base_dyn_inst.hh revision 3794
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 */
30
31#ifndef __CPU_BASE_DYN_INST_HH__
32#define __CPU_BASE_DYN_INST_HH__
33
34#include <bitset>
35#include <list>
36#include <string>
37
38#include "arch/faults.hh"
39#include "base/fast_alloc.hh"
40#include "base/trace.hh"
41#include "config/full_system.hh"
42#include "cpu/o3/comm.hh"
43#include "cpu/exetrace.hh"
44#include "cpu/inst_seq.hh"
45#include "cpu/op_class.hh"
46#include "cpu/static_inst.hh"
47#include "mem/packet.hh"
48#include "sim/system.hh"
49
50/**
51 * @file
52 * Defines a dynamic instruction context.
53 */
54
55// Forward declaration.
56class StaticInstPtr;
57
58template <class Impl>
59class BaseDynInst : public FastAlloc, public RefCounted
60{
61  public:
62    // Typedef for the CPU.
63    typedef typename Impl::CPUType ImplCPU;
64    typedef typename ImplCPU::ImplState ImplState;
65
66    // Logical register index type.
67    typedef TheISA::RegIndex RegIndex;
68    // Integer register type.
69    typedef TheISA::IntReg IntReg;
70    // Floating point register type.
71    typedef TheISA::FloatReg FloatReg;
72
73    // The DynInstPtr type.
74    typedef typename Impl::DynInstPtr DynInstPtr;
75
76    // The list of instructions iterator type.
77    typedef typename std::list<DynInstPtr>::iterator ListIt;
78
79    enum {
80        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,	/// Max source regs
81        MaxInstDestRegs = TheISA::MaxInstDestRegs,	/// Max dest regs
82    };
83
84    /** The StaticInst used by this BaseDynInst. */
85    StaticInstPtr staticInst;
86
87    ////////////////////////////////////////////
88    //
89    // INSTRUCTION EXECUTION
90    //
91    ////////////////////////////////////////////
92    /** InstRecord that tracks this instructions. */
93    Trace::InstRecord *traceData;
94
95    /**
96     * Does a read to a given address.
97     * @param addr The address to read.
98     * @param data The read's data is written into this parameter.
99     * @param flags The request's flags.
100     * @return Returns any fault due to the read.
101     */
102    template <class T>
103    Fault read(Addr addr, T &data, unsigned flags);
104
105    /**
106     * Does a write to a given address.
107     * @param data The data to be written.
108     * @param addr The address to write to.
109     * @param flags The request's flags.
110     * @param res The result of the write (for load locked/store conditionals).
111     * @return Returns any fault due to the write.
112     */
113    template <class T>
114    Fault write(T data, Addr addr, unsigned flags,
115                        uint64_t *res);
116
117    void prefetch(Addr addr, unsigned flags);
118    void writeHint(Addr addr, int size, unsigned flags);
119    Fault copySrcTranslate(Addr src);
120    Fault copy(Addr dest);
121
122    /** @todo: Consider making this private. */
123  public:
124    /** The sequence number of the instruction. */
125    InstSeqNum seqNum;
126
127    enum Status {
128        IqEntry,                 /// Instruction is in the IQ
129        RobEntry,                /// Instruction is in the ROB
130        LsqEntry,                /// Instruction is in the LSQ
131        Completed,               /// Instruction has completed
132        ResultReady,             /// Instruction has its result
133        CanIssue,                /// Instruction can issue and execute
134        Issued,                  /// Instruction has issued
135        Executed,                /// Instruction has executed
136        CanCommit,               /// Instruction can commit
137        AtCommit,                /// Instruction has reached commit
138        Committed,               /// Instruction has committed
139        Squashed,                /// Instruction is squashed
140        SquashedInIQ,            /// Instruction is squashed in the IQ
141        SquashedInLSQ,           /// Instruction is squashed in the LSQ
142        SquashedInROB,           /// Instruction is squashed in the ROB
143        RecoverInst,             /// Is a recover instruction
144        BlockingInst,            /// Is a blocking instruction
145        ThreadsyncWait,          /// Is a thread synchronization instruction
146        SerializeBefore,         /// Needs to serialize on
147                                 /// instructions ahead of it
148        SerializeAfter,          /// Needs to serialize instructions behind it
149        SerializeHandled,        /// Serialization has been handled
150        NumStatus
151    };
152
153    /** The status of this BaseDynInst.  Several bits can be set. */
154    std::bitset<NumStatus> status;
155
156    /** The thread this instruction is from. */
157    short threadNumber;
158
159    /** data address space ID, for loads & stores. */
160    short asid;
161
162    /** How many source registers are ready. */
163    unsigned readyRegs;
164
165    /** Pointer to the Impl's CPU object. */
166    ImplCPU *cpu;
167
168    /** Pointer to the thread state. */
169    ImplState *thread;
170
171    /** The kind of fault this instruction has generated. */
172    Fault fault;
173
174    /** The memory request. */
175    Request *req;
176
177    /** Pointer to the data for the memory access. */
178    uint8_t *memData;
179
180    /** The effective virtual address (lds & stores only). */
181    Addr effAddr;
182
183    /** The effective physical address. */
184    Addr physEffAddr;
185
186    /** Effective virtual address for a copy source. */
187    Addr copySrcEffAddr;
188
189    /** Effective physical address for a copy source. */
190    Addr copySrcPhysEffAddr;
191
192    /** The memory request flags (from translation). */
193    unsigned memReqFlags;
194
195    union Result {
196        uint64_t integer;
197//        float fp;
198        double dbl;
199    };
200
201    /** The result of the instruction; assumes for now that there's only one
202     *  destination register.
203     */
204    Result instResult;
205
206    /** Records changes to result? */
207    bool recordResult;
208
209    /** PC of this instruction. */
210    Addr PC;
211
212    /** Next non-speculative PC.  It is not filled in at fetch, but rather
213     *  once the target of the branch is truly known (either decode or
214     *  execute).
215     */
216    Addr nextPC;
217
218    /** Next non-speculative NPC. Target PC for Mips or Sparc. */
219    Addr nextNPC;
220
221    /** Predicted next PC. */
222    Addr predPC;
223
224    /** Predicted next NPC. */
225    Addr predNPC;
226
227    /** If this is a branch that was predicted taken */
228    bool predTaken;
229
230    /** Count of total number of dynamic instructions. */
231    static int instcount;
232
233#ifdef DEBUG
234    void dumpSNList();
235#endif
236
237    /** Whether or not the source register is ready.
238     *  @todo: Not sure this should be here vs the derived class.
239     */
240    bool _readySrcRegIdx[MaxInstSrcRegs];
241
242  protected:
243    /** Flattened register index of the destination registers of this
244     *  instruction.
245     */
246    TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
247
248    /** Flattened register index of the source registers of this
249     *  instruction.
250     */
251    TheISA::RegIndex _flatSrcRegIdx[TheISA::MaxInstSrcRegs];
252
253    /** Physical register index of the destination registers of this
254     *  instruction.
255     */
256    PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
257
258    /** Physical register index of the source registers of this
259     *  instruction.
260     */
261    PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
262
263    /** Physical register index of the previous producers of the
264     *  architected destinations.
265     */
266    PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
267
268  public:
269
270    /** Returns the physical register index of the i'th destination
271     *  register.
272     */
273    PhysRegIndex renamedDestRegIdx(int idx) const
274    {
275        return _destRegIdx[idx];
276    }
277
278    /** Returns the physical register index of the i'th source register. */
279    PhysRegIndex renamedSrcRegIdx(int idx) const
280    {
281        return _srcRegIdx[idx];
282    }
283
284    /** Returns the flattened register index of the i'th destination
285     *  register.
286     */
287    TheISA::RegIndex flattenedDestRegIdx(int idx) const
288    {
289        return _flatDestRegIdx[idx];
290    }
291
292    /** Returns the flattened register index of the i'th source register */
293    TheISA::RegIndex flattenedSrcRegIdx(int idx) const
294    {
295        return _flatSrcRegIdx[idx];
296    }
297
298    /** Returns the physical register index of the previous physical register
299     *  that remapped to the same logical register index.
300     */
301    PhysRegIndex prevDestRegIdx(int idx) const
302    {
303        return _prevDestRegIdx[idx];
304    }
305
306    /** Renames a destination register to a physical register.  Also records
307     *  the previous physical register that the logical register mapped to.
308     */
309    void renameDestReg(int idx,
310                       PhysRegIndex renamed_dest,
311                       PhysRegIndex previous_rename)
312    {
313        _destRegIdx[idx] = renamed_dest;
314        _prevDestRegIdx[idx] = previous_rename;
315    }
316
317    /** Renames a source logical register to the physical register which
318     *  has/will produce that logical register's result.
319     *  @todo: add in whether or not the source register is ready.
320     */
321    void renameSrcReg(int idx, PhysRegIndex renamed_src)
322    {
323        _srcRegIdx[idx] = renamed_src;
324    }
325
326    /** Flattens a source architectural register index into a logical index.
327     */
328    void flattenSrcReg(int idx, TheISA::RegIndex flattened_src)
329    {
330        _flatSrcRegIdx[idx] = flattened_src;
331    }
332
333    /** Flattens a destination architectural register index into a logical
334     * index.
335     */
336    void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
337    {
338        _flatDestRegIdx[idx] = flattened_dest;
339    }
340
341    /** BaseDynInst constructor given a binary instruction.
342     *  @param inst The binary instruction.
343     *  @param PC The PC of the instruction.
344     *  @param pred_PC The predicted next PC.
345     *  @param pred_NPC The predicted next NPC.
346     *  @param seq_num The sequence number of the instruction.
347     *  @param cpu Pointer to the instruction's CPU.
348     */
349    BaseDynInst(TheISA::ExtMachInst inst, Addr PC,
350            Addr pred_PC, Addr pred_NPC,
351            InstSeqNum seq_num, ImplCPU *cpu);
352
353    /** BaseDynInst constructor given a StaticInst pointer.
354     *  @param _staticInst The StaticInst for this BaseDynInst.
355     */
356    BaseDynInst(StaticInstPtr &_staticInst);
357
358    /** BaseDynInst destructor. */
359    ~BaseDynInst();
360
361  private:
362    /** Function to initialize variables in the constructors. */
363    void initVars();
364
365  public:
366    /** Dumps out contents of this BaseDynInst. */
367    void dump();
368
369    /** Dumps out contents of this BaseDynInst into given string. */
370    void dump(std::string &outstring);
371
372    /** Read this CPU's ID. */
373    int readCpuId() { return cpu->readCpuId(); }
374
375    /** Returns the fault type. */
376    Fault getFault() { return fault; }
377
378    /** Checks whether or not this instruction has had its branch target
379     *  calculated yet.  For now it is not utilized and is hacked to be
380     *  always false.
381     *  @todo: Actually use this instruction.
382     */
383    bool doneTargCalc() { return false; }
384
385    /** Returns the next PC.  This could be the speculative next PC if it is
386     *  called prior to the actual branch target being calculated.
387     */
388    Addr readNextPC() { return nextPC; }
389
390    /** Returns the next NPC.  This could be the speculative next NPC if it is
391     *  called prior to the actual branch target being calculated.
392     */
393    Addr readNextNPC() { return nextNPC; }
394
395    /** Set the predicted target of this current instruction. */
396    void setPredTarg(Addr predicted_PC, Addr predicted_NPC)
397    {
398        predPC = predicted_PC;
399        predNPC = predicted_NPC;
400    }
401
402    /** Returns the predicted PC immediately after the branch. */
403    Addr readPredPC() { return predPC; }
404
405    /** Returns the predicted PC two instructions after the branch */
406    Addr readPredNPC() { return predNPC; }
407
408    /** Returns whether the instruction was predicted taken or not. */
409    bool readPredTaken()
410    {
411        return predTaken;
412    }
413
414    void setPredTaken(bool predicted_taken)
415    {
416        predTaken = predicted_taken;
417    }
418
419    /** Returns whether the instruction mispredicted. */
420    bool mispredicted()
421    {
422        return predPC != nextPC || predNPC != nextNPC;
423    }
424
425    //
426    //  Instruction types.  Forward checks to StaticInst object.
427    //
428    bool isNop()	  const { return staticInst->isNop(); }
429    bool isMemRef()    	  const { return staticInst->isMemRef(); }
430    bool isLoad()	  const { return staticInst->isLoad(); }
431    bool isStore()	  const { return staticInst->isStore(); }
432    bool isStoreConditional() const
433    { return staticInst->isStoreConditional(); }
434    bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
435    bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
436    bool isCopy()         const { return staticInst->isCopy(); }
437    bool isInteger()	  const { return staticInst->isInteger(); }
438    bool isFloating()	  const { return staticInst->isFloating(); }
439    bool isControl()	  const { return staticInst->isControl(); }
440    bool isCall()	  const { return staticInst->isCall(); }
441    bool isReturn()	  const { return staticInst->isReturn(); }
442    bool isDirectCtrl()	  const { return staticInst->isDirectCtrl(); }
443    bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
444    bool isCondCtrl()	  const { return staticInst->isCondCtrl(); }
445    bool isUncondCtrl()	  const { return staticInst->isUncondCtrl(); }
446    bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
447    bool isThreadSync()   const { return staticInst->isThreadSync(); }
448    bool isSerializing()  const { return staticInst->isSerializing(); }
449    bool isSerializeBefore() const
450    { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
451    bool isSerializeAfter() const
452    { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
453    bool isMemBarrier()   const { return staticInst->isMemBarrier(); }
454    bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
455    bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
456    bool isQuiesce() const { return staticInst->isQuiesce(); }
457    bool isIprAccess() const { return staticInst->isIprAccess(); }
458    bool isUnverifiable() const { return staticInst->isUnverifiable(); }
459
460    /** Temporarily sets this instruction as a serialize before instruction. */
461    void setSerializeBefore() { status.set(SerializeBefore); }
462
463    /** Clears the serializeBefore part of this instruction. */
464    void clearSerializeBefore() { status.reset(SerializeBefore); }
465
466    /** Checks if this serializeBefore is only temporarily set. */
467    bool isTempSerializeBefore() { return status[SerializeBefore]; }
468
469    /** Temporarily sets this instruction as a serialize after instruction. */
470    void setSerializeAfter() { status.set(SerializeAfter); }
471
472    /** Clears the serializeAfter part of this instruction.*/
473    void clearSerializeAfter() { status.reset(SerializeAfter); }
474
475    /** Checks if this serializeAfter is only temporarily set. */
476    bool isTempSerializeAfter() { return status[SerializeAfter]; }
477
478    /** Sets the serialization part of this instruction as handled. */
479    void setSerializeHandled() { status.set(SerializeHandled); }
480
481    /** Checks if the serialization part of this instruction has been
482     *  handled.  This does not apply to the temporary serializing
483     *  state; it only applies to this instruction's own permanent
484     *  serializing state.
485     */
486    bool isSerializeHandled() { return status[SerializeHandled]; }
487
488    /** Returns the opclass of this instruction. */
489    OpClass opClass() const { return staticInst->opClass(); }
490
491    /** Returns the branch target address. */
492    Addr branchTarget() const { return staticInst->branchTarget(PC); }
493
494    /** Returns the number of source registers. */
495    int8_t numSrcRegs()	const { return staticInst->numSrcRegs(); }
496
497    /** Returns the number of destination registers. */
498    int8_t numDestRegs() const { return staticInst->numDestRegs(); }
499
500    // the following are used to track physical register usage
501    // for machines with separate int & FP reg files
502    int8_t numFPDestRegs()  const { return staticInst->numFPDestRegs(); }
503    int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
504
505    /** Returns the logical register index of the i'th destination register. */
506    RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
507
508    /** Returns the logical register index of the i'th source register. */
509    RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
510
511    /** Returns the result of an integer instruction. */
512    uint64_t readIntResult() { return instResult.integer; }
513
514    /** Returns the result of a floating point instruction. */
515    float readFloatResult() { return (float)instResult.dbl; }
516
517    /** Returns the result of a floating point (double) instruction. */
518    double readDoubleResult() { return instResult.dbl; }
519
520    /** Records an integer register being set to a value. */
521    void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
522    {
523        if (recordResult)
524            instResult.integer = val;
525    }
526
527    /** Records an fp register being set to a value. */
528    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
529                            int width)
530    {
531        if (recordResult) {
532            if (width == 32)
533                instResult.dbl = (double)val;
534            else if (width == 64)
535                instResult.dbl = val;
536            else
537                panic("Unsupported width!");
538        }
539    }
540
541    /** Records an fp register being set to a value. */
542    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
543    {
544        if (recordResult)
545            instResult.dbl = (double)val;
546    }
547
548    /** Records an fp register being set to an integer value. */
549    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
550                                int width)
551    {
552        if (recordResult)
553            instResult.integer = val;
554    }
555
556    /** Records an fp register being set to an integer value. */
557    void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
558    {
559        if (recordResult)
560            instResult.integer = val;
561    }
562
563    /** Records that one of the source registers is ready. */
564    void markSrcRegReady();
565
566    /** Marks a specific register as ready. */
567    void markSrcRegReady(RegIndex src_idx);
568
569    /** Returns if a source register is ready. */
570    bool isReadySrcRegIdx(int idx) const
571    {
572        return this->_readySrcRegIdx[idx];
573    }
574
575    /** Sets this instruction as completed. */
576    void setCompleted() { status.set(Completed); }
577
578    /** Returns whether or not this instruction is completed. */
579    bool isCompleted() const { return status[Completed]; }
580
581    /** Marks the result as ready. */
582    void setResultReady() { status.set(ResultReady); }
583
584    /** Returns whether or not the result is ready. */
585    bool isResultReady() const { return status[ResultReady]; }
586
587    /** Sets this instruction as ready to issue. */
588    void setCanIssue() { status.set(CanIssue); }
589
590    /** Returns whether or not this instruction is ready to issue. */
591    bool readyToIssue() const { return status[CanIssue]; }
592
593    /** Sets this instruction as issued from the IQ. */
594    void setIssued() { status.set(Issued); }
595
596    /** Returns whether or not this instruction has issued. */
597    bool isIssued() const { return status[Issued]; }
598
599    /** Sets this instruction as executed. */
600    void setExecuted() { status.set(Executed); }
601
602    /** Returns whether or not this instruction has executed. */
603    bool isExecuted() const { return status[Executed]; }
604
605    /** Sets this instruction as ready to commit. */
606    void setCanCommit() { status.set(CanCommit); }
607
608    /** Clears this instruction as being ready to commit. */
609    void clearCanCommit() { status.reset(CanCommit); }
610
611    /** Returns whether or not this instruction is ready to commit. */
612    bool readyToCommit() const { return status[CanCommit]; }
613
614    void setAtCommit() { status.set(AtCommit); }
615
616    bool isAtCommit() { return status[AtCommit]; }
617
618    /** Sets this instruction as committed. */
619    void setCommitted() { status.set(Committed); }
620
621    /** Returns whether or not this instruction is committed. */
622    bool isCommitted() const { return status[Committed]; }
623
624    /** Sets this instruction as squashed. */
625    void setSquashed() { status.set(Squashed); }
626
627    /** Returns whether or not this instruction is squashed. */
628    bool isSquashed() const { return status[Squashed]; }
629
630    //Instruction Queue Entry
631    //-----------------------
632    /** Sets this instruction as a entry the IQ. */
633    void setInIQ() { status.set(IqEntry); }
634
635    /** Sets this instruction as a entry the IQ. */
636    void clearInIQ() { status.reset(IqEntry); }
637
638    /** Returns whether or not this instruction has issued. */
639    bool isInIQ() const { return status[IqEntry]; }
640
641    /** Sets this instruction as squashed in the IQ. */
642    void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
643
644    /** Returns whether or not this instruction is squashed in the IQ. */
645    bool isSquashedInIQ() const { return status[SquashedInIQ]; }
646
647
648    //Load / Store Queue Functions
649    //-----------------------
650    /** Sets this instruction as a entry the LSQ. */
651    void setInLSQ() { status.set(LsqEntry); }
652
653    /** Sets this instruction as a entry the LSQ. */
654    void removeInLSQ() { status.reset(LsqEntry); }
655
656    /** Returns whether or not this instruction is in the LSQ. */
657    bool isInLSQ() const { return status[LsqEntry]; }
658
659    /** Sets this instruction as squashed in the LSQ. */
660    void setSquashedInLSQ() { status.set(SquashedInLSQ);}
661
662    /** Returns whether or not this instruction is squashed in the LSQ. */
663    bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
664
665
666    //Reorder Buffer Functions
667    //-----------------------
668    /** Sets this instruction as a entry the ROB. */
669    void setInROB() { status.set(RobEntry); }
670
671    /** Sets this instruction as a entry the ROB. */
672    void clearInROB() { status.reset(RobEntry); }
673
674    /** Returns whether or not this instruction is in the ROB. */
675    bool isInROB() const { return status[RobEntry]; }
676
677    /** Sets this instruction as squashed in the ROB. */
678    void setSquashedInROB() { status.set(SquashedInROB); }
679
680    /** Returns whether or not this instruction is squashed in the ROB. */
681    bool isSquashedInROB() const { return status[SquashedInROB]; }
682
683    /** Read the PC of this instruction. */
684    const Addr readPC() const { return PC; }
685
686    /** Set the next PC of this instruction (its actual target). */
687    void setNextPC(uint64_t val)
688    {
689        nextPC = val;
690    }
691
692    /** Set the next NPC of this instruction (the target in Mips or Sparc).*/
693    void setNextNPC(uint64_t val)
694    {
695        nextNPC = val;
696    }
697
698    /** Sets the ASID. */
699    void setASID(short addr_space_id) { asid = addr_space_id; }
700
701    /** Sets the thread id. */
702    void setTid(unsigned tid) { threadNumber = tid; }
703
704    /** Sets the pointer to the thread state. */
705    void setThreadState(ImplState *state) { thread = state; }
706
707    /** Returns the thread context. */
708    ThreadContext *tcBase() { return thread->getTC(); }
709
710  private:
711    /** Instruction effective address.
712     *  @todo: Consider if this is necessary or not.
713     */
714    Addr instEffAddr;
715
716    /** Whether or not the effective address calculation is completed.
717     *  @todo: Consider if this is necessary or not.
718     */
719    bool eaCalcDone;
720
721  public:
722    /** Sets the effective address. */
723    void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
724
725    /** Returns the effective address. */
726    const Addr &getEA() const { return instEffAddr; }
727
728    /** Returns whether or not the eff. addr. calculation has been completed. */
729    bool doneEACalc() { return eaCalcDone; }
730
731    /** Returns whether or not the eff. addr. source registers are ready. */
732    bool eaSrcsReady();
733
734    /** Whether or not the memory operation is done. */
735    bool memOpDone;
736
737  public:
738    /** Load queue index. */
739    int16_t lqIdx;
740
741    /** Store queue index. */
742    int16_t sqIdx;
743
744    /** Iterator pointing to this BaseDynInst in the list of all insts. */
745    ListIt instListIt;
746
747    /** Returns iterator to this instruction in the list of all insts. */
748    ListIt &getInstListIt() { return instListIt; }
749
750    /** Sets iterator for this instruction in the list of all insts. */
751    void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
752
753  public:
754    /** Returns the number of consecutive store conditional failures. */
755    unsigned readStCondFailures()
756    { return thread->storeCondFailures; }
757
758    /** Sets the number of consecutive store conditional failures. */
759    void setStCondFailures(unsigned sc_failures)
760    { thread->storeCondFailures = sc_failures; }
761};
762
763template<class Impl>
764template<class T>
765inline Fault
766BaseDynInst<Impl>::read(Addr addr, T &data, unsigned flags)
767{
768    // Sometimes reads will get retried, so they may come through here
769    // twice.
770    if (!req) {
771        req = new Request();
772        req->setVirt(asid, addr, sizeof(T), flags, this->PC);
773        req->setThreadContext(thread->readCpuId(), threadNumber);
774    } else {
775        assert(addr == req->getVaddr());
776    }
777
778    if ((req->getVaddr() & (TheISA::VMPageSize - 1)) + req->getSize() >
779        TheISA::VMPageSize) {
780        return TheISA::genAlignmentFault();
781    }
782
783    fault = cpu->translateDataReadReq(req, thread);
784
785    if (fault == NoFault) {
786        effAddr = req->getVaddr();
787        physEffAddr = req->getPaddr();
788        memReqFlags = req->getFlags();
789
790#if 0
791        if (cpu->system->memctrl->badaddr(physEffAddr)) {
792            fault = TheISA::genMachineCheckFault();
793            data = (T)-1;
794            this->setExecuted();
795        } else {
796            fault = cpu->read(req, data, lqIdx);
797        }
798#else
799        fault = cpu->read(req, data, lqIdx);
800#endif
801    } else {
802        // Return a fixed value to keep simulation deterministic even
803        // along misspeculated paths.
804        data = (T)-1;
805
806        // Commit will have to clean up whatever happened.  Set this
807        // instruction as executed.
808        this->setExecuted();
809    }
810
811    if (traceData) {
812        traceData->setAddr(addr);
813        traceData->setData(data);
814    }
815
816    return fault;
817}
818
819template<class Impl>
820template<class T>
821inline Fault
822BaseDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
823{
824    if (traceData) {
825        traceData->setAddr(addr);
826        traceData->setData(data);
827    }
828
829    assert(req == NULL);
830
831    req = new Request();
832    req->setVirt(asid, addr, sizeof(T), flags, this->PC);
833    req->setThreadContext(thread->readCpuId(), threadNumber);
834
835    if ((req->getVaddr() & (TheISA::VMPageSize - 1)) + req->getSize() >
836        TheISA::VMPageSize) {
837        return TheISA::genAlignmentFault();
838    }
839
840    fault = cpu->translateDataWriteReq(req, thread);
841
842    if (fault == NoFault) {
843        effAddr = req->getVaddr();
844        physEffAddr = req->getPaddr();
845        memReqFlags = req->getFlags();
846#if 0
847        if (cpu->system->memctrl->badaddr(physEffAddr)) {
848            fault = TheISA::genMachineCheckFault();
849        } else {
850            fault = cpu->write(req, data, sqIdx);
851        }
852#else
853        fault = cpu->write(req, data, sqIdx);
854#endif
855    }
856
857    if (res) {
858        // always return some result to keep misspeculated paths
859        // (which will ignore faults) deterministic
860        *res = (fault == NoFault) ? req->getScResult() : 0;
861    }
862
863    return fault;
864}
865
866#endif // __CPU_BASE_DYN_INST_HH__
867