base_dyn_inst.hh revision 5177:4307a768e10e
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 */
30
31#ifndef __CPU_BASE_DYN_INST_HH__
32#define __CPU_BASE_DYN_INST_HH__
33
34#include <bitset>
35#include <list>
36#include <string>
37
38#include "arch/faults.hh"
39#include "base/fast_alloc.hh"
40#include "base/trace.hh"
41#include "config/full_system.hh"
42#include "cpu/o3/comm.hh"
43#include "cpu/exetrace.hh"
44#include "cpu/inst_seq.hh"
45#include "cpu/op_class.hh"
46#include "cpu/static_inst.hh"
47#include "mem/packet.hh"
48#include "sim/system.hh"
49
50/**
51 * @file
52 * Defines a dynamic instruction context.
53 */
54
55// Forward declaration.
56class StaticInstPtr;
57
58template <class Impl>
59class BaseDynInst : public FastAlloc, public RefCounted
60{
61  public:
62    // Typedef for the CPU.
63    typedef typename Impl::CPUType ImplCPU;
64    typedef typename ImplCPU::ImplState ImplState;
65
66    // Logical register index type.
67    typedef TheISA::RegIndex RegIndex;
68    // Integer register type.
69    typedef TheISA::IntReg IntReg;
70    // Floating point register type.
71    typedef TheISA::FloatReg FloatReg;
72
73    // The DynInstPtr type.
74    typedef typename Impl::DynInstPtr DynInstPtr;
75
76    // The list of instructions iterator type.
77    typedef typename std::list<DynInstPtr>::iterator ListIt;
78
79    enum {
80        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,	/// Max source regs
81        MaxInstDestRegs = TheISA::MaxInstDestRegs,	/// Max dest regs
82    };
83
84    /** The StaticInst used by this BaseDynInst. */
85    StaticInstPtr staticInst;
86
87    ////////////////////////////////////////////
88    //
89    // INSTRUCTION EXECUTION
90    //
91    ////////////////////////////////////////////
92    /** InstRecord that tracks this instructions. */
93    Trace::InstRecord *traceData;
94
95    /**
96     * Does a read to a given address.
97     * @param addr The address to read.
98     * @param data The read's data is written into this parameter.
99     * @param flags The request's flags.
100     * @return Returns any fault due to the read.
101     */
102    template <class T>
103    Fault read(Addr addr, T &data, unsigned flags);
104
105    Fault translateDataReadAddr(Addr vaddr, Addr &paddr,
106            int size, unsigned flags);
107
108    /**
109     * Does a write to a given address.
110     * @param data The data to be written.
111     * @param addr The address to write to.
112     * @param flags The request's flags.
113     * @param res The result of the write (for load locked/store conditionals).
114     * @return Returns any fault due to the write.
115     */
116    template <class T>
117    Fault write(T data, Addr addr, unsigned flags,
118                        uint64_t *res);
119
120    Fault translateDataWriteAddr(Addr vaddr, Addr &paddr,
121            int size, unsigned flags);
122
123    void prefetch(Addr addr, unsigned flags);
124    void writeHint(Addr addr, int size, unsigned flags);
125    Fault copySrcTranslate(Addr src);
126    Fault copy(Addr dest);
127
128    /** @todo: Consider making this private. */
129  public:
130    /** The sequence number of the instruction. */
131    InstSeqNum seqNum;
132
133    enum Status {
134        IqEntry,                 /// Instruction is in the IQ
135        RobEntry,                /// Instruction is in the ROB
136        LsqEntry,                /// Instruction is in the LSQ
137        Completed,               /// Instruction has completed
138        ResultReady,             /// Instruction has its result
139        CanIssue,                /// Instruction can issue and execute
140        Issued,                  /// Instruction has issued
141        Executed,                /// Instruction has executed
142        CanCommit,               /// Instruction can commit
143        AtCommit,                /// Instruction has reached commit
144        Committed,               /// Instruction has committed
145        Squashed,                /// Instruction is squashed
146        SquashedInIQ,            /// Instruction is squashed in the IQ
147        SquashedInLSQ,           /// Instruction is squashed in the LSQ
148        SquashedInROB,           /// Instruction is squashed in the ROB
149        RecoverInst,             /// Is a recover instruction
150        BlockingInst,            /// Is a blocking instruction
151        ThreadsyncWait,          /// Is a thread synchronization instruction
152        SerializeBefore,         /// Needs to serialize on
153                                 /// instructions ahead of it
154        SerializeAfter,          /// Needs to serialize instructions behind it
155        SerializeHandled,        /// Serialization has been handled
156        NumStatus
157    };
158
159    /** The status of this BaseDynInst.  Several bits can be set. */
160    std::bitset<NumStatus> status;
161
162    /** The thread this instruction is from. */
163    short threadNumber;
164
165    /** data address space ID, for loads & stores. */
166    short asid;
167
168    /** How many source registers are ready. */
169    unsigned readyRegs;
170
171    /** Pointer to the Impl's CPU object. */
172    ImplCPU *cpu;
173
174    /** Pointer to the thread state. */
175    ImplState *thread;
176
177    /** The kind of fault this instruction has generated. */
178    Fault fault;
179
180    /** Pointer to the data for the memory access. */
181    uint8_t *memData;
182
183    /** The effective virtual address (lds & stores only). */
184    Addr effAddr;
185
186    /** Is the effective virtual address valid. */
187    bool effAddrValid;
188
189    /** The effective physical address. */
190    Addr physEffAddr;
191
192    /** Effective virtual address for a copy source. */
193    Addr copySrcEffAddr;
194
195    /** Effective physical address for a copy source. */
196    Addr copySrcPhysEffAddr;
197
198    /** The memory request flags (from translation). */
199    unsigned memReqFlags;
200
201    union Result {
202        uint64_t integer;
203//        float fp;
204        double dbl;
205    };
206
207    /** The result of the instruction; assumes for now that there's only one
208     *  destination register.
209     */
210    Result instResult;
211
212    /** Records changes to result? */
213    bool recordResult;
214
215    /** PC of this instruction. */
216    Addr PC;
217
218    /** Micro PC of this instruction. */
219    Addr microPC;
220
221  protected:
222    /** Next non-speculative PC.  It is not filled in at fetch, but rather
223     *  once the target of the branch is truly known (either decode or
224     *  execute).
225     */
226    Addr nextPC;
227
228    /** Next non-speculative NPC. Target PC for Mips or Sparc. */
229    Addr nextNPC;
230
231    /** Next non-speculative micro PC. */
232    Addr nextMicroPC;
233
234    /** Predicted next PC. */
235    Addr predPC;
236
237    /** Predicted next NPC. */
238    Addr predNPC;
239
240    /** Predicted next microPC */
241    Addr predMicroPC;
242
243    /** If this is a branch that was predicted taken */
244    bool predTaken;
245
246  public:
247
248    /** Count of total number of dynamic instructions. */
249    static int instcount;
250
251#ifdef DEBUG
252    void dumpSNList();
253#endif
254
255    /** Whether or not the source register is ready.
256     *  @todo: Not sure this should be here vs the derived class.
257     */
258    bool _readySrcRegIdx[MaxInstSrcRegs];
259
260  protected:
261    /** Flattened register index of the destination registers of this
262     *  instruction.
263     */
264    TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
265
266    /** Flattened register index of the source registers of this
267     *  instruction.
268     */
269    TheISA::RegIndex _flatSrcRegIdx[TheISA::MaxInstSrcRegs];
270
271    /** Physical register index of the destination registers of this
272     *  instruction.
273     */
274    PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
275
276    /** Physical register index of the source registers of this
277     *  instruction.
278     */
279    PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
280
281    /** Physical register index of the previous producers of the
282     *  architected destinations.
283     */
284    PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
285
286  public:
287
288    /** Returns the physical register index of the i'th destination
289     *  register.
290     */
291    PhysRegIndex renamedDestRegIdx(int idx) const
292    {
293        return _destRegIdx[idx];
294    }
295
296    /** Returns the physical register index of the i'th source register. */
297    PhysRegIndex renamedSrcRegIdx(int idx) const
298    {
299        return _srcRegIdx[idx];
300    }
301
302    /** Returns the flattened register index of the i'th destination
303     *  register.
304     */
305    TheISA::RegIndex flattenedDestRegIdx(int idx) const
306    {
307        return _flatDestRegIdx[idx];
308    }
309
310    /** Returns the flattened register index of the i'th source register */
311    TheISA::RegIndex flattenedSrcRegIdx(int idx) const
312    {
313        return _flatSrcRegIdx[idx];
314    }
315
316    /** Returns the physical register index of the previous physical register
317     *  that remapped to the same logical register index.
318     */
319    PhysRegIndex prevDestRegIdx(int idx) const
320    {
321        return _prevDestRegIdx[idx];
322    }
323
324    /** Renames a destination register to a physical register.  Also records
325     *  the previous physical register that the logical register mapped to.
326     */
327    void renameDestReg(int idx,
328                       PhysRegIndex renamed_dest,
329                       PhysRegIndex previous_rename)
330    {
331        _destRegIdx[idx] = renamed_dest;
332        _prevDestRegIdx[idx] = previous_rename;
333    }
334
335    /** Renames a source logical register to the physical register which
336     *  has/will produce that logical register's result.
337     *  @todo: add in whether or not the source register is ready.
338     */
339    void renameSrcReg(int idx, PhysRegIndex renamed_src)
340    {
341        _srcRegIdx[idx] = renamed_src;
342    }
343
344    /** Flattens a source architectural register index into a logical index.
345     */
346    void flattenSrcReg(int idx, TheISA::RegIndex flattened_src)
347    {
348        _flatSrcRegIdx[idx] = flattened_src;
349    }
350
351    /** Flattens a destination architectural register index into a logical
352     * index.
353     */
354    void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
355    {
356        _flatDestRegIdx[idx] = flattened_dest;
357    }
358    /** BaseDynInst constructor given a binary instruction.
359     *  @param staticInst A StaticInstPtr to the underlying instruction.
360     *  @param PC The PC of the instruction.
361     *  @param pred_PC The predicted next PC.
362     *  @param pred_NPC The predicted next NPC.
363     *  @param seq_num The sequence number of the instruction.
364     *  @param cpu Pointer to the instruction's CPU.
365     */
366    BaseDynInst(StaticInstPtr staticInst, Addr PC, Addr NPC, Addr microPC,
367            Addr pred_PC, Addr pred_NPC, Addr pred_MicroPC,
368            InstSeqNum seq_num, ImplCPU *cpu);
369
370    /** BaseDynInst constructor given a binary instruction.
371     *  @param inst The binary instruction.
372     *  @param PC The PC of the instruction.
373     *  @param pred_PC The predicted next PC.
374     *  @param pred_NPC The predicted next NPC.
375     *  @param seq_num The sequence number of the instruction.
376     *  @param cpu Pointer to the instruction's CPU.
377     */
378    BaseDynInst(TheISA::ExtMachInst inst, Addr PC, Addr NPC, Addr microPC,
379            Addr pred_PC, Addr pred_NPC, Addr pred_MicroPC,
380            InstSeqNum seq_num, ImplCPU *cpu);
381
382    /** BaseDynInst constructor given a StaticInst pointer.
383     *  @param _staticInst The StaticInst for this BaseDynInst.
384     */
385    BaseDynInst(StaticInstPtr &_staticInst);
386
387    /** BaseDynInst destructor. */
388    ~BaseDynInst();
389
390  private:
391    /** Function to initialize variables in the constructors. */
392    void initVars();
393
394  public:
395    /** Dumps out contents of this BaseDynInst. */
396    void dump();
397
398    /** Dumps out contents of this BaseDynInst into given string. */
399    void dump(std::string &outstring);
400
401    /** Read this CPU's ID. */
402    int readCpuId() { return cpu->readCpuId(); }
403
404    /** Returns the fault type. */
405    Fault getFault() { return fault; }
406
407    /** Checks whether or not this instruction has had its branch target
408     *  calculated yet.  For now it is not utilized and is hacked to be
409     *  always false.
410     *  @todo: Actually use this instruction.
411     */
412    bool doneTargCalc() { return false; }
413
414    /** Returns the next PC.  This could be the speculative next PC if it is
415     *  called prior to the actual branch target being calculated.
416     */
417    Addr readNextPC() { return nextPC; }
418
419    /** Returns the next NPC.  This could be the speculative next NPC if it is
420     *  called prior to the actual branch target being calculated.
421     */
422    Addr readNextNPC()
423    {
424#if ISA_HAS_DELAY_SLOT
425        return nextNPC;
426#else
427        return nextPC + sizeof(TheISA::MachInst);
428#endif
429    }
430
431    Addr readNextMicroPC()
432    {
433        return nextMicroPC;
434    }
435
436    /** Set the predicted target of this current instruction. */
437    void setPredTarg(Addr predicted_PC, Addr predicted_NPC,
438            Addr predicted_MicroPC)
439    {
440        predPC = predicted_PC;
441        predNPC = predicted_NPC;
442        predMicroPC = predicted_MicroPC;
443    }
444
445    /** Returns the predicted PC immediately after the branch. */
446    Addr readPredPC() { return predPC; }
447
448    /** Returns the predicted PC two instructions after the branch */
449    Addr readPredNPC() { return predNPC; }
450
451    /** Returns the predicted micro PC after the branch */
452    Addr readPredMicroPC() { return predMicroPC; }
453
454    /** Returns whether the instruction was predicted taken or not. */
455    bool readPredTaken()
456    {
457        return predTaken;
458    }
459
460    void setPredTaken(bool predicted_taken)
461    {
462        predTaken = predicted_taken;
463    }
464
465    /** Returns whether the instruction mispredicted. */
466    bool mispredicted()
467    {
468        return readPredPC() != readNextPC() ||
469            readPredNPC() != readNextNPC() ||
470            readPredMicroPC() != readNextMicroPC();
471    }
472
473    //
474    //  Instruction types.  Forward checks to StaticInst object.
475    //
476    bool isNop()	  const { return staticInst->isNop(); }
477    bool isMemRef()    	  const { return staticInst->isMemRef(); }
478    bool isLoad()	  const { return staticInst->isLoad(); }
479    bool isStore()	  const { return staticInst->isStore(); }
480    bool isStoreConditional() const
481    { return staticInst->isStoreConditional(); }
482    bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
483    bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
484    bool isCopy()         const { return staticInst->isCopy(); }
485    bool isInteger()	  const { return staticInst->isInteger(); }
486    bool isFloating()	  const { return staticInst->isFloating(); }
487    bool isControl()	  const { return staticInst->isControl(); }
488    bool isCall()	  const { return staticInst->isCall(); }
489    bool isReturn()	  const { return staticInst->isReturn(); }
490    bool isDirectCtrl()	  const { return staticInst->isDirectCtrl(); }
491    bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
492    bool isCondCtrl()	  const { return staticInst->isCondCtrl(); }
493    bool isUncondCtrl()	  const { return staticInst->isUncondCtrl(); }
494    bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
495    bool isThreadSync()   const { return staticInst->isThreadSync(); }
496    bool isSerializing()  const { return staticInst->isSerializing(); }
497    bool isSerializeBefore() const
498    { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
499    bool isSerializeAfter() const
500    { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
501    bool isMemBarrier()   const { return staticInst->isMemBarrier(); }
502    bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
503    bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
504    bool isQuiesce() const { return staticInst->isQuiesce(); }
505    bool isIprAccess() const { return staticInst->isIprAccess(); }
506    bool isUnverifiable() const { return staticInst->isUnverifiable(); }
507    bool isSyscall() const { return staticInst->isSyscall(); }
508    bool isMacroop() const { return staticInst->isMacroop(); }
509    bool isMicroop() const { return staticInst->isMicroop(); }
510    bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
511    bool isLastMicroop() const { return staticInst->isLastMicroop(); }
512    bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
513    bool isMicroBranch() const { return staticInst->isMicroBranch(); }
514
515    /** Temporarily sets this instruction as a serialize before instruction. */
516    void setSerializeBefore() { status.set(SerializeBefore); }
517
518    /** Clears the serializeBefore part of this instruction. */
519    void clearSerializeBefore() { status.reset(SerializeBefore); }
520
521    /** Checks if this serializeBefore is only temporarily set. */
522    bool isTempSerializeBefore() { return status[SerializeBefore]; }
523
524    /** Temporarily sets this instruction as a serialize after instruction. */
525    void setSerializeAfter() { status.set(SerializeAfter); }
526
527    /** Clears the serializeAfter part of this instruction.*/
528    void clearSerializeAfter() { status.reset(SerializeAfter); }
529
530    /** Checks if this serializeAfter is only temporarily set. */
531    bool isTempSerializeAfter() { return status[SerializeAfter]; }
532
533    /** Sets the serialization part of this instruction as handled. */
534    void setSerializeHandled() { status.set(SerializeHandled); }
535
536    /** Checks if the serialization part of this instruction has been
537     *  handled.  This does not apply to the temporary serializing
538     *  state; it only applies to this instruction's own permanent
539     *  serializing state.
540     */
541    bool isSerializeHandled() { return status[SerializeHandled]; }
542
543    /** Returns the opclass of this instruction. */
544    OpClass opClass() const { return staticInst->opClass(); }
545
546    /** Returns the branch target address. */
547    Addr branchTarget() const { return staticInst->branchTarget(PC); }
548
549    /** Returns the number of source registers. */
550    int8_t numSrcRegs()	const { return staticInst->numSrcRegs(); }
551
552    /** Returns the number of destination registers. */
553    int8_t numDestRegs() const { return staticInst->numDestRegs(); }
554
555    // the following are used to track physical register usage
556    // for machines with separate int & FP reg files
557    int8_t numFPDestRegs()  const { return staticInst->numFPDestRegs(); }
558    int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
559
560    /** Returns the logical register index of the i'th destination register. */
561    RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
562
563    /** Returns the logical register index of the i'th source register. */
564    RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
565
566    /** Returns the result of an integer instruction. */
567    uint64_t readIntResult() { return instResult.integer; }
568
569    /** Returns the result of a floating point instruction. */
570    float readFloatResult() { return (float)instResult.dbl; }
571
572    /** Returns the result of a floating point (double) instruction. */
573    double readDoubleResult() { return instResult.dbl; }
574
575    /** Records an integer register being set to a value. */
576    void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
577    {
578        if (recordResult)
579            instResult.integer = val;
580    }
581
582    /** Records an fp register being set to a value. */
583    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
584                            int width)
585    {
586        if (recordResult) {
587            if (width == 32)
588                instResult.dbl = (double)val;
589            else if (width == 64)
590                instResult.dbl = val;
591            else
592                panic("Unsupported width!");
593        }
594    }
595
596    /** Records an fp register being set to a value. */
597    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
598    {
599        if (recordResult)
600            instResult.dbl = (double)val;
601    }
602
603    /** Records an fp register being set to an integer value. */
604    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
605                                int width)
606    {
607        if (recordResult)
608            instResult.integer = val;
609    }
610
611    /** Records an fp register being set to an integer value. */
612    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
613    {
614        if (recordResult)
615            instResult.integer = val;
616    }
617
618    /** Records that one of the source registers is ready. */
619    void markSrcRegReady();
620
621    /** Marks a specific register as ready. */
622    void markSrcRegReady(RegIndex src_idx);
623
624    /** Returns if a source register is ready. */
625    bool isReadySrcRegIdx(int idx) const
626    {
627        return this->_readySrcRegIdx[idx];
628    }
629
630    /** Sets this instruction as completed. */
631    void setCompleted() { status.set(Completed); }
632
633    /** Returns whether or not this instruction is completed. */
634    bool isCompleted() const { return status[Completed]; }
635
636    /** Marks the result as ready. */
637    void setResultReady() { status.set(ResultReady); }
638
639    /** Returns whether or not the result is ready. */
640    bool isResultReady() const { return status[ResultReady]; }
641
642    /** Sets this instruction as ready to issue. */
643    void setCanIssue() { status.set(CanIssue); }
644
645    /** Returns whether or not this instruction is ready to issue. */
646    bool readyToIssue() const { return status[CanIssue]; }
647
648    /** Clears this instruction being able to issue. */
649    void clearCanIssue() { status.reset(CanIssue); }
650
651    /** Sets this instruction as issued from the IQ. */
652    void setIssued() { status.set(Issued); }
653
654    /** Returns whether or not this instruction has issued. */
655    bool isIssued() const { return status[Issued]; }
656
657    /** Clears this instruction as being issued. */
658    void clearIssued() { status.reset(Issued); }
659
660    /** Sets this instruction as executed. */
661    void setExecuted() { status.set(Executed); }
662
663    /** Returns whether or not this instruction has executed. */
664    bool isExecuted() const { return status[Executed]; }
665
666    /** Sets this instruction as ready to commit. */
667    void setCanCommit() { status.set(CanCommit); }
668
669    /** Clears this instruction as being ready to commit. */
670    void clearCanCommit() { status.reset(CanCommit); }
671
672    /** Returns whether or not this instruction is ready to commit. */
673    bool readyToCommit() const { return status[CanCommit]; }
674
675    void setAtCommit() { status.set(AtCommit); }
676
677    bool isAtCommit() { return status[AtCommit]; }
678
679    /** Sets this instruction as committed. */
680    void setCommitted() { status.set(Committed); }
681
682    /** Returns whether or not this instruction is committed. */
683    bool isCommitted() const { return status[Committed]; }
684
685    /** Sets this instruction as squashed. */
686    void setSquashed() { status.set(Squashed); }
687
688    /** Returns whether or not this instruction is squashed. */
689    bool isSquashed() const { return status[Squashed]; }
690
691    //Instruction Queue Entry
692    //-----------------------
693    /** Sets this instruction as a entry the IQ. */
694    void setInIQ() { status.set(IqEntry); }
695
696    /** Sets this instruction as a entry the IQ. */
697    void clearInIQ() { status.reset(IqEntry); }
698
699    /** Returns whether or not this instruction has issued. */
700    bool isInIQ() const { return status[IqEntry]; }
701
702    /** Sets this instruction as squashed in the IQ. */
703    void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
704
705    /** Returns whether or not this instruction is squashed in the IQ. */
706    bool isSquashedInIQ() const { return status[SquashedInIQ]; }
707
708
709    //Load / Store Queue Functions
710    //-----------------------
711    /** Sets this instruction as a entry the LSQ. */
712    void setInLSQ() { status.set(LsqEntry); }
713
714    /** Sets this instruction as a entry the LSQ. */
715    void removeInLSQ() { status.reset(LsqEntry); }
716
717    /** Returns whether or not this instruction is in the LSQ. */
718    bool isInLSQ() const { return status[LsqEntry]; }
719
720    /** Sets this instruction as squashed in the LSQ. */
721    void setSquashedInLSQ() { status.set(SquashedInLSQ);}
722
723    /** Returns whether or not this instruction is squashed in the LSQ. */
724    bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
725
726
727    //Reorder Buffer Functions
728    //-----------------------
729    /** Sets this instruction as a entry the ROB. */
730    void setInROB() { status.set(RobEntry); }
731
732    /** Sets this instruction as a entry the ROB. */
733    void clearInROB() { status.reset(RobEntry); }
734
735    /** Returns whether or not this instruction is in the ROB. */
736    bool isInROB() const { return status[RobEntry]; }
737
738    /** Sets this instruction as squashed in the ROB. */
739    void setSquashedInROB() { status.set(SquashedInROB); }
740
741    /** Returns whether or not this instruction is squashed in the ROB. */
742    bool isSquashedInROB() const { return status[SquashedInROB]; }
743
744    /** Read the PC of this instruction. */
745    const Addr readPC() const { return PC; }
746
747    /**Read the micro PC of this instruction. */
748    const Addr readMicroPC() const { return microPC; }
749
750    /** Set the next PC of this instruction (its actual target). */
751    void setNextPC(Addr val)
752    {
753        nextPC = val;
754    }
755
756    /** Set the next NPC of this instruction (the target in Mips or Sparc).*/
757    void setNextNPC(Addr val)
758    {
759#if ISA_HAS_DELAY_SLOT
760        nextNPC = val;
761#endif
762    }
763
764    void setNextMicroPC(Addr val)
765    {
766        nextMicroPC = val;
767    }
768
769    /** Sets the ASID. */
770    void setASID(short addr_space_id) { asid = addr_space_id; }
771
772    /** Sets the thread id. */
773    void setTid(unsigned tid) { threadNumber = tid; }
774
775    /** Sets the pointer to the thread state. */
776    void setThreadState(ImplState *state) { thread = state; }
777
778    /** Returns the thread context. */
779    ThreadContext *tcBase() { return thread->getTC(); }
780
781  private:
782    /** Instruction effective address.
783     *  @todo: Consider if this is necessary or not.
784     */
785    Addr instEffAddr;
786
787    /** Whether or not the effective address calculation is completed.
788     *  @todo: Consider if this is necessary or not.
789     */
790    bool eaCalcDone;
791
792    /** Is this instruction's memory access uncacheable. */
793    bool isUncacheable;
794
795    /** Has this instruction generated a memory request. */
796    bool reqMade;
797
798  public:
799    /** Sets the effective address. */
800    void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
801
802    /** Returns the effective address. */
803    const Addr &getEA() const { return instEffAddr; }
804
805    /** Returns whether or not the eff. addr. calculation has been completed. */
806    bool doneEACalc() { return eaCalcDone; }
807
808    /** Returns whether or not the eff. addr. source registers are ready. */
809    bool eaSrcsReady();
810
811    /** Whether or not the memory operation is done. */
812    bool memOpDone;
813
814    /** Is this instruction's memory access uncacheable. */
815    bool uncacheable() { return isUncacheable; }
816
817    /** Has this instruction generated a memory request. */
818    bool hasRequest() { return reqMade; }
819
820  public:
821    /** Load queue index. */
822    int16_t lqIdx;
823
824    /** Store queue index. */
825    int16_t sqIdx;
826
827    /** Iterator pointing to this BaseDynInst in the list of all insts. */
828    ListIt instListIt;
829
830    /** Returns iterator to this instruction in the list of all insts. */
831    ListIt &getInstListIt() { return instListIt; }
832
833    /** Sets iterator for this instruction in the list of all insts. */
834    void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
835
836  public:
837    /** Returns the number of consecutive store conditional failures. */
838    unsigned readStCondFailures()
839    { return thread->storeCondFailures; }
840
841    /** Sets the number of consecutive store conditional failures. */
842    void setStCondFailures(unsigned sc_failures)
843    { thread->storeCondFailures = sc_failures; }
844};
845
846template<class Impl>
847Fault
848BaseDynInst<Impl>::translateDataReadAddr(Addr vaddr, Addr &paddr,
849        int size, unsigned flags)
850{
851    if (traceData) {
852        traceData->setAddr(vaddr);
853    }
854
855    reqMade = true;
856    Request *req = new Request();
857    req->setVirt(asid, vaddr, size, flags, PC);
858    req->setThreadContext(thread->readCpuId(), threadNumber);
859
860    fault = cpu->translateDataReadReq(req, thread);
861
862    if (fault == NoFault)
863        paddr = req->getPaddr();
864
865    delete req;
866    return fault;
867}
868
869template<class Impl>
870template<class T>
871inline Fault
872BaseDynInst<Impl>::read(Addr addr, T &data, unsigned flags)
873{
874    reqMade = true;
875    Request *req = new Request();
876    req->setVirt(asid, addr, sizeof(T), flags, this->PC);
877    req->setThreadContext(thread->readCpuId(), threadNumber);
878
879    fault = cpu->translateDataReadReq(req, thread);
880
881    if (req->isUncacheable())
882        isUncacheable = true;
883
884    if (fault == NoFault) {
885        effAddr = req->getVaddr();
886        effAddrValid = true;
887        physEffAddr = req->getPaddr();
888        memReqFlags = req->getFlags();
889
890#if 0
891        if (cpu->system->memctrl->badaddr(physEffAddr)) {
892            fault = TheISA::genMachineCheckFault();
893            data = (T)-1;
894            this->setExecuted();
895        } else {
896            fault = cpu->read(req, data, lqIdx);
897        }
898#else
899        fault = cpu->read(req, data, lqIdx);
900#endif
901    } else {
902        // Return a fixed value to keep simulation deterministic even
903        // along misspeculated paths.
904        data = (T)-1;
905
906        // Commit will have to clean up whatever happened.  Set this
907        // instruction as executed.
908        this->setExecuted();
909        delete req;
910    }
911
912    if (traceData) {
913        traceData->setAddr(addr);
914        traceData->setData(data);
915    }
916
917    return fault;
918}
919
920template<class Impl>
921Fault
922BaseDynInst<Impl>::translateDataWriteAddr(Addr vaddr, Addr &paddr,
923        int size, unsigned flags)
924{
925    if (traceData) {
926        traceData->setAddr(vaddr);
927    }
928
929    reqMade = true;
930    Request *req = new Request();
931    req->setVirt(asid, vaddr, size, flags, PC);
932    req->setThreadContext(thread->readCpuId(), threadNumber);
933
934    fault = cpu->translateDataWriteReq(req, thread);
935
936    if (fault == NoFault)
937        paddr = req->getPaddr();
938
939    delete req;
940    return fault;
941}
942
943template<class Impl>
944template<class T>
945inline Fault
946BaseDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
947{
948    if (traceData) {
949        traceData->setAddr(addr);
950        traceData->setData(data);
951    }
952
953    reqMade = true;
954    Request *req = new Request();
955    req->setVirt(asid, addr, sizeof(T), flags, this->PC);
956    req->setThreadContext(thread->readCpuId(), threadNumber);
957
958    fault = cpu->translateDataWriteReq(req, thread);
959
960    if (req->isUncacheable())
961        isUncacheable = true;
962
963    if (fault == NoFault) {
964        effAddr = req->getVaddr();
965        effAddrValid = true;
966        physEffAddr = req->getPaddr();
967        memReqFlags = req->getFlags();
968
969        if (req->isCondSwap()) {
970            assert(res);
971            req->setExtraData(*res);
972        }
973#if 0
974        if (cpu->system->memctrl->badaddr(physEffAddr)) {
975            fault = TheISA::genMachineCheckFault();
976        } else {
977            fault = cpu->write(req, data, sqIdx);
978        }
979#else
980        fault = cpu->write(req, data, sqIdx);
981#endif
982    } else {
983        delete req;
984    }
985
986    return fault;
987}
988
989#endif // __CPU_BASE_DYN_INST_HH__
990