base_dyn_inst.hh revision 7597:063f160e8b50
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * Copyright (c) 2009 The University of Edinburgh
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met: redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer;
10 * redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution;
13 * neither the name of the copyright holders nor the names of its
14 * contributors may be used to endorse or promote products derived from
15 * this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Authors: Kevin Lim
30 *          Timothy M. Jones
31 */
32
33#ifndef __CPU_BASE_DYN_INST_HH__
34#define __CPU_BASE_DYN_INST_HH__
35
36#include <bitset>
37#include <list>
38#include <string>
39
40#include "arch/faults.hh"
41#include "base/fast_alloc.hh"
42#include "base/trace.hh"
43#include "config/full_system.hh"
44#include "config/the_isa.hh"
45#include "cpu/o3/comm.hh"
46#include "cpu/exetrace.hh"
47#include "cpu/inst_seq.hh"
48#include "cpu/op_class.hh"
49#include "cpu/static_inst.hh"
50#include "cpu/translation.hh"
51#include "mem/packet.hh"
52#include "sim/system.hh"
53#include "sim/tlb.hh"
54
55/**
56 * @file
57 * Defines a dynamic instruction context.
58 */
59
60// Forward declaration.
61class StaticInstPtr;
62
63template <class Impl>
64class BaseDynInst : public FastAlloc, public RefCounted
65{
66  public:
67    // Typedef for the CPU.
68    typedef typename Impl::CPUType ImplCPU;
69    typedef typename ImplCPU::ImplState ImplState;
70
71    // Logical register index type.
72    typedef TheISA::RegIndex RegIndex;
73    // Integer register type.
74    typedef TheISA::IntReg IntReg;
75    // Floating point register type.
76    typedef TheISA::FloatReg FloatReg;
77
78    // The DynInstPtr type.
79    typedef typename Impl::DynInstPtr DynInstPtr;
80
81    // The list of instructions iterator type.
82    typedef typename std::list<DynInstPtr>::iterator ListIt;
83
84    enum {
85        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,        /// Max source regs
86        MaxInstDestRegs = TheISA::MaxInstDestRegs,      /// Max dest regs
87    };
88
89    /** The StaticInst used by this BaseDynInst. */
90    StaticInstPtr staticInst;
91
92    ////////////////////////////////////////////
93    //
94    // INSTRUCTION EXECUTION
95    //
96    ////////////////////////////////////////////
97    /** InstRecord that tracks this instructions. */
98    Trace::InstRecord *traceData;
99
100    void demapPage(Addr vaddr, uint64_t asn)
101    {
102        cpu->demapPage(vaddr, asn);
103    }
104    void demapInstPage(Addr vaddr, uint64_t asn)
105    {
106        cpu->demapPage(vaddr, asn);
107    }
108    void demapDataPage(Addr vaddr, uint64_t asn)
109    {
110        cpu->demapPage(vaddr, asn);
111    }
112
113    /**
114     * Does a read to a given address.
115     * @param addr The address to read.
116     * @param data The read's data is written into this parameter.
117     * @param flags The request's flags.
118     * @return Returns any fault due to the read.
119     */
120    template <class T>
121    Fault read(Addr addr, T &data, unsigned flags);
122
123    Fault readBytes(Addr addr, uint8_t *data, unsigned size, unsigned flags);
124
125    /**
126     * Does a write to a given address.
127     * @param data The data to be written.
128     * @param addr The address to write to.
129     * @param flags The request's flags.
130     * @param res The result of the write (for load locked/store conditionals).
131     * @return Returns any fault due to the write.
132     */
133    template <class T>
134    Fault write(T data, Addr addr, unsigned flags, uint64_t *res);
135
136    Fault writeBytes(uint8_t *data, unsigned size,
137                     Addr addr, unsigned flags, uint64_t *res);
138
139    /** Splits a request in two if it crosses a dcache block. */
140    void splitRequest(RequestPtr req, RequestPtr &sreqLow,
141                      RequestPtr &sreqHigh);
142
143    /** Initiate a DTB address translation. */
144    void initiateTranslation(RequestPtr req, RequestPtr sreqLow,
145                             RequestPtr sreqHigh, uint64_t *res,
146                             BaseTLB::Mode mode);
147
148    /** Finish a DTB address translation. */
149    void finishTranslation(WholeTranslationState *state);
150
151    void prefetch(Addr addr, unsigned flags);
152    void writeHint(Addr addr, int size, unsigned flags);
153    Fault copySrcTranslate(Addr src);
154    Fault copy(Addr dest);
155
156    /** @todo: Consider making this private. */
157  public:
158    /** The sequence number of the instruction. */
159    InstSeqNum seqNum;
160
161    enum Status {
162        IqEntry,                 /// Instruction is in the IQ
163        RobEntry,                /// Instruction is in the ROB
164        LsqEntry,                /// Instruction is in the LSQ
165        Completed,               /// Instruction has completed
166        ResultReady,             /// Instruction has its result
167        CanIssue,                /// Instruction can issue and execute
168        Issued,                  /// Instruction has issued
169        Executed,                /// Instruction has executed
170        CanCommit,               /// Instruction can commit
171        AtCommit,                /// Instruction has reached commit
172        Committed,               /// Instruction has committed
173        Squashed,                /// Instruction is squashed
174        SquashedInIQ,            /// Instruction is squashed in the IQ
175        SquashedInLSQ,           /// Instruction is squashed in the LSQ
176        SquashedInROB,           /// Instruction is squashed in the ROB
177        RecoverInst,             /// Is a recover instruction
178        BlockingInst,            /// Is a blocking instruction
179        ThreadsyncWait,          /// Is a thread synchronization instruction
180        SerializeBefore,         /// Needs to serialize on
181                                 /// instructions ahead of it
182        SerializeAfter,          /// Needs to serialize instructions behind it
183        SerializeHandled,        /// Serialization has been handled
184        NumStatus
185    };
186
187    /** The status of this BaseDynInst.  Several bits can be set. */
188    std::bitset<NumStatus> status;
189
190    /** The thread this instruction is from. */
191    ThreadID threadNumber;
192
193    /** data address space ID, for loads & stores. */
194    short asid;
195
196    /** How many source registers are ready. */
197    unsigned readyRegs;
198
199    /** Pointer to the Impl's CPU object. */
200    ImplCPU *cpu;
201
202    /** Pointer to the thread state. */
203    ImplState *thread;
204
205    /** The kind of fault this instruction has generated. */
206    Fault fault;
207
208    /** Pointer to the data for the memory access. */
209    uint8_t *memData;
210
211    /** The effective virtual address (lds & stores only). */
212    Addr effAddr;
213
214    /** Is the effective virtual address valid. */
215    bool effAddrValid;
216
217    /** The effective physical address. */
218    Addr physEffAddr;
219
220    /** Effective virtual address for a copy source. */
221    Addr copySrcEffAddr;
222
223    /** Effective physical address for a copy source. */
224    Addr copySrcPhysEffAddr;
225
226    /** The memory request flags (from translation). */
227    unsigned memReqFlags;
228
229    union Result {
230        uint64_t integer;
231//        float fp;
232        double dbl;
233    };
234
235    /** The result of the instruction; assumes for now that there's only one
236     *  destination register.
237     */
238    Result instResult;
239
240    /** Records changes to result? */
241    bool recordResult;
242
243    /** PC of this instruction. */
244    Addr PC;
245
246    /** Micro PC of this instruction. */
247    Addr microPC;
248
249    /** Did this instruction execute, or is it predicated false */
250    bool predicate;
251
252  protected:
253    /** Next non-speculative PC.  It is not filled in at fetch, but rather
254     *  once the target of the branch is truly known (either decode or
255     *  execute).
256     */
257    Addr nextPC;
258
259    /** Next non-speculative NPC. Target PC for Mips or Sparc. */
260    Addr nextNPC;
261
262    /** Next non-speculative micro PC. */
263    Addr nextMicroPC;
264
265    /** Predicted next PC. */
266    Addr predPC;
267
268    /** Predicted next NPC. */
269    Addr predNPC;
270
271    /** Predicted next microPC */
272    Addr predMicroPC;
273
274    /** If this is a branch that was predicted taken */
275    bool predTaken;
276
277  public:
278
279#ifdef DEBUG
280    void dumpSNList();
281#endif
282
283    /** Whether or not the source register is ready.
284     *  @todo: Not sure this should be here vs the derived class.
285     */
286    bool _readySrcRegIdx[MaxInstSrcRegs];
287
288  protected:
289    /** Flattened register index of the destination registers of this
290     *  instruction.
291     */
292    TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
293
294    /** Flattened register index of the source registers of this
295     *  instruction.
296     */
297    TheISA::RegIndex _flatSrcRegIdx[TheISA::MaxInstSrcRegs];
298
299    /** Physical register index of the destination registers of this
300     *  instruction.
301     */
302    PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
303
304    /** Physical register index of the source registers of this
305     *  instruction.
306     */
307    PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
308
309    /** Physical register index of the previous producers of the
310     *  architected destinations.
311     */
312    PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
313
314  public:
315
316    /** Returns the physical register index of the i'th destination
317     *  register.
318     */
319    PhysRegIndex renamedDestRegIdx(int idx) const
320    {
321        return _destRegIdx[idx];
322    }
323
324    /** Returns the physical register index of the i'th source register. */
325    PhysRegIndex renamedSrcRegIdx(int idx) const
326    {
327        return _srcRegIdx[idx];
328    }
329
330    /** Returns the flattened register index of the i'th destination
331     *  register.
332     */
333    TheISA::RegIndex flattenedDestRegIdx(int idx) const
334    {
335        return _flatDestRegIdx[idx];
336    }
337
338    /** Returns the flattened register index of the i'th source register */
339    TheISA::RegIndex flattenedSrcRegIdx(int idx) const
340    {
341        return _flatSrcRegIdx[idx];
342    }
343
344    /** Returns the physical register index of the previous physical register
345     *  that remapped to the same logical register index.
346     */
347    PhysRegIndex prevDestRegIdx(int idx) const
348    {
349        return _prevDestRegIdx[idx];
350    }
351
352    /** Renames a destination register to a physical register.  Also records
353     *  the previous physical register that the logical register mapped to.
354     */
355    void renameDestReg(int idx,
356                       PhysRegIndex renamed_dest,
357                       PhysRegIndex previous_rename)
358    {
359        _destRegIdx[idx] = renamed_dest;
360        _prevDestRegIdx[idx] = previous_rename;
361    }
362
363    /** Renames a source logical register to the physical register which
364     *  has/will produce that logical register's result.
365     *  @todo: add in whether or not the source register is ready.
366     */
367    void renameSrcReg(int idx, PhysRegIndex renamed_src)
368    {
369        _srcRegIdx[idx] = renamed_src;
370    }
371
372    /** Flattens a source architectural register index into a logical index.
373     */
374    void flattenSrcReg(int idx, TheISA::RegIndex flattened_src)
375    {
376        _flatSrcRegIdx[idx] = flattened_src;
377    }
378
379    /** Flattens a destination architectural register index into a logical
380     * index.
381     */
382    void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
383    {
384        _flatDestRegIdx[idx] = flattened_dest;
385    }
386    /** BaseDynInst constructor given a binary instruction.
387     *  @param staticInst A StaticInstPtr to the underlying instruction.
388     *  @param PC The PC of the instruction.
389     *  @param pred_PC The predicted next PC.
390     *  @param pred_NPC The predicted next NPC.
391     *  @param seq_num The sequence number of the instruction.
392     *  @param cpu Pointer to the instruction's CPU.
393     */
394    BaseDynInst(StaticInstPtr staticInst, Addr PC, Addr NPC, Addr microPC,
395            Addr pred_PC, Addr pred_NPC, Addr pred_MicroPC,
396            InstSeqNum seq_num, ImplCPU *cpu);
397
398    /** BaseDynInst constructor given a binary instruction.
399     *  @param inst The binary instruction.
400     *  @param PC The PC of the instruction.
401     *  @param pred_PC The predicted next PC.
402     *  @param pred_NPC The predicted next NPC.
403     *  @param seq_num The sequence number of the instruction.
404     *  @param cpu Pointer to the instruction's CPU.
405     */
406    BaseDynInst(TheISA::ExtMachInst inst, Addr PC, Addr NPC, Addr microPC,
407            Addr pred_PC, Addr pred_NPC, Addr pred_MicroPC,
408            InstSeqNum seq_num, ImplCPU *cpu);
409
410    /** BaseDynInst constructor given a StaticInst pointer.
411     *  @param _staticInst The StaticInst for this BaseDynInst.
412     */
413    BaseDynInst(StaticInstPtr &_staticInst);
414
415    /** BaseDynInst destructor. */
416    ~BaseDynInst();
417
418  private:
419    /** Function to initialize variables in the constructors. */
420    void initVars();
421
422  public:
423    /** Dumps out contents of this BaseDynInst. */
424    void dump();
425
426    /** Dumps out contents of this BaseDynInst into given string. */
427    void dump(std::string &outstring);
428
429    /** Read this CPU's ID. */
430    int cpuId() { return cpu->cpuId(); }
431
432    /** Read this context's system-wide ID **/
433    int contextId() { return thread->contextId(); }
434
435    /** Returns the fault type. */
436    Fault getFault() { return fault; }
437
438    /** Checks whether or not this instruction has had its branch target
439     *  calculated yet.  For now it is not utilized and is hacked to be
440     *  always false.
441     *  @todo: Actually use this instruction.
442     */
443    bool doneTargCalc() { return false; }
444
445    /** Returns the next PC.  This could be the speculative next PC if it is
446     *  called prior to the actual branch target being calculated.
447     */
448    Addr readNextPC() { return nextPC; }
449
450    /** Returns the next NPC.  This could be the speculative next NPC if it is
451     *  called prior to the actual branch target being calculated.
452     */
453    Addr readNextNPC()
454    {
455#if ISA_HAS_DELAY_SLOT
456        return nextNPC;
457#else
458        return nextPC + sizeof(TheISA::MachInst);
459#endif
460    }
461
462    Addr readNextMicroPC()
463    {
464        return nextMicroPC;
465    }
466
467    /** Set the predicted target of this current instruction. */
468    void setPredTarg(Addr predicted_PC, Addr predicted_NPC,
469            Addr predicted_MicroPC)
470    {
471        predPC = predicted_PC;
472        predNPC = predicted_NPC;
473        predMicroPC = predicted_MicroPC;
474    }
475
476    /** Returns the predicted PC immediately after the branch. */
477    Addr readPredPC() { return predPC; }
478
479    /** Returns the predicted PC two instructions after the branch */
480    Addr readPredNPC() { return predNPC; }
481
482    /** Returns the predicted micro PC after the branch */
483    Addr readPredMicroPC() { return predMicroPC; }
484
485    /** Returns whether the instruction was predicted taken or not. */
486    bool readPredTaken()
487    {
488        return predTaken;
489    }
490
491    void setPredTaken(bool predicted_taken)
492    {
493        predTaken = predicted_taken;
494    }
495
496    /** Returns whether the instruction mispredicted. */
497    bool mispredicted()
498    {
499        return readPredPC() != readNextPC() ||
500            readPredNPC() != readNextNPC() ||
501            readPredMicroPC() != readNextMicroPC();
502    }
503
504    //
505    //  Instruction types.  Forward checks to StaticInst object.
506    //
507    bool isNop()          const { return staticInst->isNop(); }
508    bool isMemRef()       const { return staticInst->isMemRef(); }
509    bool isLoad()         const { return staticInst->isLoad(); }
510    bool isStore()        const { return staticInst->isStore(); }
511    bool isStoreConditional() const
512    { return staticInst->isStoreConditional(); }
513    bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
514    bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
515    bool isCopy()         const { return staticInst->isCopy(); }
516    bool isInteger()      const { return staticInst->isInteger(); }
517    bool isFloating()     const { return staticInst->isFloating(); }
518    bool isControl()      const { return staticInst->isControl(); }
519    bool isCall()         const { return staticInst->isCall(); }
520    bool isReturn()       const { return staticInst->isReturn(); }
521    bool isDirectCtrl()   const { return staticInst->isDirectCtrl(); }
522    bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
523    bool isCondCtrl()     const { return staticInst->isCondCtrl(); }
524    bool isUncondCtrl()   const { return staticInst->isUncondCtrl(); }
525    bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
526    bool isThreadSync()   const { return staticInst->isThreadSync(); }
527    bool isSerializing()  const { return staticInst->isSerializing(); }
528    bool isSerializeBefore() const
529    { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
530    bool isSerializeAfter() const
531    { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
532    bool isMemBarrier()   const { return staticInst->isMemBarrier(); }
533    bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
534    bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
535    bool isQuiesce() const { return staticInst->isQuiesce(); }
536    bool isIprAccess() const { return staticInst->isIprAccess(); }
537    bool isUnverifiable() const { return staticInst->isUnverifiable(); }
538    bool isSyscall() const { return staticInst->isSyscall(); }
539    bool isMacroop() const { return staticInst->isMacroop(); }
540    bool isMicroop() const { return staticInst->isMicroop(); }
541    bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
542    bool isLastMicroop() const { return staticInst->isLastMicroop(); }
543    bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
544    bool isMicroBranch() const { return staticInst->isMicroBranch(); }
545
546    /** Temporarily sets this instruction as a serialize before instruction. */
547    void setSerializeBefore() { status.set(SerializeBefore); }
548
549    /** Clears the serializeBefore part of this instruction. */
550    void clearSerializeBefore() { status.reset(SerializeBefore); }
551
552    /** Checks if this serializeBefore is only temporarily set. */
553    bool isTempSerializeBefore() { return status[SerializeBefore]; }
554
555    /** Temporarily sets this instruction as a serialize after instruction. */
556    void setSerializeAfter() { status.set(SerializeAfter); }
557
558    /** Clears the serializeAfter part of this instruction.*/
559    void clearSerializeAfter() { status.reset(SerializeAfter); }
560
561    /** Checks if this serializeAfter is only temporarily set. */
562    bool isTempSerializeAfter() { return status[SerializeAfter]; }
563
564    /** Sets the serialization part of this instruction as handled. */
565    void setSerializeHandled() { status.set(SerializeHandled); }
566
567    /** Checks if the serialization part of this instruction has been
568     *  handled.  This does not apply to the temporary serializing
569     *  state; it only applies to this instruction's own permanent
570     *  serializing state.
571     */
572    bool isSerializeHandled() { return status[SerializeHandled]; }
573
574    /** Returns the opclass of this instruction. */
575    OpClass opClass() const { return staticInst->opClass(); }
576
577    /** Returns the branch target address. */
578    Addr branchTarget() const { return staticInst->branchTarget(PC); }
579
580    /** Returns the number of source registers. */
581    int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
582
583    /** Returns the number of destination registers. */
584    int8_t numDestRegs() const { return staticInst->numDestRegs(); }
585
586    // the following are used to track physical register usage
587    // for machines with separate int & FP reg files
588    int8_t numFPDestRegs()  const { return staticInst->numFPDestRegs(); }
589    int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
590
591    /** Returns the logical register index of the i'th destination register. */
592    RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
593
594    /** Returns the logical register index of the i'th source register. */
595    RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
596
597    /** Returns the result of an integer instruction. */
598    uint64_t readIntResult() { return instResult.integer; }
599
600    /** Returns the result of a floating point instruction. */
601    float readFloatResult() { return (float)instResult.dbl; }
602
603    /** Returns the result of a floating point (double) instruction. */
604    double readDoubleResult() { return instResult.dbl; }
605
606    /** Records an integer register being set to a value. */
607    void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
608    {
609        if (recordResult)
610            instResult.integer = val;
611    }
612
613    /** Records an fp register being set to a value. */
614    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
615                            int width)
616    {
617        if (recordResult) {
618            if (width == 32)
619                instResult.dbl = (double)val;
620            else if (width == 64)
621                instResult.dbl = val;
622            else
623                panic("Unsupported width!");
624        }
625    }
626
627    /** Records an fp register being set to a value. */
628    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
629    {
630        if (recordResult)
631            instResult.dbl = (double)val;
632    }
633
634    /** Records an fp register being set to an integer value. */
635    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
636                                int width)
637    {
638        if (recordResult)
639            instResult.integer = val;
640    }
641
642    /** Records an fp register being set to an integer value. */
643    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
644    {
645        if (recordResult)
646            instResult.integer = val;
647    }
648
649    /** Records that one of the source registers is ready. */
650    void markSrcRegReady();
651
652    /** Marks a specific register as ready. */
653    void markSrcRegReady(RegIndex src_idx);
654
655    /** Returns if a source register is ready. */
656    bool isReadySrcRegIdx(int idx) const
657    {
658        return this->_readySrcRegIdx[idx];
659    }
660
661    /** Sets this instruction as completed. */
662    void setCompleted() { status.set(Completed); }
663
664    /** Returns whether or not this instruction is completed. */
665    bool isCompleted() const { return status[Completed]; }
666
667    /** Marks the result as ready. */
668    void setResultReady() { status.set(ResultReady); }
669
670    /** Returns whether or not the result is ready. */
671    bool isResultReady() const { return status[ResultReady]; }
672
673    /** Sets this instruction as ready to issue. */
674    void setCanIssue() { status.set(CanIssue); }
675
676    /** Returns whether or not this instruction is ready to issue. */
677    bool readyToIssue() const { return status[CanIssue]; }
678
679    /** Clears this instruction being able to issue. */
680    void clearCanIssue() { status.reset(CanIssue); }
681
682    /** Sets this instruction as issued from the IQ. */
683    void setIssued() { status.set(Issued); }
684
685    /** Returns whether or not this instruction has issued. */
686    bool isIssued() const { return status[Issued]; }
687
688    /** Clears this instruction as being issued. */
689    void clearIssued() { status.reset(Issued); }
690
691    /** Sets this instruction as executed. */
692    void setExecuted() { status.set(Executed); }
693
694    /** Returns whether or not this instruction has executed. */
695    bool isExecuted() const { return status[Executed]; }
696
697    /** Sets this instruction as ready to commit. */
698    void setCanCommit() { status.set(CanCommit); }
699
700    /** Clears this instruction as being ready to commit. */
701    void clearCanCommit() { status.reset(CanCommit); }
702
703    /** Returns whether or not this instruction is ready to commit. */
704    bool readyToCommit() const { return status[CanCommit]; }
705
706    void setAtCommit() { status.set(AtCommit); }
707
708    bool isAtCommit() { return status[AtCommit]; }
709
710    /** Sets this instruction as committed. */
711    void setCommitted() { status.set(Committed); }
712
713    /** Returns whether or not this instruction is committed. */
714    bool isCommitted() const { return status[Committed]; }
715
716    /** Sets this instruction as squashed. */
717    void setSquashed() { status.set(Squashed); }
718
719    /** Returns whether or not this instruction is squashed. */
720    bool isSquashed() const { return status[Squashed]; }
721
722    //Instruction Queue Entry
723    //-----------------------
724    /** Sets this instruction as a entry the IQ. */
725    void setInIQ() { status.set(IqEntry); }
726
727    /** Sets this instruction as a entry the IQ. */
728    void clearInIQ() { status.reset(IqEntry); }
729
730    /** Returns whether or not this instruction has issued. */
731    bool isInIQ() const { return status[IqEntry]; }
732
733    /** Sets this instruction as squashed in the IQ. */
734    void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
735
736    /** Returns whether or not this instruction is squashed in the IQ. */
737    bool isSquashedInIQ() const { return status[SquashedInIQ]; }
738
739
740    //Load / Store Queue Functions
741    //-----------------------
742    /** Sets this instruction as a entry the LSQ. */
743    void setInLSQ() { status.set(LsqEntry); }
744
745    /** Sets this instruction as a entry the LSQ. */
746    void removeInLSQ() { status.reset(LsqEntry); }
747
748    /** Returns whether or not this instruction is in the LSQ. */
749    bool isInLSQ() const { return status[LsqEntry]; }
750
751    /** Sets this instruction as squashed in the LSQ. */
752    void setSquashedInLSQ() { status.set(SquashedInLSQ);}
753
754    /** Returns whether or not this instruction is squashed in the LSQ. */
755    bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
756
757
758    //Reorder Buffer Functions
759    //-----------------------
760    /** Sets this instruction as a entry the ROB. */
761    void setInROB() { status.set(RobEntry); }
762
763    /** Sets this instruction as a entry the ROB. */
764    void clearInROB() { status.reset(RobEntry); }
765
766    /** Returns whether or not this instruction is in the ROB. */
767    bool isInROB() const { return status[RobEntry]; }
768
769    /** Sets this instruction as squashed in the ROB. */
770    void setSquashedInROB() { status.set(SquashedInROB); }
771
772    /** Returns whether or not this instruction is squashed in the ROB. */
773    bool isSquashedInROB() const { return status[SquashedInROB]; }
774
775    /** Read the PC of this instruction. */
776    const Addr readPC() const { return PC; }
777
778    /**Read the micro PC of this instruction. */
779    const Addr readMicroPC() const { return microPC; }
780
781    /** Set the next PC of this instruction (its actual target). */
782    void setNextPC(Addr val)
783    {
784        nextPC = val;
785    }
786
787    /** Set the next NPC of this instruction (the target in Mips or Sparc).*/
788    void setNextNPC(Addr val)
789    {
790#if ISA_HAS_DELAY_SLOT
791        nextNPC = val;
792#endif
793    }
794
795    void setNextMicroPC(Addr val)
796    {
797        nextMicroPC = val;
798    }
799
800    bool readPredicate()
801    {
802        return predicate;
803    }
804
805    void setPredicate(bool val)
806    {
807        predicate = val;
808    }
809
810    /** Sets the ASID. */
811    void setASID(short addr_space_id) { asid = addr_space_id; }
812
813    /** Sets the thread id. */
814    void setTid(ThreadID tid) { threadNumber = tid; }
815
816    /** Sets the pointer to the thread state. */
817    void setThreadState(ImplState *state) { thread = state; }
818
819    /** Returns the thread context. */
820    ThreadContext *tcBase() { return thread->getTC(); }
821
822  private:
823    /** Instruction effective address.
824     *  @todo: Consider if this is necessary or not.
825     */
826    Addr instEffAddr;
827
828    /** Whether or not the effective address calculation is completed.
829     *  @todo: Consider if this is necessary or not.
830     */
831    bool eaCalcDone;
832
833    /** Is this instruction's memory access uncacheable. */
834    bool isUncacheable;
835
836    /** Has this instruction generated a memory request. */
837    bool reqMade;
838
839  public:
840    /** Sets the effective address. */
841    void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
842
843    /** Returns the effective address. */
844    const Addr &getEA() const { return instEffAddr; }
845
846    /** Returns whether or not the eff. addr. calculation has been completed. */
847    bool doneEACalc() { return eaCalcDone; }
848
849    /** Returns whether or not the eff. addr. source registers are ready. */
850    bool eaSrcsReady();
851
852    /** Whether or not the memory operation is done. */
853    bool memOpDone;
854
855    /** Is this instruction's memory access uncacheable. */
856    bool uncacheable() { return isUncacheable; }
857
858    /** Has this instruction generated a memory request. */
859    bool hasRequest() { return reqMade; }
860
861  public:
862    /** Load queue index. */
863    int16_t lqIdx;
864
865    /** Store queue index. */
866    int16_t sqIdx;
867
868    /** Iterator pointing to this BaseDynInst in the list of all insts. */
869    ListIt instListIt;
870
871    /** Returns iterator to this instruction in the list of all insts. */
872    ListIt &getInstListIt() { return instListIt; }
873
874    /** Sets iterator for this instruction in the list of all insts. */
875    void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
876
877  public:
878    /** Returns the number of consecutive store conditional failures. */
879    unsigned readStCondFailures()
880    { return thread->storeCondFailures; }
881
882    /** Sets the number of consecutive store conditional failures. */
883    void setStCondFailures(unsigned sc_failures)
884    { thread->storeCondFailures = sc_failures; }
885};
886
887template<class Impl>
888Fault
889BaseDynInst<Impl>::readBytes(Addr addr, uint8_t *data,
890                             unsigned size, unsigned flags)
891{
892    reqMade = true;
893    Request *req = new Request(asid, addr, size, flags, this->PC,
894                               thread->contextId(), threadNumber);
895
896    Request *sreqLow = NULL;
897    Request *sreqHigh = NULL;
898
899    // Only split the request if the ISA supports unaligned accesses.
900    if (TheISA::HasUnalignedMemAcc) {
901        splitRequest(req, sreqLow, sreqHigh);
902    }
903    initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
904
905    if (fault == NoFault) {
906        effAddr = req->getVaddr();
907        effAddrValid = true;
908        fault = cpu->read(req, sreqLow, sreqHigh, data, lqIdx);
909    } else {
910        // Commit will have to clean up whatever happened.  Set this
911        // instruction as executed.
912        this->setExecuted();
913    }
914
915    if (fault != NoFault) {
916        // Return a fixed value to keep simulation deterministic even
917        // along misspeculated paths.
918        bzero(data, size);
919    }
920
921    if (traceData) {
922        traceData->setAddr(addr);
923    }
924
925    return fault;
926}
927
928template<class Impl>
929template<class T>
930inline Fault
931BaseDynInst<Impl>::read(Addr addr, T &data, unsigned flags)
932{
933    Fault fault = readBytes(addr, (uint8_t *)&data, sizeof(T), flags);
934
935    data = TheISA::gtoh(data);
936
937    if (traceData) {
938        traceData->setData(data);
939    }
940
941    return fault;
942}
943
944template<class Impl>
945Fault
946BaseDynInst<Impl>::writeBytes(uint8_t *data, unsigned size,
947                              Addr addr, unsigned flags, uint64_t *res)
948{
949    if (traceData) {
950        traceData->setAddr(addr);
951    }
952
953    reqMade = true;
954    Request *req = new Request(asid, addr, size, flags, this->PC,
955                               thread->contextId(), threadNumber);
956
957    Request *sreqLow = NULL;
958    Request *sreqHigh = NULL;
959
960    // Only split the request if the ISA supports unaligned accesses.
961    if (TheISA::HasUnalignedMemAcc) {
962        splitRequest(req, sreqLow, sreqHigh);
963    }
964    initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
965
966    if (fault == NoFault) {
967        effAddr = req->getVaddr();
968        effAddrValid = true;
969        fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
970    }
971
972    return fault;
973}
974
975template<class Impl>
976template<class T>
977inline Fault
978BaseDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
979{
980    if (traceData) {
981        traceData->setData(data);
982    }
983    data = TheISA::htog(data);
984    return writeBytes((uint8_t *)&data, sizeof(T), addr, flags, res);
985}
986
987template<class Impl>
988inline void
989BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow,
990                                RequestPtr &sreqHigh)
991{
992    // Check to see if the request crosses the next level block boundary.
993    unsigned block_size = cpu->getDcachePort()->peerBlockSize();
994    Addr addr = req->getVaddr();
995    Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
996    assert(split_addr <= addr || split_addr - addr < block_size);
997
998    // Spans two blocks.
999    if (split_addr > addr) {
1000        req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
1001    }
1002}
1003
1004template<class Impl>
1005inline void
1006BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow,
1007                                       RequestPtr sreqHigh, uint64_t *res,
1008                                       BaseTLB::Mode mode)
1009{
1010    if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
1011        WholeTranslationState *state =
1012            new WholeTranslationState(req, NULL, res, mode);
1013
1014        // One translation if the request isn't split.
1015        DataTranslation<BaseDynInst<Impl> > *trans =
1016            new DataTranslation<BaseDynInst<Impl> >(this, state);
1017        cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
1018    } else {
1019        WholeTranslationState *state =
1020            new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);
1021
1022        // Two translations when the request is split.
1023        DataTranslation<BaseDynInst<Impl> > *stransLow =
1024            new DataTranslation<BaseDynInst<Impl> >(this, state, 0);
1025        DataTranslation<BaseDynInst<Impl> > *stransHigh =
1026            new DataTranslation<BaseDynInst<Impl> >(this, state, 1);
1027
1028        cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
1029        cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);
1030    }
1031}
1032
1033template<class Impl>
1034inline void
1035BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state)
1036{
1037    fault = state->getFault();
1038
1039    if (state->isUncacheable())
1040        isUncacheable = true;
1041
1042    if (fault == NoFault) {
1043        physEffAddr = state->getPaddr();
1044        memReqFlags = state->getFlags();
1045
1046        if (state->mainReq->isCondSwap()) {
1047            assert(state->res);
1048            state->mainReq->setExtraData(*state->res);
1049        }
1050
1051    } else {
1052        state->deleteReqs();
1053    }
1054    delete state;
1055}
1056
1057#endif // __CPU_BASE_DYN_INST_HH__
1058