDynInst into given string. */
413    void dump(std::string &outstring);
414
415    /** Read this CPU's ID. */
416    int cpuId() { return cpu->cpuId(); }
417
418    /** Read this context's system-wide ID **/
419    int contextId() { return thread->contextId(); }
420
421    /** Returns the fault type. */
422    Fault getFault() { return fault; }
423
424    /** Checks whether or not this instruction has had its branch target
425     *  calculated yet.  For now it is not utilized and is hacked to be
426     *  always false.
427     *  @todo: Actually use this instruction.
428     */
429    bool doneTargCalc() { return false; }
430
431    /** Set the predicted target of this current instruction. */
432    void setPredTarg(const TheISA::PCState &_predPC)
433    {
434        predPC = _predPC;
435    }
436
437    const TheISA::PCState &readPredTarg() { return predPC; }
438
439    /** Returns the predicted PC immediately after the branch. */
440    Addr predInstAddr() { return predPC.instAddr(); }
441
442    /** Returns the predicted PC two instructions after the branch */
443    Addr predNextInstAddr() { return predPC.nextInstAddr(); }
444
445    /** Returns the predicted micro PC after the branch */
446    Addr predMicroPC() { return predPC.microPC(); }
447
448    /** Returns whether the instruction was predicted taken or not. */
449    bool readPredTaken()
450    {
451        return predTaken;
452    }
453
454    void setPredTaken(bool predicted_taken)
455    {
456        predTaken = predicted_taken;
457    }
458
459    /** Returns whether the instruction mispredicted. */
460    bool mispredicted()
461    {
462        TheISA::PCState tempPC = pc;
463        TheISA::advancePC(tempPC, staticInst);
464        return !(tempPC == predPC);
465    }
466
467    //
468    //  Instruction types.  Forward checks to StaticInst object.
469    //
470    bool isNop()          const { return staticInst->isNop(); }
471    bool isMemRef()       const { return staticInst->isMemRef(); }
472    bool isLoad()         const { return staticInst->isLoad(); }
473    bool isStore()        const { return staticInst->isStore(); }
474    bool isStoreConditional() const
475    { return staticInst->isStoreConditional(); }
476    bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
477    bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
478    bool isInteger()      const { return staticInst->isInteger(); }
479    bool isFloating()     const { return staticInst->isFloating(); }
480    bool isControl()      const { return staticInst->isControl(); }
481    bool isCall()         const { return staticInst->isCall(); }
482    bool isReturn()       const { return staticInst->isReturn(); }
483    bool isDirectCtrl()   const { return staticInst->isDirectCtrl(); }
484    bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
485    bool isCondCtrl()     const { return staticInst->isCondCtrl(); }
486    bool isUncondCtrl()   const { return staticInst->isUncondCtrl(); }
487    bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
488    bool isThreadSync()   const { return staticInst->isThreadSync(); }
489    bool isSerializing()  const { return staticInst->isSerializing(); }
490    bool isSerializeBefore() const
491    { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
492    bool isSerializeAfter() const
493    { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
494    bool isSquashAfter() const { return staticInst->isSquashAfter(); }
495    bool isMemBarrier()   const { return staticInst->isMemBarrier(); }
496    bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
497    bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
498    bool isQuiesce() const { return staticInst->isQuiesce(); }
499    bool isIprAccess() const { return staticInst->isIprAccess(); }
500    bool isUnverifiable() const { return staticInst->isUnverifiable(); }
501    bool isSyscall() const { return staticInst->isSyscall(); }
502    bool isMacroop() const { return staticInst->isMacroop(); }
503    bool isMicroop() const { return staticInst->isMicroop(); }
504    bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
505    bool isLastMicroop() const { return staticInst->isLastMicroop(); }
506    bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
507    bool isMicroBranch() const { return staticInst->isMicroBranch(); }
508
509    /** Temporarily sets this instruction as a serialize before instruction. */
510    void setSerializeBefore() { status.set(SerializeBefore); }
511
512    /** Clears the serializeBefore part of this instruction. */
513    void clearSerializeBefore() { status.reset(SerializeBefore); }
514
515    /** Checks if this serializeBefore is only temporarily set. */
516    bool isTempSerializeBefore() { return status[SerializeBefore]; }
517
518    /** Temporarily sets this instruction as a serialize after instruction. */
519    void setSerializeAfter() { status.set(SerializeAfter); }
520
521    /** Clears the serializeAfter part of this instruction.*/
522    void clearSerializeAfter() { status.reset(SerializeAfter); }
523
524    /** Checks if this serializeAfter is only temporarily set. */
525    bool isTempSerializeAfter() { return status[SerializeAfter]; }
526
527    /** Sets the serialization part of this instruction as handled. */
528    void setSerializeHandled() { status.set(SerializeHandled); }
529
530    /** Checks if the serialization part of this instruction has been
531     *  handled.  This does not apply to the temporary serializing
532     *  state; it only applies to this instruction's own permanent
533     *  serializing state.
534     */
535    bool isSerializeHandled() { return status[SerializeHandled]; }
536
537    /** Returns the opclass of this instruction. */
538    OpClass opClass() const { return staticInst->opClass(); }
539
540    /** Returns the branch target address. */
541    TheISA::PCState branchTarget() const
542    { return staticInst->branchTarget(pc); }
543
544    /** Returns the number of source registers. */
545    int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
546
547    /** Returns the number of destination registers. */
548    int8_t numDestRegs() const { return staticInst->numDestRegs(); }
549
550    // the following are used to track physical register usage
551    // for machines with separate int & FP reg files
552    int8_t numFPDestRegs()  const { return staticInst->numFPDestRegs(); }
553    int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
554
555    /** Returns the logical register index of the i'th destination register. */
556    RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
557
558    /** Returns the logical register index of the i'th source register. */
559    RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
560
561    /** Returns the result of an integer instruction. */
562    uint64_t readIntResult() { return instResult.integer; }
563
564    /** Returns the result of a floating point instruction. */
565    float readFloatResult() { return (float)instResult.dbl; }
566
567    /** Returns the result of a floating point (double) instruction. */
568    double readDoubleResult() { return instResult.dbl; }
569
570    /** Records an integer register being set to a value. */
571    void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
572    {
573        if (recordResult)
574            instResult.integer = val;
575    }
576
577    /** Records an fp register being set to a value. */
578    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
579                            int width)
580    {
581        if (recordResult) {
582            if (width == 32)
583                instResult.dbl = (double)val;
584            else if (width == 64)
585                instResult.dbl = val;
586            else
587                panic("Unsupported width!");
588        }
589    }
590
591    /** Records an fp register being set to a value. */
592    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
593    {
594        if (recordResult)
595            instResult.dbl = (double)val;
596    }
597
598    /** Records an fp register being set to an integer value. */
599    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
600                                int width)
601    {
602        if (recordResult)
603            instResult.integer = val;
604    }
605
606    /** Records an fp register being set to an integer value. */
607    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
608    {
609        if (recordResult)
610            instResult.integer = val;
611    }
612
613    /** Records that one of the source registers is ready. */
614    void markSrcRegReady();
615
616    /** Marks a specific register as ready. */
617    void markSrcRegReady(RegIndex src_idx);
618
619    /** Returns if a source register is ready. */
620    bool isReadySrcRegIdx(int idx) const
621    {
622        return this->_readySrcRegIdx[idx];
623    }
624
625    /** Sets this instruction as completed. */
626    void setCompleted() { status.set(Completed); }
627
628    /** Returns whether or not this instruction is completed. */
629    bool isCompleted() const { return status[Completed]; }
630
631    /** Marks the result as ready. */
632    void setResultReady() { status.set(ResultReady); }
633
634    /** Returns whether or not the result is ready. */
635    bool isResultReady() const { return status[ResultReady]; }
636
637    /** Sets this instruction as ready to issue. */
638    void setCanIssue() { status.set(CanIssue); }
639
640    /** Returns whether or not this instruction is ready to issue. */
641    bool readyToIssue() const { return status[CanIssue]; }
642
643    /** Clears this instruction being able to issue. */
644    void clearCanIssue() { status.reset(CanIssue); }
645
646    /** Sets this instruction as issued from the IQ. */
647    void setIssued() { status.set(Issued); }
648
649    /** Returns whether or not this instruction has issued. */
650    bool isIssued() const { return status[Issued]; }
651
652    /** Clears this instruction as being issued. */
653    void clearIssued() { status.reset(Issued); }
654
655    /** Sets this instruction as executed. */
656    void setExecuted() { status.set(Executed); }
657
658    /** Returns whether or not this instruction has executed. */
659    bool isExecuted() const { return status[Executed]; }
660
661    /** Sets this instruction as ready to commit. */
662    void setCanCommit() { status.set(CanCommit); }
663
664    /** Clears this instruction as being ready to commit. */
665    void clearCanCommit() { status.reset(CanCommit); }
666
667    /** Returns whether or not this instruction is ready to commit. */
668    bool readyToCommit() const { return status[CanCommit]; }
669
670    void setAtCommit() { status.set(AtCommit); }
671
672    bool isAtCommit() { return status[AtCommit]; }
673
674    /** Sets this instruction as committed. */
675    void setCommitted() { status.set(Committed); }
676
677    /** Returns whether or not this instruction is committed. */
678    bool isCommitted() const { return status[Committed]; }
679
680    /** Sets this instruction as squashed. */
681    void setSquashed() { status.set(Squashed); }
682
683    /** Returns whether or not this instruction is squashed. */
684    bool isSquashed() const { return status[Squashed]; }
685
686    //Instruction Queue Entry
687    //-----------------------
688    /** Sets this instruction as a entry the IQ. */
689    void setInIQ() { status.set(IqEntry); }
690
691    /** Sets this instruction as a entry the IQ. */
692    void clearInIQ() { status.reset(IqEntry); }
693
694    /** Returns whether or not this instruction has issued. */
695    bool isInIQ() const { return status[IqEntry]; }
696
697    /** Sets this instruction as squashed in the IQ. */
698    void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
699
700    /** Returns whether or not this instruction is squashed in the IQ. */
701    bool isSquashedInIQ() const { return status[SquashedInIQ]; }
702
703
704    //Load / Store Queue Functions
705    //-----------------------
706    /** Sets this instruction as a entry the LSQ. */
707    void setInLSQ() { status.set(LsqEntry); }
708
709    /** Sets this instruction as a entry the LSQ. */
710    void removeInLSQ() { status.reset(LsqEntry); }
711
712    /** Returns whether or not this instruction is in the LSQ. */
713    bool isInLSQ() const { return status[LsqEntry]; }
714
715    /** Sets this instruction as squashed in the LSQ. */
716    void setSquashedInLSQ() { status.set(SquashedInLSQ);}
717
718    /** Returns whether or not this instruction is squashed in the LSQ. */
719    bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
720
721
722    //Reorder Buffer Functions
723    //-----------------------
724    /** Sets this instruction as a entry the ROB. */
725    void setInROB() { status.set(RobEntry); }
726
727    /** Sets this instruction as a entry the ROB. */
728    void clearInROB() { status.reset(RobEntry); }
729
730    /** Returns whether or not this instruction is in the ROB. */
731    bool isInROB() const { return status[RobEntry]; }
732
733    /** Sets this instruction as squashed in the ROB. */
734    void setSquashedInROB() { status.set(SquashedInROB); }
735
736    /** Returns whether or not this instruction is squashed in the ROB. */
737    bool isSquashedInROB() const { return status[SquashedInROB]; }
738
739    /** Read the PC state of this instruction. */
740    const TheISA::PCState pcState() const { return pc; }
741
742    /** Set the PC state of this instruction. */
743    const void pcState(const TheISA::PCState &val) { pc = val; }
744
745    /** Read the PC of this instruction. */
746    const Addr instAddr() const { return pc.instAddr(); }
747
748    /** Read the PC of the next instruction. */
749    const Addr nextInstAddr() const { return pc.nextInstAddr(); }
750
751    /**Read the micro PC of this instruction. */
752    const Addr microPC() const { return pc.microPC(); }
753
754    bool readPredicate()
755    {
756        return predicate;
757    }
758
759    void setPredicate(bool val)
760    {
761        predicate = val;
762
763        if (traceData) {
764            traceData->setPredicate(val);
765        }
766    }
767
768    /** Sets the ASID. */
769    void setASID(short addr_space_id) { asid = addr_space_id; }
770
771    /** Sets the thread id. */
772    void setTid(ThreadID tid) { threadNumber = tid; }
773
774    /** Sets the pointer to the thread state. */
775    void setThreadState(ImplState *state) { thread = state; }
776
777    /** Returns the thread context. */
778    ThreadContext *tcBase() { return thread->getTC(); }
779
780  private:
781    /** Instruction effective address.
782     *  @todo: Consider if this is necessary or not.
783     */
784    Addr instEffAddr;
785
786    /** Whether or not the effective address calculation is completed.
787     *  @todo: Consider if this is necessary or not.
788     */
789    bool eaCalcDone;
790
791    /** Is this instruction's memory access uncacheable. */
792    bool isUncacheable;
793
794    /** Has this instruction generated a memory request. */
795    bool reqMade;
796
797  public:
798    /** Sets the effective address. */
799    void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
800
801    /** Returns the effective address. */
802    const Addr &getEA() const { return instEffAddr; }
803
804    /** Returns whether or not the eff. addr. calculation has been completed. */
805    bool doneEACalc() { return eaCalcDone; }
806
807    /** Returns whether or not the eff. addr. source registers are ready. */
808    bool eaSrcsReady();
809
810    /** Whether or not the memory operation is done. */
811    bool memOpDone;
812
813    /** Is this instruction's memory access uncacheable. */
814    bool uncacheable() { return isUncacheable; }
815
816    /** Has this instruction generated a memory request. */
817    bool hasRequest() { return reqMade; }
818
819  public:
820    /** Load queue index. */
821    int16_t lqIdx;
822
823    /** Store queue index. */
824    int16_t sqIdx;
825
826    /** Iterator pointing to this BaseDynInst in the list of all insts. */
827    ListIt instListIt;
828
829    /** Returns iterator to this instruction in the list of all insts. */
830    ListIt &getInstListIt() { return instListIt; }
831
832    /** Sets iterator for this instruction in the list of all insts. */
833    void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
834
835  public:
836    /** Returns the number of consecutive store conditional failures. */
837    unsigned readStCondFailures()
838    { return thread->storeCondFailures; }
839
840    /** Sets the number of consecutive store conditional failures. */
841    void setStCondFailures(unsigned sc_failures)
842    { thread->storeCondFailures = sc_failures; }
843};
844
845template<class Impl>
846Fault
847BaseDynInst<Impl>::readMem(Addr addr, uint8_t *data,
848                           unsigned size, unsigned flags)
849{
850    reqMade = true;
851    Request *req = NULL;
852    Request *sreqLow = NULL;
853    Request *sreqHigh = NULL;
854
855    if (reqMade && translationStarted) {
856        req = savedReq;
857        sreqLow = savedSreqLow;
858        sreqHigh = savedSreqHigh;
859    } else {
860        req = new Request(asid, addr, size, flags, this->pc.instAddr(),
861                          thread->contextId(), threadNumber);
862
863        // Only split the request if the ISA supports unaligned accesses.
864        if (TheISA::HasUnalignedMemAcc) {
865            splitRequest(req, sreqLow, sreqHigh);
866        }
867        initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
868    }
869
870    if (translationCompleted) {
871        if (fault == NoFault) {
872            effAddr = req->getVaddr();
873            effSize = size;
874            effAddrValid = true;
875            fault = cpu->read(req, sreqLow, sreqHigh, data, lqIdx);
876        } else {
877            // Commit will have to clean up whatever happened.  Set this
878            // instruction as executed.
879            this->setExecuted();
880        }
881
882        if (fault != NoFault) {
883            // Return a fixed value to keep simulation deterministic even
884            // along misspeculated paths.
885            if (data)
886                bzero(data, size);
887        }
888    }
889
890    if (traceData) {
891        traceData->setAddr(addr);
892    }
893
894    return fault;
895}
896
897template<class Impl>
898Fault
899BaseDynInst<Impl>::writeMem(uint8_t *data, unsigned size,
900                            Addr addr, unsigned flags, uint64_t *res)
901{
902    if (traceData) {
903        traceData->setAddr(addr);
904    }
905
906    reqMade = true;
907    Request *req = NULL;
908    Request *sreqLow = NULL;
909    Request *sreqHigh = NULL;
910
911    if (reqMade && translationStarted) {
912        req = savedReq;
913        sreqLow = savedSreqLow;
914        sreqHigh = savedSreqHigh;
915    } else {
916        req = new Request(asid, addr, size, flags, this->pc.instAddr(),
917                          thread->contextId(), threadNumber);
918
919        // Only split the request if the ISA supports unaligned accesses.
920        if (TheISA::HasUnalignedMemAcc) {
921            splitRequest(req, sreqLow, sreqHigh);
922        }
923        initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
924    }
925
926    if (fault == NoFault && translationCompleted) {
927        effAddr = req->getVaddr();
928        effSize = size;
929        effAddrValid = true;
930        fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
931    }
932
933    return fault;
934}
935
936template<class Impl>
937inline void
938BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow,
939                                RequestPtr &sreqHigh)
940{
941    // Check to see if the request crosses the next level block boundary.
942    unsigned block_size = cpu->getDcachePort()->peerBlockSize();
943    Addr addr = req->getVaddr();
944    Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
945    assert(split_addr <= addr || split_addr - addr < block_size);
946
947    // Spans two blocks.
948    if (split_addr > addr) {
949        req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
950    }
951}
952
953template<class Impl>
954inline void
955BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow,
956                                       RequestPtr sreqHigh, uint64_t *res,
957                                       BaseTLB::Mode mode)
958{
959    translationStarted = true;
960
961    if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
962        WholeTranslationState *state =
963            new WholeTranslationState(req, NULL, res, mode);
964
965        // One translation if the request isn't split.
966        DataTranslation<BaseDynInstPtr> *trans =
967            new DataTranslation<BaseDynInstPtr>(this, state);
968        cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
969        if (!translationCompleted) {
970            // Save memory requests.
971            savedReq = state->mainReq;
972            savedSreqLow = state->sreqLow;
973            savedSreqHigh = state->sreqHigh;
974        }
975    } else {
976        WholeTranslationState *state =
977            new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);
978
979        // Two translations when the request is split.
980        DataTranslation<BaseDynInstPtr> *stransLow =
981            new DataTranslation<BaseDynInstPtr>(this, state, 0);
982        DataTranslation<BaseDynInstPtr> *stransHigh =
983            new DataTranslation<BaseDynInstPtr>(this, state, 1);
984
985        cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
986        cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);
987        if (!translationCompleted) {
988            // Save memory requests.
989            savedReq = state->mainReq;
990            savedSreqLow = state->sreqLow;
991            savedSreqHigh = state->sreqHigh;
992        }
993    }
994}
995
996template<class Impl>
997inline void
998BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state)
999{
1000    fault = state->getFault();
1001
1002    if (state->isUncacheable())
1003        isUncacheable = true;
1004
1005    if (fault == NoFault) {
1006        physEffAddr = state->getPaddr();
1007        memReqFlags = state->getFlags();
1008
1009        if (state->mainReq->isCondSwap()) {
1010            assert(state->res);
1011            state->mainReq->setExtraData(*state->res);
1012        }
1013
1014    } else {
1015        state->deleteReqs();
1016    }
1017    delete state;
1018
1019    translationCompleted = true;
1020}
1021
1022#endif // __CPU_BASE_DYN_INST_HH__
1023