base_dyn_inst.hh revision 13953:43ae8a30ec1f
1/*
2 * Copyright (c) 2011, 2013, 2016-2018 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * Copyright (c) 2009 The University of Edinburgh
17 * All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions are
21 * met: redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer;
23 * redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution;
26 * neither the name of the copyright holders nor the names of its
27 * contributors may be used to endorse or promote products derived from
28 * this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Authors: Kevin Lim
43 *          Timothy M. Jones
44 */
45
46#ifndef __CPU_BASE_DYN_INST_HH__
47#define __CPU_BASE_DYN_INST_HH__
48
49#include <array>
50#include <bitset>
51#include <deque>
52#include <list>
53#include <string>
54
55#include "arch/generic/tlb.hh"
56#include "arch/utility.hh"
57#include "base/trace.hh"
58#include "config/the_isa.hh"
59#include "cpu/checker/cpu.hh"
60#include "cpu/exec_context.hh"
61#include "cpu/exetrace.hh"
62#include "cpu/inst_res.hh"
63#include "cpu/inst_seq.hh"
64#include "cpu/op_class.hh"
65#include "cpu/static_inst.hh"
66#include "cpu/translation.hh"
67#include "mem/packet.hh"
68#include "mem/request.hh"
69#include "sim/byteswap.hh"
70#include "sim/system.hh"
71
72/**
73 * @file
74 * Defines a dynamic instruction context.
75 */
76
77template <class Impl>
78class BaseDynInst : public ExecContext, public RefCounted
79{
80  public:
81    // Typedef for the CPU.
82    typedef typename Impl::CPUType ImplCPU;
83    typedef typename ImplCPU::ImplState ImplState;
84    using VecRegContainer = TheISA::VecRegContainer;
85
86    using LSQRequestPtr = typename Impl::CPUPol::LSQ::LSQRequest*;
87    using LQIterator = typename Impl::CPUPol::LSQUnit::LQIterator;
88    using SQIterator = typename Impl::CPUPol::LSQUnit::SQIterator;
89
90    // The DynInstPtr type.
91    typedef typename Impl::DynInstPtr DynInstPtr;
92    typedef RefCountingPtr<BaseDynInst<Impl> > BaseDynInstPtr;
93
94    // The list of instructions iterator type.
95    typedef typename std::list<DynInstPtr>::iterator ListIt;
96
97    enum {
98        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,        /// Max source regs
99        MaxInstDestRegs = TheISA::MaxInstDestRegs       /// Max dest regs
100    };
101
102  protected:
103    enum Status {
104        IqEntry,                 /// Instruction is in the IQ
105        RobEntry,                /// Instruction is in the ROB
106        LsqEntry,                /// Instruction is in the LSQ
107        Completed,               /// Instruction has completed
108        ResultReady,             /// Instruction has its result
109        CanIssue,                /// Instruction can issue and execute
110        Issued,                  /// Instruction has issued
111        Executed,                /// Instruction has executed
112        CanCommit,               /// Instruction can commit
113        AtCommit,                /// Instruction has reached commit
114        Committed,               /// Instruction has committed
115        Squashed,                /// Instruction is squashed
116        SquashedInIQ,            /// Instruction is squashed in the IQ
117        SquashedInLSQ,           /// Instruction is squashed in the LSQ
118        SquashedInROB,           /// Instruction is squashed in the ROB
119        RecoverInst,             /// Is a recover instruction
120        BlockingInst,            /// Is a blocking instruction
121        ThreadsyncWait,          /// Is a thread synchronization instruction
122        SerializeBefore,         /// Needs to serialize on
123                                 /// instructions ahead of it
124        SerializeAfter,          /// Needs to serialize instructions behind it
125        SerializeHandled,        /// Serialization has been handled
126        NumStatus
127    };
128
129    enum Flags {
130        NotAnInst,
131        TranslationStarted,
132        TranslationCompleted,
133        PossibleLoadViolation,
134        HitExternalSnoop,
135        EffAddrValid,
136        RecordResult,
137        Predicate,
138        MemAccPredicate,
139        PredTaken,
140        IsStrictlyOrdered,
141        ReqMade,
142        MemOpDone,
143        MaxFlags
144    };
145
146  public:
147    /** The sequence number of the instruction. */
148    InstSeqNum seqNum;
149
150    /** The StaticInst used by this BaseDynInst. */
151    const StaticInstPtr staticInst;
152
153    /** Pointer to the Impl's CPU object. */
154    ImplCPU *cpu;
155
156    BaseCPU *getCpuPtr() { return cpu; }
157
158    /** Pointer to the thread state. */
159    ImplState *thread;
160
161    /** The kind of fault this instruction has generated. */
162    Fault fault;
163
164    /** InstRecord that tracks this instructions. */
165    Trace::InstRecord *traceData;
166
167  protected:
168    /** The result of the instruction; assumes an instruction can have many
169     *  destination registers.
170     */
171    std::queue<InstResult> instResult;
172
173    /** PC state for this instruction. */
174    TheISA::PCState pc;
175
176    /* An amalgamation of a lot of boolean values into one */
177    std::bitset<MaxFlags> instFlags;
178
179    /** The status of this BaseDynInst.  Several bits can be set. */
180    std::bitset<NumStatus> status;
181
182     /** Whether or not the source register is ready.
183     *  @todo: Not sure this should be here vs the derived class.
184     */
185    std::bitset<MaxInstSrcRegs> _readySrcRegIdx;
186
187  public:
188    /** The thread this instruction is from. */
189    ThreadID threadNumber;
190
191    /** Iterator pointing to this BaseDynInst in the list of all insts. */
192    ListIt instListIt;
193
194    ////////////////////// Branch Data ///////////////
195    /** Predicted PC state after this instruction. */
196    TheISA::PCState predPC;
197
198    /** The Macroop if one exists */
199    const StaticInstPtr macroop;
200
201    /** How many source registers are ready. */
202    uint8_t readyRegs;
203
204  public:
205    /////////////////////// Load Store Data //////////////////////
206    /** The effective virtual address (lds & stores only). */
207    Addr effAddr;
208
209    /** The effective physical address. */
210    Addr physEffAddr;
211
212    /** The memory request flags (from translation). */
213    unsigned memReqFlags;
214
215    /** data address space ID, for loads & stores. */
216    short asid;
217
218    /** The size of the request */
219    uint8_t effSize;
220
221    /** Pointer to the data for the memory access. */
222    uint8_t *memData;
223
224    /** Load queue index. */
225    int16_t lqIdx;
226    LQIterator lqIt;
227
228    /** Store queue index. */
229    int16_t sqIdx;
230    SQIterator sqIt;
231
232
233    /////////////////////// TLB Miss //////////////////////
234    /**
235     * Saved memory request (needed when the DTB address translation is
236     * delayed due to a hw page table walk).
237     */
238    LSQRequestPtr savedReq;
239
240    /////////////////////// Checker //////////////////////
241    // Need a copy of main request pointer to verify on writes.
242    RequestPtr reqToVerify;
243
244  protected:
245    /** Flattened register index of the destination registers of this
246     *  instruction.
247     */
248    std::array<RegId, TheISA::MaxInstDestRegs> _flatDestRegIdx;
249
250    /** Physical register index of the destination registers of this
251     *  instruction.
252     */
253    std::array<PhysRegIdPtr, TheISA::MaxInstDestRegs> _destRegIdx;
254
255    /** Physical register index of the source registers of this
256     *  instruction.
257     */
258    std::array<PhysRegIdPtr, TheISA::MaxInstSrcRegs> _srcRegIdx;
259
260    /** Physical register index of the previous producers of the
261     *  architected destinations.
262     */
263    std::array<PhysRegIdPtr, TheISA::MaxInstDestRegs> _prevDestRegIdx;
264
265
266  public:
267    /** Records changes to result? */
268    void recordResult(bool f) { instFlags[RecordResult] = f; }
269
270    /** Is the effective virtual address valid. */
271    bool effAddrValid() const { return instFlags[EffAddrValid]; }
272    void effAddrValid(bool b) { instFlags[EffAddrValid] = b; }
273
274    /** Whether or not the memory operation is done. */
275    bool memOpDone() const { return instFlags[MemOpDone]; }
276    void memOpDone(bool f) { instFlags[MemOpDone] = f; }
277
278    bool notAnInst() const { return instFlags[NotAnInst]; }
279    void setNotAnInst() { instFlags[NotAnInst] = true; }
280
281
282    ////////////////////////////////////////////
283    //
284    // INSTRUCTION EXECUTION
285    //
286    ////////////////////////////////////////////
287
288    void demapPage(Addr vaddr, uint64_t asn)
289    {
290        cpu->demapPage(vaddr, asn);
291    }
292    void demapInstPage(Addr vaddr, uint64_t asn)
293    {
294        cpu->demapPage(vaddr, asn);
295    }
296    void demapDataPage(Addr vaddr, uint64_t asn)
297    {
298        cpu->demapPage(vaddr, asn);
299    }
300
301    Fault initiateMemRead(Addr addr, unsigned size, Request::Flags flags);
302
303    Fault writeMem(uint8_t *data, unsigned size, Addr addr,
304                   Request::Flags flags, uint64_t *res);
305
306    Fault initiateMemAMO(Addr addr, unsigned size, Request::Flags flags,
307                         AtomicOpFunctor *amo_op);
308
309    /** True if the DTB address translation has started. */
310    bool translationStarted() const { return instFlags[TranslationStarted]; }
311    void translationStarted(bool f) { instFlags[TranslationStarted] = f; }
312
313    /** True if the DTB address translation has completed. */
314    bool translationCompleted() const { return instFlags[TranslationCompleted]; }
315    void translationCompleted(bool f) { instFlags[TranslationCompleted] = f; }
316
317    /** True if this address was found to match a previous load and they issued
318     * out of order. If that happend, then it's only a problem if an incoming
319     * snoop invalidate modifies the line, in which case we need to squash.
320     * If nothing modified the line the order doesn't matter.
321     */
322    bool possibleLoadViolation() const { return instFlags[PossibleLoadViolation]; }
323    void possibleLoadViolation(bool f) { instFlags[PossibleLoadViolation] = f; }
324
325    /** True if the address hit a external snoop while sitting in the LSQ.
326     * If this is true and a older instruction sees it, this instruction must
327     * reexecute
328     */
329    bool hitExternalSnoop() const { return instFlags[HitExternalSnoop]; }
330    void hitExternalSnoop(bool f) { instFlags[HitExternalSnoop] = f; }
331
332    /**
333     * Returns true if the DTB address translation is being delayed due to a hw
334     * page table walk.
335     */
336    bool isTranslationDelayed() const
337    {
338        return (translationStarted() && !translationCompleted());
339    }
340
341  public:
342#ifdef DEBUG
343    void dumpSNList();
344#endif
345
346    /** Returns the physical register index of the i'th destination
347     *  register.
348     */
349    PhysRegIdPtr renamedDestRegIdx(int idx) const
350    {
351        return _destRegIdx[idx];
352    }
353
354    /** Returns the physical register index of the i'th source register. */
355    PhysRegIdPtr renamedSrcRegIdx(int idx) const
356    {
357        assert(TheISA::MaxInstSrcRegs > idx);
358        return _srcRegIdx[idx];
359    }
360
361    /** Returns the flattened register index of the i'th destination
362     *  register.
363     */
364    const RegId& flattenedDestRegIdx(int idx) const
365    {
366        return _flatDestRegIdx[idx];
367    }
368
369    /** Returns the physical register index of the previous physical register
370     *  that remapped to the same logical register index.
371     */
372    PhysRegIdPtr prevDestRegIdx(int idx) const
373    {
374        return _prevDestRegIdx[idx];
375    }
376
377    /** Renames a destination register to a physical register.  Also records
378     *  the previous physical register that the logical register mapped to.
379     */
380    void renameDestReg(int idx,
381                       PhysRegIdPtr renamed_dest,
382                       PhysRegIdPtr previous_rename)
383    {
384        _destRegIdx[idx] = renamed_dest;
385        _prevDestRegIdx[idx] = previous_rename;
386    }
387
388    /** Renames a source logical register to the physical register which
389     *  has/will produce that logical register's result.
390     *  @todo: add in whether or not the source register is ready.
391     */
392    void renameSrcReg(int idx, PhysRegIdPtr renamed_src)
393    {
394        _srcRegIdx[idx] = renamed_src;
395    }
396
397    /** Flattens a destination architectural register index into a logical
398     * index.
399     */
400    void flattenDestReg(int idx, const RegId& flattened_dest)
401    {
402        _flatDestRegIdx[idx] = flattened_dest;
403    }
404    /** BaseDynInst constructor given a binary instruction.
405     *  @param staticInst A StaticInstPtr to the underlying instruction.
406     *  @param pc The PC state for the instruction.
407     *  @param predPC The predicted next PC state for the instruction.
408     *  @param seq_num The sequence number of the instruction.
409     *  @param cpu Pointer to the instruction's CPU.
410     */
411    BaseDynInst(const StaticInstPtr &staticInst, const StaticInstPtr &macroop,
412                TheISA::PCState pc, TheISA::PCState predPC,
413                InstSeqNum seq_num, ImplCPU *cpu);
414
415    /** BaseDynInst constructor given a StaticInst pointer.
416     *  @param _staticInst The StaticInst for this BaseDynInst.
417     */
418    BaseDynInst(const StaticInstPtr &staticInst, const StaticInstPtr &macroop);
419
420    /** BaseDynInst destructor. */
421    ~BaseDynInst();
422
423  private:
424    /** Function to initialize variables in the constructors. */
425    void initVars();
426
427  public:
428    /** Dumps out contents of this BaseDynInst. */
429    void dump();
430
431    /** Dumps out contents of this BaseDynInst into given string. */
432    void dump(std::string &outstring);
433
434    /** Read this CPU's ID. */
435    int cpuId() const { return cpu->cpuId(); }
436
437    /** Read this CPU's Socket ID. */
438    uint32_t socketId() const { return cpu->socketId(); }
439
440    /** Read this CPU's data requestor ID */
441    MasterID masterId() const { return cpu->dataMasterId(); }
442
443    /** Read this context's system-wide ID **/
444    ContextID contextId() const { return thread->contextId(); }
445
446    /** Returns the fault type. */
447    Fault getFault() const { return fault; }
448    /** TODO: This I added for the LSQRequest side to be able to modify the
449     * fault. There should be a better mechanism in place. */
450    Fault& getFault() { return fault; }
451
452    /** Checks whether or not this instruction has had its branch target
453     *  calculated yet.  For now it is not utilized and is hacked to be
454     *  always false.
455     *  @todo: Actually use this instruction.
456     */
457    bool doneTargCalc() { return false; }
458
459    /** Set the predicted target of this current instruction. */
460    void setPredTarg(const TheISA::PCState &_predPC)
461    {
462        predPC = _predPC;
463    }
464
465    const TheISA::PCState &readPredTarg() { return predPC; }
466
467    /** Returns the predicted PC immediately after the branch. */
468    Addr predInstAddr() { return predPC.instAddr(); }
469
470    /** Returns the predicted PC two instructions after the branch */
471    Addr predNextInstAddr() { return predPC.nextInstAddr(); }
472
473    /** Returns the predicted micro PC after the branch */
474    Addr predMicroPC() { return predPC.microPC(); }
475
476    /** Returns whether the instruction was predicted taken or not. */
477    bool readPredTaken()
478    {
479        return instFlags[PredTaken];
480    }
481
482    void setPredTaken(bool predicted_taken)
483    {
484        instFlags[PredTaken] = predicted_taken;
485    }
486
487    /** Returns whether the instruction mispredicted. */
488    bool mispredicted()
489    {
490        TheISA::PCState tempPC = pc;
491        TheISA::advancePC(tempPC, staticInst);
492        return !(tempPC == predPC);
493    }
494
495    //
496    //  Instruction types.  Forward checks to StaticInst object.
497    //
498    bool isNop()          const { return staticInst->isNop(); }
499    bool isMemRef()       const { return staticInst->isMemRef(); }
500    bool isLoad()         const { return staticInst->isLoad(); }
501    bool isStore()        const { return staticInst->isStore(); }
502    bool isAtomic()       const { return staticInst->isAtomic(); }
503    bool isStoreConditional() const
504    { return staticInst->isStoreConditional(); }
505    bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
506    bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
507    bool isInteger()      const { return staticInst->isInteger(); }
508    bool isFloating()     const { return staticInst->isFloating(); }
509    bool isVector()       const { return staticInst->isVector(); }
510    bool isControl()      const { return staticInst->isControl(); }
511    bool isCall()         const { return staticInst->isCall(); }
512    bool isReturn()       const { return staticInst->isReturn(); }
513    bool isDirectCtrl()   const { return staticInst->isDirectCtrl(); }
514    bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
515    bool isCondCtrl()     const { return staticInst->isCondCtrl(); }
516    bool isUncondCtrl()   const { return staticInst->isUncondCtrl(); }
517    bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
518    bool isThreadSync()   const { return staticInst->isThreadSync(); }
519    bool isSerializing()  const { return staticInst->isSerializing(); }
520    bool isSerializeBefore() const
521    { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
522    bool isSerializeAfter() const
523    { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
524    bool isSquashAfter() const { return staticInst->isSquashAfter(); }
525    bool isMemBarrier()   const { return staticInst->isMemBarrier(); }
526    bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
527    bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
528    bool isQuiesce() const { return staticInst->isQuiesce(); }
529    bool isIprAccess() const { return staticInst->isIprAccess(); }
530    bool isUnverifiable() const { return staticInst->isUnverifiable(); }
531    bool isSyscall() const { return staticInst->isSyscall(); }
532    bool isMacroop() const { return staticInst->isMacroop(); }
533    bool isMicroop() const { return staticInst->isMicroop(); }
534    bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
535    bool isLastMicroop() const { return staticInst->isLastMicroop(); }
536    bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
537    bool isMicroBranch() const { return staticInst->isMicroBranch(); }
538
539    /** Temporarily sets this instruction as a serialize before instruction. */
540    void setSerializeBefore() { status.set(SerializeBefore); }
541
542    /** Clears the serializeBefore part of this instruction. */
543    void clearSerializeBefore() { status.reset(SerializeBefore); }
544
545    /** Checks if this serializeBefore is only temporarily set. */
546    bool isTempSerializeBefore() { return status[SerializeBefore]; }
547
548    /** Temporarily sets this instruction as a serialize after instruction. */
549    void setSerializeAfter() { status.set(SerializeAfter); }
550
551    /** Clears the serializeAfter part of this instruction.*/
552    void clearSerializeAfter() { status.reset(SerializeAfter); }
553
554    /** Checks if this serializeAfter is only temporarily set. */
555    bool isTempSerializeAfter() { return status[SerializeAfter]; }
556
557    /** Sets the serialization part of this instruction as handled. */
558    void setSerializeHandled() { status.set(SerializeHandled); }
559
560    /** Checks if the serialization part of this instruction has been
561     *  handled.  This does not apply to the temporary serializing
562     *  state; it only applies to this instruction's own permanent
563     *  serializing state.
564     */
565    bool isSerializeHandled() { return status[SerializeHandled]; }
566
567    /** Returns the opclass of this instruction. */
568    OpClass opClass() const { return staticInst->opClass(); }
569
570    /** Returns the branch target address. */
571    TheISA::PCState branchTarget() const
572    { return staticInst->branchTarget(pc); }
573
574    /** Returns the number of source registers. */
575    int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
576
577    /** Returns the number of destination registers. */
578    int8_t numDestRegs() const { return staticInst->numDestRegs(); }
579
580    // the following are used to track physical register usage
581    // for machines with separate int & FP reg files
582    int8_t numFPDestRegs()  const { return staticInst->numFPDestRegs(); }
583    int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
584    int8_t numCCDestRegs() const { return staticInst->numCCDestRegs(); }
585    int8_t numVecDestRegs() const { return staticInst->numVecDestRegs(); }
586    int8_t numVecElemDestRegs() const
587    {
588        return staticInst->numVecElemDestRegs();
589    }
590    int8_t
591    numVecPredDestRegs() const
592    {
593        return staticInst->numVecPredDestRegs();
594    }
595
596    /** Returns the logical register index of the i'th destination register. */
597    const RegId& destRegIdx(int i) const { return staticInst->destRegIdx(i); }
598
599    /** Returns the logical register index of the i'th source register. */
600    const RegId& srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
601
602    /** Return the size of the instResult queue. */
603    uint8_t resultSize() { return instResult.size(); }
604
605    /** Pops a result off the instResult queue.
606     * If the result stack is empty, return the default value.
607     * */
608    InstResult popResult(InstResult dflt = InstResult())
609    {
610        if (!instResult.empty()) {
611            InstResult t = instResult.front();
612            instResult.pop();
613            return t;
614        }
615        return dflt;
616    }
617
618    /** Pushes a result onto the instResult queue. */
619    /** @{ */
620    /** Scalar result. */
621    template<typename T>
622    void setScalarResult(T&& t)
623    {
624        if (instFlags[RecordResult]) {
625            instResult.push(InstResult(std::forward<T>(t),
626                        InstResult::ResultType::Scalar));
627        }
628    }
629
630    /** Full vector result. */
631    template<typename T>
632    void setVecResult(T&& t)
633    {
634        if (instFlags[RecordResult]) {
635            instResult.push(InstResult(std::forward<T>(t),
636                        InstResult::ResultType::VecReg));
637        }
638    }
639
640    /** Vector element result. */
641    template<typename T>
642    void setVecElemResult(T&& t)
643    {
644        if (instFlags[RecordResult]) {
645            instResult.push(InstResult(std::forward<T>(t),
646                        InstResult::ResultType::VecElem));
647        }
648    }
649
650    /** Predicate result. */
651    template<typename T>
652    void setVecPredResult(T&& t)
653    {
654        if (instFlags[RecordResult]) {
655            instResult.push(InstResult(std::forward<T>(t),
656                            InstResult::ResultType::VecPredReg));
657        }
658    }
659    /** @} */
660
661    /** Records an integer register being set to a value. */
662    void setIntRegOperand(const StaticInst *si, int idx, RegVal val)
663    {
664        setScalarResult(val);
665    }
666
667    /** Records a CC register being set to a value. */
668    void setCCRegOperand(const StaticInst *si, int idx, RegVal val)
669    {
670        setScalarResult(val);
671    }
672
673    /** Record a vector register being set to a value */
674    void setVecRegOperand(const StaticInst *si, int idx,
675            const VecRegContainer& val)
676    {
677        setVecResult(val);
678    }
679
680    /** Records an fp register being set to an integer value. */
681    void
682    setFloatRegOperandBits(const StaticInst *si, int idx, RegVal val)
683    {
684        setScalarResult(val);
685    }
686
687    /** Record a vector register being set to a value */
688    void setVecElemOperand(const StaticInst *si, int idx, const VecElem val)
689    {
690        setVecElemResult(val);
691    }
692
693    /** Record a vector register being set to a value */
694    void setVecPredRegOperand(const StaticInst *si, int idx,
695                              const VecPredRegContainer& val)
696    {
697        setVecPredResult(val);
698    }
699
700    /** Records that one of the source registers is ready. */
701    void markSrcRegReady();
702
703    /** Marks a specific register as ready. */
704    void markSrcRegReady(RegIndex src_idx);
705
706    /** Returns if a source register is ready. */
707    bool isReadySrcRegIdx(int idx) const
708    {
709        return this->_readySrcRegIdx[idx];
710    }
711
712    /** Sets this instruction as completed. */
713    void setCompleted() { status.set(Completed); }
714
715    /** Returns whether or not this instruction is completed. */
716    bool isCompleted() const { return status[Completed]; }
717
718    /** Marks the result as ready. */
719    void setResultReady() { status.set(ResultReady); }
720
721    /** Returns whether or not the result is ready. */
722    bool isResultReady() const { return status[ResultReady]; }
723
724    /** Sets this instruction as ready to issue. */
725    void setCanIssue() { status.set(CanIssue); }
726
727    /** Returns whether or not this instruction is ready to issue. */
728    bool readyToIssue() const { return status[CanIssue]; }
729
730    /** Clears this instruction being able to issue. */
731    void clearCanIssue() { status.reset(CanIssue); }
732
733    /** Sets this instruction as issued from the IQ. */
734    void setIssued() { status.set(Issued); }
735
736    /** Returns whether or not this instruction has issued. */
737    bool isIssued() const { return status[Issued]; }
738
739    /** Clears this instruction as being issued. */
740    void clearIssued() { status.reset(Issued); }
741
742    /** Sets this instruction as executed. */
743    void setExecuted() { status.set(Executed); }
744
745    /** Returns whether or not this instruction has executed. */
746    bool isExecuted() const { return status[Executed]; }
747
748    /** Sets this instruction as ready to commit. */
749    void setCanCommit() { status.set(CanCommit); }
750
751    /** Clears this instruction as being ready to commit. */
752    void clearCanCommit() { status.reset(CanCommit); }
753
754    /** Returns whether or not this instruction is ready to commit. */
755    bool readyToCommit() const { return status[CanCommit]; }
756
757    void setAtCommit() { status.set(AtCommit); }
758
759    bool isAtCommit() { return status[AtCommit]; }
760
761    /** Sets this instruction as committed. */
762    void setCommitted() { status.set(Committed); }
763
764    /** Returns whether or not this instruction is committed. */
765    bool isCommitted() const { return status[Committed]; }
766
767    /** Sets this instruction as squashed. */
768    void setSquashed() { status.set(Squashed); }
769
770    /** Returns whether or not this instruction is squashed. */
771    bool isSquashed() const { return status[Squashed]; }
772
773    //Instruction Queue Entry
774    //-----------------------
775    /** Sets this instruction as a entry the IQ. */
776    void setInIQ() { status.set(IqEntry); }
777
778    /** Sets this instruction as a entry the IQ. */
779    void clearInIQ() { status.reset(IqEntry); }
780
781    /** Returns whether or not this instruction has issued. */
782    bool isInIQ() const { return status[IqEntry]; }
783
784    /** Sets this instruction as squashed in the IQ. */
785    void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
786
787    /** Returns whether or not this instruction is squashed in the IQ. */
788    bool isSquashedInIQ() const { return status[SquashedInIQ]; }
789
790
791    //Load / Store Queue Functions
792    //-----------------------
793    /** Sets this instruction as a entry the LSQ. */
794    void setInLSQ() { status.set(LsqEntry); }
795
796    /** Sets this instruction as a entry the LSQ. */
797    void removeInLSQ() { status.reset(LsqEntry); }
798
799    /** Returns whether or not this instruction is in the LSQ. */
800    bool isInLSQ() const { return status[LsqEntry]; }
801
802    /** Sets this instruction as squashed in the LSQ. */
803    void setSquashedInLSQ() { status.set(SquashedInLSQ);}
804
805    /** Returns whether or not this instruction is squashed in the LSQ. */
806    bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
807
808
809    //Reorder Buffer Functions
810    //-----------------------
811    /** Sets this instruction as a entry the ROB. */
812    void setInROB() { status.set(RobEntry); }
813
814    /** Sets this instruction as a entry the ROB. */
815    void clearInROB() { status.reset(RobEntry); }
816
817    /** Returns whether or not this instruction is in the ROB. */
818    bool isInROB() const { return status[RobEntry]; }
819
820    /** Sets this instruction as squashed in the ROB. */
821    void setSquashedInROB() { status.set(SquashedInROB); }
822
823    /** Returns whether or not this instruction is squashed in the ROB. */
824    bool isSquashedInROB() const { return status[SquashedInROB]; }
825
826    /** Read the PC state of this instruction. */
827    TheISA::PCState pcState() const { return pc; }
828
829    /** Set the PC state of this instruction. */
830    void pcState(const TheISA::PCState &val) { pc = val; }
831
832    /** Read the PC of this instruction. */
833    Addr instAddr() const { return pc.instAddr(); }
834
835    /** Read the PC of the next instruction. */
836    Addr nextInstAddr() const { return pc.nextInstAddr(); }
837
838    /**Read the micro PC of this instruction. */
839    Addr microPC() const { return pc.microPC(); }
840
841    bool readPredicate() const
842    {
843        return instFlags[Predicate];
844    }
845
846    void setPredicate(bool val)
847    {
848        instFlags[Predicate] = val;
849
850        if (traceData) {
851            traceData->setPredicate(val);
852        }
853    }
854
855    bool
856    readMemAccPredicate() const
857    {
858        return instFlags[MemAccPredicate];
859    }
860
861    void
862    setMemAccPredicate(bool val)
863    {
864        instFlags[MemAccPredicate] = val;
865    }
866
867    /** Sets the ASID. */
868    void setASID(short addr_space_id) { asid = addr_space_id; }
869    short getASID() { return asid; }
870
871    /** Sets the thread id. */
872    void setTid(ThreadID tid) { threadNumber = tid; }
873
874    /** Sets the pointer to the thread state. */
875    void setThreadState(ImplState *state) { thread = state; }
876
877    /** Returns the thread context. */
878    ThreadContext *tcBase() { return thread->getTC(); }
879
880  public:
881    /** Returns whether or not the eff. addr. source registers are ready. */
882    bool eaSrcsReady() const;
883
884    /** Is this instruction's memory access strictly ordered? */
885    bool strictlyOrdered() const { return instFlags[IsStrictlyOrdered]; }
886    void strictlyOrdered(bool so) { instFlags[IsStrictlyOrdered] = so; }
887
888    /** Has this instruction generated a memory request. */
889    bool hasRequest() const { return instFlags[ReqMade]; }
890    /** Assert this instruction has generated a memory request. */
891    void setRequest() { instFlags[ReqMade] = true; }
892
893    /** Returns iterator to this instruction in the list of all insts. */
894    ListIt &getInstListIt() { return instListIt; }
895
896    /** Sets iterator for this instruction in the list of all insts. */
897    void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
898
899  public:
900    /** Returns the number of consecutive store conditional failures. */
901    unsigned int readStCondFailures() const
902    { return thread->storeCondFailures; }
903
904    /** Sets the number of consecutive store conditional failures. */
905    void setStCondFailures(unsigned int sc_failures)
906    { thread->storeCondFailures = sc_failures; }
907
908  public:
909    // monitor/mwait funtions
910    void armMonitor(Addr address) { cpu->armMonitor(threadNumber, address); }
911    bool mwait(PacketPtr pkt) { return cpu->mwait(threadNumber, pkt); }
912    void mwaitAtomic(ThreadContext *tc)
913    { return cpu->mwaitAtomic(threadNumber, tc, cpu->dtb); }
914    AddressMonitor *getAddrMonitor()
915    { return cpu->getCpuAddrMonitor(threadNumber); }
916};
917
918template<class Impl>
919Fault
920BaseDynInst<Impl>::initiateMemRead(Addr addr, unsigned size,
921                                   Request::Flags flags)
922{
923    return cpu->pushRequest(
924            dynamic_cast<typename DynInstPtr::PtrType>(this),
925            /* ld */ true, nullptr, size, addr, flags, nullptr);
926}
927
928template<class Impl>
929Fault
930BaseDynInst<Impl>::writeMem(uint8_t *data, unsigned size, Addr addr,
931                            Request::Flags flags, uint64_t *res)
932{
933    return cpu->pushRequest(
934            dynamic_cast<typename DynInstPtr::PtrType>(this),
935            /* st */ false, data, size, addr, flags, res);
936}
937
938template<class Impl>
939Fault
940BaseDynInst<Impl>::initiateMemAMO(Addr addr, unsigned size,
941                                  Request::Flags flags,
942                                  AtomicOpFunctor *amo_op)
943{
944    // atomic memory instructions do not have data to be written to memory yet
945    // since the atomic operations will be executed directly in cache/memory.
946    // Therefore, its `data` field is nullptr.
947    // Atomic memory requests need to carry their `amo_op` fields to cache/
948    // memory
949    return cpu->pushRequest(
950            dynamic_cast<typename DynInstPtr::PtrType>(this),
951            /* atomic */ false, nullptr, size, addr, flags, nullptr, amo_op);
952}
953
954#endif // __CPU_BASE_DYN_INST_HH__
955