base_dyn_inst.hh revision 8201:89221928d131
1/*
2 * Copyright (c) 2011 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * Copyright (c) 2009 The University of Edinburgh
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 *          Timothy M. Jones
43 */
44
45#ifndef __CPU_BASE_DYN_INST_HH__
46#define __CPU_BASE_DYN_INST_HH__
47
48#include <bitset>
49#include <list>
50#include <string>
51
52#include "arch/faults.hh"
53#include "arch/utility.hh"
54#include "base/fast_alloc.hh"
55#include "base/trace.hh"
56#include "config/full_system.hh"
57#include "config/the_isa.hh"
58#include "cpu/o3/comm.hh"
59#include "cpu/exetrace.hh"
60#include "cpu/inst_seq.hh"
61#include "cpu/op_class.hh"
62#include "cpu/static_inst.hh"
63#include "cpu/translation.hh"
64#include "mem/packet.hh"
65#include "sim/byteswap.hh"
66#include "sim/system.hh"
67#include "sim/tlb.hh"
68
69/**
70 * @file
71 * Defines a dynamic instruction context.
72 */
73
74// Forward declaration.
75class StaticInstPtr;
76
77template <class Impl>
78class BaseDynInst : public FastAlloc, public RefCounted
79{
80  public:
81    // Typedef for the CPU.
82    typedef typename Impl::CPUType ImplCPU;
83    typedef typename ImplCPU::ImplState ImplState;
84
85    // Logical register index type.
86    typedef TheISA::RegIndex RegIndex;
87    // Integer register type.
88    typedef TheISA::IntReg IntReg;
89    // Floating point register type.
90    typedef TheISA::FloatReg FloatReg;
91
92    // The DynInstPtr type.
93    typedef typename Impl::DynInstPtr DynInstPtr;
94
95    // The list of instructions iterator type.
96    typedef typename std::list<DynInstPtr>::iterator ListIt;
97
98    enum {
99        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,        /// Max source regs
100        MaxInstDestRegs = TheISA::MaxInstDestRegs,      /// Max dest regs
101    };
102
103    /** The StaticInst used by this BaseDynInst. */
104    StaticInstPtr staticInst;
105
106    ////////////////////////////////////////////
107    //
108    // INSTRUCTION EXECUTION
109    //
110    ////////////////////////////////////////////
111    /** InstRecord that tracks this instructions. */
112    Trace::InstRecord *traceData;
113
114    void demapPage(Addr vaddr, uint64_t asn)
115    {
116        cpu->demapPage(vaddr, asn);
117    }
118    void demapInstPage(Addr vaddr, uint64_t asn)
119    {
120        cpu->demapPage(vaddr, asn);
121    }
122    void demapDataPage(Addr vaddr, uint64_t asn)
123    {
124        cpu->demapPage(vaddr, asn);
125    }
126
127    /**
128     * Does a read to a given address.
129     * @param addr The address to read.
130     * @param data The read's data is written into this parameter.
131     * @param flags The request's flags.
132     * @return Returns any fault due to the read.
133     */
134    template <class T>
135    Fault read(Addr addr, T &data, unsigned flags);
136
137    Fault readBytes(Addr addr, uint8_t *data, unsigned size, unsigned flags);
138
139    /**
140     * Does a write to a given address.
141     * @param data The data to be written.
142     * @param addr The address to write to.
143     * @param flags The request's flags.
144     * @param res The result of the write (for load locked/store conditionals).
145     * @return Returns any fault due to the write.
146     */
147    template <class T>
148    Fault write(T data, Addr addr, unsigned flags, uint64_t *res);
149
150    Fault writeBytes(uint8_t *data, unsigned size,
151                     Addr addr, unsigned flags, uint64_t *res);
152
153    /** Splits a request in two if it crosses a dcache block. */
154    void splitRequest(RequestPtr req, RequestPtr &sreqLow,
155                      RequestPtr &sreqHigh);
156
157    /** Initiate a DTB address translation. */
158    void initiateTranslation(RequestPtr req, RequestPtr sreqLow,
159                             RequestPtr sreqHigh, uint64_t *res,
160                             BaseTLB::Mode mode);
161
162    /** Finish a DTB address translation. */
163    void finishTranslation(WholeTranslationState *state);
164
165    /** True if the DTB address translation has started. */
166    bool translationStarted;
167
168    /** True if the DTB address translation has completed. */
169    bool translationCompleted;
170
171    /**
172     * Returns true if the DTB address translation is being delayed due to a hw
173     * page table walk.
174     */
175    bool isTranslationDelayed() const
176    {
177        return (translationStarted && !translationCompleted);
178    }
179
180    /**
181     * Saved memory requests (needed when the DTB address translation is
182     * delayed due to a hw page table walk).
183     */
184    RequestPtr savedReq;
185    RequestPtr savedSreqLow;
186    RequestPtr savedSreqHigh;
187
188    /** @todo: Consider making this private. */
189  public:
190    /** The sequence number of the instruction. */
191    InstSeqNum seqNum;
192
193    enum Status {
194        IqEntry,                 /// Instruction is in the IQ
195        RobEntry,                /// Instruction is in the ROB
196        LsqEntry,                /// Instruction is in the LSQ
197        Completed,               /// Instruction has completed
198        ResultReady,             /// Instruction has its result
199        CanIssue,                /// Instruction can issue and execute
200        Issued,                  /// Instruction has issued
201        Executed,                /// Instruction has executed
202        CanCommit,               /// Instruction can commit
203        AtCommit,                /// Instruction has reached commit
204        Committed,               /// Instruction has committed
205        Squashed,                /// Instruction is squashed
206        SquashedInIQ,            /// Instruction is squashed in the IQ
207        SquashedInLSQ,           /// Instruction is squashed in the LSQ
208        SquashedInROB,           /// Instruction is squashed in the ROB
209        RecoverInst,             /// Is a recover instruction
210        BlockingInst,            /// Is a blocking instruction
211        ThreadsyncWait,          /// Is a thread synchronization instruction
212        SerializeBefore,         /// Needs to serialize on
213                                 /// instructions ahead of it
214        SerializeAfter,          /// Needs to serialize instructions behind it
215        SerializeHandled,        /// Serialization has been handled
216        NumStatus
217    };
218
219    /** The status of this BaseDynInst.  Several bits can be set. */
220    std::bitset<NumStatus> status;
221
222    /** The thread this instruction is from. */
223    ThreadID threadNumber;
224
225    /** data address space ID, for loads & stores. */
226    short asid;
227
228    /** How many source registers are ready. */
229    unsigned readyRegs;
230
231    /** Pointer to the Impl's CPU object. */
232    ImplCPU *cpu;
233
234    /** Pointer to the thread state. */
235    ImplState *thread;
236
237    /** The kind of fault this instruction has generated. */
238    Fault fault;
239
240    /** Pointer to the data for the memory access. */
241    uint8_t *memData;
242
243    /** The effective virtual address (lds & stores only). */
244    Addr effAddr;
245
246    /** The size of the request */
247    Addr effSize;
248
249    /** Is the effective virtual address valid. */
250    bool effAddrValid;
251
252    /** The effective physical address. */
253    Addr physEffAddr;
254
255    /** The memory request flags (from translation). */
256    unsigned memReqFlags;
257
258    union Result {
259        uint64_t integer;
260//        float fp;
261        double dbl;
262    };
263
264    /** The result of the instruction; assumes for now that there's only one
265     *  destination register.
266     */
267    Result instResult;
268
269    /** Records changes to result? */
270    bool recordResult;
271
272    /** Did this instruction execute, or is it predicated false */
273    bool predicate;
274
275  protected:
276    /** PC state for this instruction. */
277    TheISA::PCState pc;
278
279    /** Predicted PC state after this instruction. */
280    TheISA::PCState predPC;
281
282    /** If this is a branch that was predicted taken */
283    bool predTaken;
284
285  public:
286
287#ifdef DEBUG
288    void dumpSNList();
289#endif
290
291    /** Whether or not the source register is ready.
292     *  @todo: Not sure this should be here vs the derived class.
293     */
294    bool _readySrcRegIdx[MaxInstSrcRegs];
295
296  protected:
297    /** Flattened register index of the destination registers of this
298     *  instruction.
299     */
300    TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
301
302    /** Flattened register index of the source registers of this
303     *  instruction.
304     */
305    TheISA::RegIndex _flatSrcRegIdx[TheISA::MaxInstSrcRegs];
306
307    /** Physical register index of the destination registers of this
308     *  instruction.
309     */
310    PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
311
312    /** Physical register index of the source registers of this
313     *  instruction.
314     */
315    PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
316
317    /** Physical register index of the previous producers of the
318     *  architected destinations.
319     */
320    PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
321
322  public:
323
324    /** Returns the physical register index of the i'th destination
325     *  register.
326     */
327    PhysRegIndex renamedDestRegIdx(int idx) const
328    {
329        return _destRegIdx[idx];
330    }
331
332    /** Returns the physical register index of the i'th source register. */
333    PhysRegIndex renamedSrcRegIdx(int idx) const
334    {
335        return _srcRegIdx[idx];
336    }
337
338    /** Returns the flattened register index of the i'th destination
339     *  register.
340     */
341    TheISA::RegIndex flattenedDestRegIdx(int idx) const
342    {
343        return _flatDestRegIdx[idx];
344    }
345
346    /** Returns the flattened register index of the i'th source register */
347    TheISA::RegIndex flattenedSrcRegIdx(int idx) const
348    {
349        return _flatSrcRegIdx[idx];
350    }
351
352    /** Returns the physical register index of the previous physical register
353     *  that remapped to the same logical register index.
354     */
355    PhysRegIndex prevDestRegIdx(int idx) const
356    {
357        return _prevDestRegIdx[idx];
358    }
359
360    /** Renames a destination register to a physical register.  Also records
361     *  the previous physical register that the logical register mapped to.
362     */
363    void renameDestReg(int idx,
364                       PhysRegIndex renamed_dest,
365                       PhysRegIndex previous_rename)
366    {
367        _destRegIdx[idx] = renamed_dest;
368        _prevDestRegIdx[idx] = previous_rename;
369    }
370
371    /** Renames a source logical register to the physical register which
372     *  has/will produce that logical register's result.
373     *  @todo: add in whether or not the source register is ready.
374     */
375    void renameSrcReg(int idx, PhysRegIndex renamed_src)
376    {
377        _srcRegIdx[idx] = renamed_src;
378    }
379
380    /** Flattens a source architectural register index into a logical index.
381     */
382    void flattenSrcReg(int idx, TheISA::RegIndex flattened_src)
383    {
384        _flatSrcRegIdx[idx] = flattened_src;
385    }
386
387    /** Flattens a destination architectural register index into a logical
388     * index.
389     */
390    void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
391    {
392        _flatDestRegIdx[idx] = flattened_dest;
393    }
394    /** BaseDynInst constructor given a binary instruction.
395     *  @param staticInst A StaticInstPtr to the underlying instruction.
396     *  @param pc The PC state for the instruction.
397     *  @param predPC The predicted next PC state for the instruction.
398     *  @param seq_num The sequence number of the instruction.
399     *  @param cpu Pointer to the instruction's CPU.
400     */
401    BaseDynInst(StaticInstPtr staticInst, TheISA::PCState pc,
402                TheISA::PCState predPC, InstSeqNum seq_num, ImplCPU *cpu);
403
404    /** BaseDynInst constructor given a binary instruction.
405     *  @param inst The binary instruction.
406     *  @param _pc The PC state for the instruction.
407     *  @param _predPC The predicted next PC state for the instruction.
408     *  @param seq_num The sequence number of the instruction.
409     *  @param cpu Pointer to the instruction's CPU.
410     */
411    BaseDynInst(TheISA::ExtMachInst inst, TheISA::PCState pc,
412                TheISA::PCState predPC, InstSeqNum seq_num, ImplCPU *cpu);
413
414    /** BaseDynInst constructor given a StaticInst pointer.
415     *  @param _staticInst The StaticInst for this BaseDynInst.
416     */
417    BaseDynInst(StaticInstPtr &_staticInst);
418
419    /** BaseDynInst destructor. */
420    ~BaseDynInst();
421
422  private:
423    /** Function to initialize variables in the constructors. */
424    void initVars();
425
426  public:
427    /** Dumps out contents of this BaseDynInst. */
428    void dump();
429
430    /** Dumps out contents of this BaseDynInst into given string. */
431    void dump(std::string &outstring);
432
433    /** Read this CPU's ID. */
434    int cpuId() { return cpu->cpuId(); }
435
436    /** Read this context's system-wide ID **/
437    int contextId() { return thread->contextId(); }
438
439    /** Returns the fault type. */
440    Fault getFault() { return fault; }
441
442    /** Checks whether or not this instruction has had its branch target
443     *  calculated yet.  For now it is not utilized and is hacked to be
444     *  always false.
445     *  @todo: Actually use this instruction.
446     */
447    bool doneTargCalc() { return false; }
448
449    /** Set the predicted target of this current instruction. */
450    void setPredTarg(const TheISA::PCState &_predPC)
451    {
452        predPC = _predPC;
453    }
454
455    const TheISA::PCState &readPredTarg() { return predPC; }
456
457    /** Returns the predicted PC immediately after the branch. */
458    Addr predInstAddr() { return predPC.instAddr(); }
459
460    /** Returns the predicted PC two instructions after the branch */
461    Addr predNextInstAddr() { return predPC.nextInstAddr(); }
462
463    /** Returns the predicted micro PC after the branch */
464    Addr predMicroPC() { return predPC.microPC(); }
465
466    /** Returns whether the instruction was predicted taken or not. */
467    bool readPredTaken()
468    {
469        return predTaken;
470    }
471
472    void setPredTaken(bool predicted_taken)
473    {
474        predTaken = predicted_taken;
475    }
476
477    /** Returns whether the instruction mispredicted. */
478    bool mispredicted()
479    {
480        TheISA::PCState tempPC = pc;
481        TheISA::advancePC(tempPC, staticInst);
482        return !(tempPC == predPC);
483    }
484
485    //
486    //  Instruction types.  Forward checks to StaticInst object.
487    //
488    bool isNop()          const { return staticInst->isNop(); }
489    bool isMemRef()       const { return staticInst->isMemRef(); }
490    bool isLoad()         const { return staticInst->isLoad(); }
491    bool isStore()        const { return staticInst->isStore(); }
492    bool isStoreConditional() const
493    { return staticInst->isStoreConditional(); }
494    bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
495    bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
496    bool isInteger()      const { return staticInst->isInteger(); }
497    bool isFloating()     const { return staticInst->isFloating(); }
498    bool isControl()      const { return staticInst->isControl(); }
499    bool isCall()         const { return staticInst->isCall(); }
500    bool isReturn()       const { return staticInst->isReturn(); }
501    bool isDirectCtrl()   const { return staticInst->isDirectCtrl(); }
502    bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
503    bool isCondCtrl()     const { return staticInst->isCondCtrl(); }
504    bool isUncondCtrl()   const { return staticInst->isUncondCtrl(); }
505    bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
506    bool isThreadSync()   const { return staticInst->isThreadSync(); }
507    bool isSerializing()  const { return staticInst->isSerializing(); }
508    bool isSerializeBefore() const
509    { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
510    bool isSerializeAfter() const
511    { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
512    bool isSquashAfter() const { return staticInst->isSquashAfter(); }
513    bool isMemBarrier()   const { return staticInst->isMemBarrier(); }
514    bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
515    bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
516    bool isQuiesce() const { return staticInst->isQuiesce(); }
517    bool isIprAccess() const { return staticInst->isIprAccess(); }
518    bool isUnverifiable() const { return staticInst->isUnverifiable(); }
519    bool isSyscall() const { return staticInst->isSyscall(); }
520    bool isMacroop() const { return staticInst->isMacroop(); }
521    bool isMicroop() const { return staticInst->isMicroop(); }
522    bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
523    bool isLastMicroop() const { return staticInst->isLastMicroop(); }
524    bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
525    bool isMicroBranch() const { return staticInst->isMicroBranch(); }
526
527    /** Temporarily sets this instruction as a serialize before instruction. */
528    void setSerializeBefore() { status.set(SerializeBefore); }
529
530    /** Clears the serializeBefore part of this instruction. */
531    void clearSerializeBefore() { status.reset(SerializeBefore); }
532
533    /** Checks if this serializeBefore is only temporarily set. */
534    bool isTempSerializeBefore() { return status[SerializeBefore]; }
535
536    /** Temporarily sets this instruction as a serialize after instruction. */
537    void setSerializeAfter() { status.set(SerializeAfter); }
538
539    /** Clears the serializeAfter part of this instruction.*/
540    void clearSerializeAfter() { status.reset(SerializeAfter); }
541
542    /** Checks if this serializeAfter is only temporarily set. */
543    bool isTempSerializeAfter() { return status[SerializeAfter]; }
544
545    /** Sets the serialization part of this instruction as handled. */
546    void setSerializeHandled() { status.set(SerializeHandled); }
547
548    /** Checks if the serialization part of this instruction has been
549     *  handled.  This does not apply to the temporary serializing
550     *  state; it only applies to this instruction's own permanent
551     *  serializing state.
552     */
553    bool isSerializeHandled() { return status[SerializeHandled]; }
554
555    /** Returns the opclass of this instruction. */
556    OpClass opClass() const { return staticInst->opClass(); }
557
558    /** Returns the branch target address. */
559    TheISA::PCState branchTarget() const
560    { return staticInst->branchTarget(pc); }
561
562    /** Returns the number of source registers. */
563    int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
564
565    /** Returns the number of destination registers. */
566    int8_t numDestRegs() const { return staticInst->numDestRegs(); }
567
568    // the following are used to track physical register usage
569    // for machines with separate int & FP reg files
570    int8_t numFPDestRegs()  const { return staticInst->numFPDestRegs(); }
571    int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
572
573    /** Returns the logical register index of the i'th destination register. */
574    RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
575
576    /** Returns the logical register index of the i'th source register. */
577    RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
578
579    /** Returns the result of an integer instruction. */
580    uint64_t readIntResult() { return instResult.integer; }
581
582    /** Returns the result of a floating point instruction. */
583    float readFloatResult() { return (float)instResult.dbl; }
584
585    /** Returns the result of a floating point (double) instruction. */
586    double readDoubleResult() { return instResult.dbl; }
587
588    /** Records an integer register being set to a value. */
589    void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
590    {
591        if (recordResult)
592            instResult.integer = val;
593    }
594
595    /** Records an fp register being set to a value. */
596    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
597                            int width)
598    {
599        if (recordResult) {
600            if (width == 32)
601                instResult.dbl = (double)val;
602            else if (width == 64)
603                instResult.dbl = val;
604            else
605                panic("Unsupported width!");
606        }
607    }
608
609    /** Records an fp register being set to a value. */
610    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
611    {
612        if (recordResult)
613            instResult.dbl = (double)val;
614    }
615
616    /** Records an fp register being set to an integer value. */
617    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
618                                int width)
619    {
620        if (recordResult)
621            instResult.integer = val;
622    }
623
624    /** Records an fp register being set to an integer value. */
625    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
626    {
627        if (recordResult)
628            instResult.integer = val;
629    }
630
631    /** Records that one of the source registers is ready. */
632    void markSrcRegReady();
633
634    /** Marks a specific register as ready. */
635    void markSrcRegReady(RegIndex src_idx);
636
637    /** Returns if a source register is ready. */
638    bool isReadySrcRegIdx(int idx) const
639    {
640        return this->_readySrcRegIdx[idx];
641    }
642
643    /** Sets this instruction as completed. */
644    void setCompleted() { status.set(Completed); }
645
646    /** Returns whether or not this instruction is completed. */
647    bool isCompleted() const { return status[Completed]; }
648
649    /** Marks the result as ready. */
650    void setResultReady() { status.set(ResultReady); }
651
652    /** Returns whether or not the result is ready. */
653    bool isResultReady() const { return status[ResultReady]; }
654
655    /** Sets this instruction as ready to issue. */
656    void setCanIssue() { status.set(CanIssue); }
657
658    /** Returns whether or not this instruction is ready to issue. */
659    bool readyToIssue() const { return status[CanIssue]; }
660
661    /** Clears this instruction being able to issue. */
662    void clearCanIssue() { status.reset(CanIssue); }
663
664    /** Sets this instruction as issued from the IQ. */
665    void setIssued() { status.set(Issued); }
666
667    /** Returns whether or not this instruction has issued. */
668    bool isIssued() const { return status[Issued]; }
669
670    /** Clears this instruction as being issued. */
671    void clearIssued() { status.reset(Issued); }
672
673    /** Sets this instruction as executed. */
674    void setExecuted() { status.set(Executed); }
675
676    /** Returns whether or not this instruction has executed. */
677    bool isExecuted() const { return status[Executed]; }
678
679    /** Sets this instruction as ready to commit. */
680    void setCanCommit() { status.set(CanCommit); }
681
682    /** Clears this instruction as being ready to commit. */
683    void clearCanCommit() { status.reset(CanCommit); }
684
685    /** Returns whether or not this instruction is ready to commit. */
686    bool readyToCommit() const { return status[CanCommit]; }
687
688    void setAtCommit() { status.set(AtCommit); }
689
690    bool isAtCommit() { return status[AtCommit]; }
691
692    /** Sets this instruction as committed. */
693    void setCommitted() { status.set(Committed); }
694
695    /** Returns whether or not this instruction is committed. */
696    bool isCommitted() const { return status[Committed]; }
697
698    /** Sets this instruction as squashed. */
699    void setSquashed() { status.set(Squashed); }
700
701    /** Returns whether or not this instruction is squashed. */
702    bool isSquashed() const { return status[Squashed]; }
703
704    //Instruction Queue Entry
705    //-----------------------
706    /** Sets this instruction as a entry the IQ. */
707    void setInIQ() { status.set(IqEntry); }
708
709    /** Sets this instruction as a entry the IQ. */
710    void clearInIQ() { status.reset(IqEntry); }
711
712    /** Returns whether or not this instruction has issued. */
713    bool isInIQ() const { return status[IqEntry]; }
714
715    /** Sets this instruction as squashed in the IQ. */
716    void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
717
718    /** Returns whether or not this instruction is squashed in the IQ. */
719    bool isSquashedInIQ() const { return status[SquashedInIQ]; }
720
721
722    //Load / Store Queue Functions
723    //-----------------------
724    /** Sets this instruction as a entry the LSQ. */
725    void setInLSQ() { status.set(LsqEntry); }
726
727    /** Sets this instruction as a entry the LSQ. */
728    void removeInLSQ() { status.reset(LsqEntry); }
729
730    /** Returns whether or not this instruction is in the LSQ. */
731    bool isInLSQ() const { return status[LsqEntry]; }
732
733    /** Sets this instruction as squashed in the LSQ. */
734    void setSquashedInLSQ() { status.set(SquashedInLSQ);}
735
736    /** Returns whether or not this instruction is squashed in the LSQ. */
737    bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
738
739
740    //Reorder Buffer Functions
741    //-----------------------
742    /** Sets this instruction as a entry the ROB. */
743    void setInROB() { status.set(RobEntry); }
744
745    /** Sets this instruction as a entry the ROB. */
746    void clearInROB() { status.reset(RobEntry); }
747
748    /** Returns whether or not this instruction is in the ROB. */
749    bool isInROB() const { return status[RobEntry]; }
750
751    /** Sets this instruction as squashed in the ROB. */
752    void setSquashedInROB() { status.set(SquashedInROB); }
753
754    /** Returns whether or not this instruction is squashed in the ROB. */
755    bool isSquashedInROB() const { return status[SquashedInROB]; }
756
757    /** Read the PC state of this instruction. */
758    const TheISA::PCState pcState() const { return pc; }
759
760    /** Set the PC state of this instruction. */
761    const void pcState(const TheISA::PCState &val) { pc = val; }
762
763    /** Read the PC of this instruction. */
764    const Addr instAddr() const { return pc.instAddr(); }
765
766    /** Read the PC of the next instruction. */
767    const Addr nextInstAddr() const { return pc.nextInstAddr(); }
768
769    /**Read the micro PC of this instruction. */
770    const Addr microPC() const { return pc.microPC(); }
771
772    bool readPredicate()
773    {
774        return predicate;
775    }
776
777    void setPredicate(bool val)
778    {
779        predicate = val;
780
781        if (traceData) {
782            traceData->setPredicate(val);
783        }
784    }
785
786    /** Sets the ASID. */
787    void setASID(short addr_space_id) { asid = addr_space_id; }
788
789    /** Sets the thread id. */
790    void setTid(ThreadID tid) { threadNumber = tid; }
791
792    /** Sets the pointer to the thread state. */
793    void setThreadState(ImplState *state) { thread = state; }
794
795    /** Returns the thread context. */
796    ThreadContext *tcBase() { return thread->getTC(); }
797
798  private:
799    /** Instruction effective address.
800     *  @todo: Consider if this is necessary or not.
801     */
802    Addr instEffAddr;
803
804    /** Whether or not the effective address calculation is completed.
805     *  @todo: Consider if this is necessary or not.
806     */
807    bool eaCalcDone;
808
809    /** Is this instruction's memory access uncacheable. */
810    bool isUncacheable;
811
812    /** Has this instruction generated a memory request. */
813    bool reqMade;
814
815  public:
816    /** Sets the effective address. */
817    void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
818
819    /** Returns the effective address. */
820    const Addr &getEA() const { return instEffAddr; }
821
822    /** Returns whether or not the eff. addr. calculation has been completed. */
823    bool doneEACalc() { return eaCalcDone; }
824
825    /** Returns whether or not the eff. addr. source registers are ready. */
826    bool eaSrcsReady();
827
828    /** Whether or not the memory operation is done. */
829    bool memOpDone;
830
831    /** Is this instruction's memory access uncacheable. */
832    bool uncacheable() { return isUncacheable; }
833
834    /** Has this instruction generated a memory request. */
835    bool hasRequest() { return reqMade; }
836
837  public:
838    /** Load queue index. */
839    int16_t lqIdx;
840
841    /** Store queue index. */
842    int16_t sqIdx;
843
844    /** Iterator pointing to this BaseDynInst in the list of all insts. */
845    ListIt instListIt;
846
847    /** Returns iterator to this instruction in the list of all insts. */
848    ListIt &getInstListIt() { return instListIt; }
849
850    /** Sets iterator for this instruction in the list of all insts. */
851    void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
852
853  public:
854    /** Returns the number of consecutive store conditional failures. */
855    unsigned readStCondFailures()
856    { return thread->storeCondFailures; }
857
858    /** Sets the number of consecutive store conditional failures. */
859    void setStCondFailures(unsigned sc_failures)
860    { thread->storeCondFailures = sc_failures; }
861};
862
863template<class Impl>
864Fault
865BaseDynInst<Impl>::readBytes(Addr addr, uint8_t *data,
866                             unsigned size, unsigned flags)
867{
868    reqMade = true;
869    Request *req = NULL;
870    Request *sreqLow = NULL;
871    Request *sreqHigh = NULL;
872
873    if (reqMade && translationStarted) {
874        req = savedReq;
875        sreqLow = savedSreqLow;
876        sreqHigh = savedSreqHigh;
877    } else {
878        req = new Request(asid, addr, size, flags, this->pc.instAddr(),
879                          thread->contextId(), threadNumber);
880
881        // Only split the request if the ISA supports unaligned accesses.
882        if (TheISA::HasUnalignedMemAcc) {
883            splitRequest(req, sreqLow, sreqHigh);
884        }
885        initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
886    }
887
888    if (translationCompleted) {
889        if (fault == NoFault) {
890            effAddr = req->getVaddr();
891            effSize = size;
892            effAddrValid = true;
893            fault = cpu->read(req, sreqLow, sreqHigh, data, lqIdx);
894        } else {
895            // Commit will have to clean up whatever happened.  Set this
896            // instruction as executed.
897            this->setExecuted();
898        }
899
900        if (fault != NoFault) {
901            // Return a fixed value to keep simulation deterministic even
902            // along misspeculated paths.
903            if (data)
904                bzero(data, size);
905        }
906    }
907
908    if (traceData) {
909        traceData->setAddr(addr);
910    }
911
912    return fault;
913}
914
915template<class Impl>
916template<class T>
917inline Fault
918BaseDynInst<Impl>::read(Addr addr, T &data, unsigned flags)
919{
920    Fault fault = readBytes(addr, (uint8_t *)&data, sizeof(T), flags);
921
922    data = TheISA::gtoh(data);
923
924    if (traceData) {
925        traceData->setData(data);
926    }
927
928    return fault;
929}
930
931template<class Impl>
932Fault
933BaseDynInst<Impl>::writeBytes(uint8_t *data, unsigned size,
934                              Addr addr, unsigned flags, uint64_t *res)
935{
936    if (traceData) {
937        traceData->setAddr(addr);
938    }
939
940    reqMade = true;
941    Request *req = NULL;
942    Request *sreqLow = NULL;
943    Request *sreqHigh = NULL;
944
945    if (reqMade && translationStarted) {
946        req = savedReq;
947        sreqLow = savedSreqLow;
948        sreqHigh = savedSreqHigh;
949    } else {
950        req = new Request(asid, addr, size, flags, this->pc.instAddr(),
951                          thread->contextId(), threadNumber);
952
953        // Only split the request if the ISA supports unaligned accesses.
954        if (TheISA::HasUnalignedMemAcc) {
955            splitRequest(req, sreqLow, sreqHigh);
956        }
957        initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
958    }
959
960    if (fault == NoFault && translationCompleted) {
961        effAddr = req->getVaddr();
962        effSize = size;
963        effAddrValid = true;
964        fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
965    }
966
967    return fault;
968}
969
970template<class Impl>
971template<class T>
972inline Fault
973BaseDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
974{
975    if (traceData) {
976        traceData->setData(data);
977    }
978    data = TheISA::htog(data);
979    return writeBytes((uint8_t *)&data, sizeof(T), addr, flags, res);
980}
981
982template<class Impl>
983inline void
984BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow,
985                                RequestPtr &sreqHigh)
986{
987    // Check to see if the request crosses the next level block boundary.
988    unsigned block_size = cpu->getDcachePort()->peerBlockSize();
989    Addr addr = req->getVaddr();
990    Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
991    assert(split_addr <= addr || split_addr - addr < block_size);
992
993    // Spans two blocks.
994    if (split_addr > addr) {
995        req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
996    }
997}
998
999template<class Impl>
1000inline void
1001BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow,
1002                                       RequestPtr sreqHigh, uint64_t *res,
1003                                       BaseTLB::Mode mode)
1004{
1005    translationStarted = true;
1006
1007    if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
1008        WholeTranslationState *state =
1009            new WholeTranslationState(req, NULL, res, mode);
1010
1011        // One translation if the request isn't split.
1012        DataTranslation<BaseDynInst<Impl> > *trans =
1013            new DataTranslation<BaseDynInst<Impl> >(this, state);
1014        cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
1015        if (!translationCompleted) {
1016            // Save memory requests.
1017            savedReq = state->mainReq;
1018            savedSreqLow = state->sreqLow;
1019            savedSreqHigh = state->sreqHigh;
1020        }
1021    } else {
1022        WholeTranslationState *state =
1023            new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);
1024
1025        // Two translations when the request is split.
1026        DataTranslation<BaseDynInst<Impl> > *stransLow =
1027            new DataTranslation<BaseDynInst<Impl> >(this, state, 0);
1028        DataTranslation<BaseDynInst<Impl> > *stransHigh =
1029            new DataTranslation<BaseDynInst<Impl> >(this, state, 1);
1030
1031        cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
1032        cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);
1033        if (!translationCompleted) {
1034            // Save memory requests.
1035            savedReq = state->mainReq;
1036            savedSreqLow = state->sreqLow;
1037            savedSreqHigh = state->sreqHigh;
1038        }
1039    }
1040}
1041
1042template<class Impl>
1043inline void
1044BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state)
1045{
1046    fault = state->getFault();
1047
1048    if (state->isUncacheable())
1049        isUncacheable = true;
1050
1051    if (fault == NoFault) {
1052        physEffAddr = state->getPaddr();
1053        memReqFlags = state->getFlags();
1054
1055        if (state->mainReq->isCondSwap()) {
1056            assert(state->res);
1057            state->mainReq->setExtraData(*state->res);
1058        }
1059
1060    } else {
1061        state->deleteReqs();
1062    }
1063    delete state;
1064
1065    translationCompleted = true;
1066}
1067
1068#endif // __CPU_BASE_DYN_INST_HH__
1069