base_dyn_inst.hh revision 13557
1/*
2 * Copyright (c) 2011,2013,2016 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * Copyright (c) 2009 The University of Edinburgh
17 * All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions are
21 * met: redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer;
23 * redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution;
26 * neither the name of the copyright holders nor the names of its
27 * contributors may be used to endorse or promote products derived from
28 * this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Authors: Kevin Lim
43 *          Timothy M. Jones
44 */
45
46#ifndef __CPU_BASE_DYN_INST_HH__
47#define __CPU_BASE_DYN_INST_HH__
48
49#include <array>
50#include <bitset>
51#include <deque>
52#include <list>
53#include <string>
54
55#include "arch/generic/tlb.hh"
56#include "arch/utility.hh"
57#include "base/trace.hh"
58#include "config/the_isa.hh"
59#include "cpu/checker/cpu.hh"
60#include "cpu/exec_context.hh"
61#include "cpu/exetrace.hh"
62#include "cpu/inst_res.hh"
63#include "cpu/inst_seq.hh"
64#include "cpu/o3/comm.hh"
65#include "cpu/op_class.hh"
66#include "cpu/static_inst.hh"
67#include "cpu/translation.hh"
68#include "mem/packet.hh"
69#include "mem/request.hh"
70#include "sim/byteswap.hh"
71#include "sim/system.hh"
72
73/**
74 * @file
75 * Defines a dynamic instruction context.
76 */
77
78template <class Impl>
79class BaseDynInst : public ExecContext, public RefCounted
80{
81  public:
82    // Typedef for the CPU.
83    typedef typename Impl::CPUType ImplCPU;
84    typedef typename ImplCPU::ImplState ImplState;
85    using VecRegContainer = TheISA::VecRegContainer;
86
87    // The DynInstPtr type.
88    typedef typename Impl::DynInstPtr DynInstPtr;
89    typedef RefCountingPtr<BaseDynInst<Impl> > BaseDynInstPtr;
90
91    // The list of instructions iterator type.
92    typedef typename std::list<DynInstPtr>::iterator ListIt;
93
94    enum {
95        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,        /// Max source regs
96        MaxInstDestRegs = TheISA::MaxInstDestRegs       /// Max dest regs
97    };
98
99  protected:
100    enum Status {
101        IqEntry,                 /// Instruction is in the IQ
102        RobEntry,                /// Instruction is in the ROB
103        LsqEntry,                /// Instruction is in the LSQ
104        Completed,               /// Instruction has completed
105        ResultReady,             /// Instruction has its result
106        CanIssue,                /// Instruction can issue and execute
107        Issued,                  /// Instruction has issued
108        Executed,                /// Instruction has executed
109        CanCommit,               /// Instruction can commit
110        AtCommit,                /// Instruction has reached commit
111        Committed,               /// Instruction has committed
112        Squashed,                /// Instruction is squashed
113        SquashedInIQ,            /// Instruction is squashed in the IQ
114        SquashedInLSQ,           /// Instruction is squashed in the LSQ
115        SquashedInROB,           /// Instruction is squashed in the ROB
116        RecoverInst,             /// Is a recover instruction
117        BlockingInst,            /// Is a blocking instruction
118        ThreadsyncWait,          /// Is a thread synchronization instruction
119        SerializeBefore,         /// Needs to serialize on
120                                 /// instructions ahead of it
121        SerializeAfter,          /// Needs to serialize instructions behind it
122        SerializeHandled,        /// Serialization has been handled
123        NumStatus
124    };
125
126    enum Flags {
127        NotAnInst,
128        TranslationStarted,
129        TranslationCompleted,
130        PossibleLoadViolation,
131        HitExternalSnoop,
132        EffAddrValid,
133        RecordResult,
134        Predicate,
135        PredTaken,
136        IsStrictlyOrdered,
137        ReqMade,
138        MemOpDone,
139        MaxFlags
140    };
141
142  public:
143    /** The sequence number of the instruction. */
144    InstSeqNum seqNum;
145
146    /** The StaticInst used by this BaseDynInst. */
147    const StaticInstPtr staticInst;
148
149    /** Pointer to the Impl's CPU object. */
150    ImplCPU *cpu;
151
152    BaseCPU *getCpuPtr() { return cpu; }
153
154    /** Pointer to the thread state. */
155    ImplState *thread;
156
157    /** The kind of fault this instruction has generated. */
158    Fault fault;
159
160    /** InstRecord that tracks this instructions. */
161    Trace::InstRecord *traceData;
162
163  protected:
164    /** The result of the instruction; assumes an instruction can have many
165     *  destination registers.
166     */
167    std::queue<InstResult> instResult;
168
169    /** PC state for this instruction. */
170    TheISA::PCState pc;
171
172    /* An amalgamation of a lot of boolean values into one */
173    std::bitset<MaxFlags> instFlags;
174
175    /** The status of this BaseDynInst.  Several bits can be set. */
176    std::bitset<NumStatus> status;
177
178     /** Whether or not the source register is ready.
179     *  @todo: Not sure this should be here vs the derived class.
180     */
181    std::bitset<MaxInstSrcRegs> _readySrcRegIdx;
182
183  public:
184    /** The thread this instruction is from. */
185    ThreadID threadNumber;
186
187    /** Iterator pointing to this BaseDynInst in the list of all insts. */
188    ListIt instListIt;
189
190    ////////////////////// Branch Data ///////////////
191    /** Predicted PC state after this instruction. */
192    TheISA::PCState predPC;
193
194    /** The Macroop if one exists */
195    const StaticInstPtr macroop;
196
197    /** How many source registers are ready. */
198    uint8_t readyRegs;
199
200  public:
201    /////////////////////// Load Store Data //////////////////////
202    /** The effective virtual address (lds & stores only). */
203    Addr effAddr;
204
205    /** The effective physical address. */
206    Addr physEffAddrLow;
207
208    /** The effective physical address
209     *  of the second request for a split request
210     */
211    Addr physEffAddrHigh;
212
213    /** The memory request flags (from translation). */
214    unsigned memReqFlags;
215
216    /** data address space ID, for loads & stores. */
217    short asid;
218
219    /** The size of the request */
220    uint8_t effSize;
221
222    /** Pointer to the data for the memory access. */
223    uint8_t *memData;
224
225    /** Load queue index. */
226    int16_t lqIdx;
227
228    /** Store queue index. */
229    int16_t sqIdx;
230
231
232    /////////////////////// TLB Miss //////////////////////
233    /**
234     * Saved memory requests (needed when the DTB address translation is
235     * delayed due to a hw page table walk).
236     */
237    RequestPtr savedReq;
238    RequestPtr savedSreqLow;
239    RequestPtr savedSreqHigh;
240
241    /////////////////////// Checker //////////////////////
242    // Need a copy of main request pointer to verify on writes.
243    RequestPtr reqToVerify;
244
245  protected:
246    /** Flattened register index of the destination registers of this
247     *  instruction.
248     */
249    std::array<RegId, TheISA::MaxInstDestRegs> _flatDestRegIdx;
250
251    /** Physical register index of the destination registers of this
252     *  instruction.
253     */
254    std::array<PhysRegIdPtr, TheISA::MaxInstDestRegs> _destRegIdx;
255
256    /** Physical register index of the source registers of this
257     *  instruction.
258     */
259    std::array<PhysRegIdPtr, TheISA::MaxInstSrcRegs> _srcRegIdx;
260
261    /** Physical register index of the previous producers of the
262     *  architected destinations.
263     */
264    std::array<PhysRegIdPtr, TheISA::MaxInstDestRegs> _prevDestRegIdx;
265
266
267  public:
268    /** Records changes to result? */
269    void recordResult(bool f) { instFlags[RecordResult] = f; }
270
271    /** Is the effective virtual address valid. */
272    bool effAddrValid() const { return instFlags[EffAddrValid]; }
273
274    /** Whether or not the memory operation is done. */
275    bool memOpDone() const { return instFlags[MemOpDone]; }
276    void memOpDone(bool f) { instFlags[MemOpDone] = f; }
277
278    bool notAnInst() const { return instFlags[NotAnInst]; }
279    void setNotAnInst() { instFlags[NotAnInst] = true; }
280
281
282    ////////////////////////////////////////////
283    //
284    // INSTRUCTION EXECUTION
285    //
286    ////////////////////////////////////////////
287
288    void demapPage(Addr vaddr, uint64_t asn)
289    {
290        cpu->demapPage(vaddr, asn);
291    }
292    void demapInstPage(Addr vaddr, uint64_t asn)
293    {
294        cpu->demapPage(vaddr, asn);
295    }
296    void demapDataPage(Addr vaddr, uint64_t asn)
297    {
298        cpu->demapPage(vaddr, asn);
299    }
300
301    Fault initiateMemRead(Addr addr, unsigned size, Request::Flags flags);
302
303    Fault writeMem(uint8_t *data, unsigned size, Addr addr,
304                   Request::Flags flags, uint64_t *res);
305
306    /** Splits a request in two if it crosses a dcache block. */
307    void splitRequest(const RequestPtr &req, RequestPtr &sreqLow,
308                      RequestPtr &sreqHigh);
309
310    /** Initiate a DTB address translation. */
311    void initiateTranslation(const RequestPtr &req, const RequestPtr &sreqLow,
312                             const RequestPtr &sreqHigh, uint64_t *res,
313                             BaseTLB::Mode mode);
314
315    /** Finish a DTB address translation. */
316    void finishTranslation(WholeTranslationState *state);
317
318    /** True if the DTB address translation has started. */
319    bool translationStarted() const { return instFlags[TranslationStarted]; }
320    void translationStarted(bool f) { instFlags[TranslationStarted] = f; }
321
322    /** True if the DTB address translation has completed. */
323    bool translationCompleted() const { return instFlags[TranslationCompleted]; }
324    void translationCompleted(bool f) { instFlags[TranslationCompleted] = f; }
325
326    /** True if this address was found to match a previous load and they issued
327     * out of order. If that happend, then it's only a problem if an incoming
328     * snoop invalidate modifies the line, in which case we need to squash.
329     * If nothing modified the line the order doesn't matter.
330     */
331    bool possibleLoadViolation() const { return instFlags[PossibleLoadViolation]; }
332    void possibleLoadViolation(bool f) { instFlags[PossibleLoadViolation] = f; }
333
334    /** True if the address hit a external snoop while sitting in the LSQ.
335     * If this is true and a older instruction sees it, this instruction must
336     * reexecute
337     */
338    bool hitExternalSnoop() const { return instFlags[HitExternalSnoop]; }
339    void hitExternalSnoop(bool f) { instFlags[HitExternalSnoop] = f; }
340
341    /**
342     * Returns true if the DTB address translation is being delayed due to a hw
343     * page table walk.
344     */
345    bool isTranslationDelayed() const
346    {
347        return (translationStarted() && !translationCompleted());
348    }
349
350  public:
351#ifdef DEBUG
352    void dumpSNList();
353#endif
354
355    /** Returns the physical register index of the i'th destination
356     *  register.
357     */
358    PhysRegIdPtr renamedDestRegIdx(int idx) const
359    {
360        return _destRegIdx[idx];
361    }
362
363    /** Returns the physical register index of the i'th source register. */
364    PhysRegIdPtr renamedSrcRegIdx(int idx) const
365    {
366        assert(TheISA::MaxInstSrcRegs > idx);
367        return _srcRegIdx[idx];
368    }
369
370    /** Returns the flattened register index of the i'th destination
371     *  register.
372     */
373    const RegId& flattenedDestRegIdx(int idx) const
374    {
375        return _flatDestRegIdx[idx];
376    }
377
378    /** Returns the physical register index of the previous physical register
379     *  that remapped to the same logical register index.
380     */
381    PhysRegIdPtr prevDestRegIdx(int idx) const
382    {
383        return _prevDestRegIdx[idx];
384    }
385
386    /** Renames a destination register to a physical register.  Also records
387     *  the previous physical register that the logical register mapped to.
388     */
389    void renameDestReg(int idx,
390                       PhysRegIdPtr renamed_dest,
391                       PhysRegIdPtr previous_rename)
392    {
393        _destRegIdx[idx] = renamed_dest;
394        _prevDestRegIdx[idx] = previous_rename;
395    }
396
397    /** Renames a source logical register to the physical register which
398     *  has/will produce that logical register's result.
399     *  @todo: add in whether or not the source register is ready.
400     */
401    void renameSrcReg(int idx, PhysRegIdPtr renamed_src)
402    {
403        _srcRegIdx[idx] = renamed_src;
404    }
405
406    /** Flattens a destination architectural register index into a logical
407     * index.
408     */
409    void flattenDestReg(int idx, const RegId& flattened_dest)
410    {
411        _flatDestRegIdx[idx] = flattened_dest;
412    }
413    /** BaseDynInst constructor given a binary instruction.
414     *  @param staticInst A StaticInstPtr to the underlying instruction.
415     *  @param pc The PC state for the instruction.
416     *  @param predPC The predicted next PC state for the instruction.
417     *  @param seq_num The sequence number of the instruction.
418     *  @param cpu Pointer to the instruction's CPU.
419     */
420    BaseDynInst(const StaticInstPtr &staticInst, const StaticInstPtr &macroop,
421                TheISA::PCState pc, TheISA::PCState predPC,
422                InstSeqNum seq_num, ImplCPU *cpu);
423
424    /** BaseDynInst constructor given a StaticInst pointer.
425     *  @param _staticInst The StaticInst for this BaseDynInst.
426     */
427    BaseDynInst(const StaticInstPtr &staticInst, const StaticInstPtr &macroop);
428
429    /** BaseDynInst destructor. */
430    ~BaseDynInst();
431
432  private:
433    /** Function to initialize variables in the constructors. */
434    void initVars();
435
436  public:
437    /** Dumps out contents of this BaseDynInst. */
438    void dump();
439
440    /** Dumps out contents of this BaseDynInst into given string. */
441    void dump(std::string &outstring);
442
443    /** Read this CPU's ID. */
444    int cpuId() const { return cpu->cpuId(); }
445
446    /** Read this CPU's Socket ID. */
447    uint32_t socketId() const { return cpu->socketId(); }
448
449    /** Read this CPU's data requestor ID */
450    MasterID masterId() const { return cpu->dataMasterId(); }
451
452    /** Read this context's system-wide ID **/
453    ContextID contextId() const { return thread->contextId(); }
454
455    /** Returns the fault type. */
456    Fault getFault() const { return fault; }
457
458    /** Checks whether or not this instruction has had its branch target
459     *  calculated yet.  For now it is not utilized and is hacked to be
460     *  always false.
461     *  @todo: Actually use this instruction.
462     */
463    bool doneTargCalc() { return false; }
464
465    /** Set the predicted target of this current instruction. */
466    void setPredTarg(const TheISA::PCState &_predPC)
467    {
468        predPC = _predPC;
469    }
470
471    const TheISA::PCState &readPredTarg() { return predPC; }
472
473    /** Returns the predicted PC immediately after the branch. */
474    Addr predInstAddr() { return predPC.instAddr(); }
475
476    /** Returns the predicted PC two instructions after the branch */
477    Addr predNextInstAddr() { return predPC.nextInstAddr(); }
478
479    /** Returns the predicted micro PC after the branch */
480    Addr predMicroPC() { return predPC.microPC(); }
481
482    /** Returns whether the instruction was predicted taken or not. */
483    bool readPredTaken()
484    {
485        return instFlags[PredTaken];
486    }
487
488    void setPredTaken(bool predicted_taken)
489    {
490        instFlags[PredTaken] = predicted_taken;
491    }
492
493    /** Returns whether the instruction mispredicted. */
494    bool mispredicted()
495    {
496        TheISA::PCState tempPC = pc;
497        TheISA::advancePC(tempPC, staticInst);
498        return !(tempPC == predPC);
499    }
500
501    //
502    //  Instruction types.  Forward checks to StaticInst object.
503    //
504    bool isNop()          const { return staticInst->isNop(); }
505    bool isMemRef()       const { return staticInst->isMemRef(); }
506    bool isLoad()         const { return staticInst->isLoad(); }
507    bool isStore()        const { return staticInst->isStore(); }
508    bool isAtomic()       const { return staticInst->isAtomic(); }
509    bool isStoreConditional() const
510    { return staticInst->isStoreConditional(); }
511    bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
512    bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
513    bool isInteger()      const { return staticInst->isInteger(); }
514    bool isFloating()     const { return staticInst->isFloating(); }
515    bool isVector()       const { return staticInst->isVector(); }
516    bool isControl()      const { return staticInst->isControl(); }
517    bool isCall()         const { return staticInst->isCall(); }
518    bool isReturn()       const { return staticInst->isReturn(); }
519    bool isDirectCtrl()   const { return staticInst->isDirectCtrl(); }
520    bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
521    bool isCondCtrl()     const { return staticInst->isCondCtrl(); }
522    bool isUncondCtrl()   const { return staticInst->isUncondCtrl(); }
523    bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
524    bool isThreadSync()   const { return staticInst->isThreadSync(); }
525    bool isSerializing()  const { return staticInst->isSerializing(); }
526    bool isSerializeBefore() const
527    { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
528    bool isSerializeAfter() const
529    { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
530    bool isSquashAfter() const { return staticInst->isSquashAfter(); }
531    bool isMemBarrier()   const { return staticInst->isMemBarrier(); }
532    bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
533    bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
534    bool isQuiesce() const { return staticInst->isQuiesce(); }
535    bool isIprAccess() const { return staticInst->isIprAccess(); }
536    bool isUnverifiable() const { return staticInst->isUnverifiable(); }
537    bool isSyscall() const { return staticInst->isSyscall(); }
538    bool isMacroop() const { return staticInst->isMacroop(); }
539    bool isMicroop() const { return staticInst->isMicroop(); }
540    bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
541    bool isLastMicroop() const { return staticInst->isLastMicroop(); }
542    bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
543    bool isMicroBranch() const { return staticInst->isMicroBranch(); }
544
545    /** Temporarily sets this instruction as a serialize before instruction. */
546    void setSerializeBefore() { status.set(SerializeBefore); }
547
548    /** Clears the serializeBefore part of this instruction. */
549    void clearSerializeBefore() { status.reset(SerializeBefore); }
550
551    /** Checks if this serializeBefore is only temporarily set. */
552    bool isTempSerializeBefore() { return status[SerializeBefore]; }
553
554    /** Temporarily sets this instruction as a serialize after instruction. */
555    void setSerializeAfter() { status.set(SerializeAfter); }
556
557    /** Clears the serializeAfter part of this instruction.*/
558    void clearSerializeAfter() { status.reset(SerializeAfter); }
559
560    /** Checks if this serializeAfter is only temporarily set. */
561    bool isTempSerializeAfter() { return status[SerializeAfter]; }
562
563    /** Sets the serialization part of this instruction as handled. */
564    void setSerializeHandled() { status.set(SerializeHandled); }
565
566    /** Checks if the serialization part of this instruction has been
567     *  handled.  This does not apply to the temporary serializing
568     *  state; it only applies to this instruction's own permanent
569     *  serializing state.
570     */
571    bool isSerializeHandled() { return status[SerializeHandled]; }
572
573    /** Returns the opclass of this instruction. */
574    OpClass opClass() const { return staticInst->opClass(); }
575
576    /** Returns the branch target address. */
577    TheISA::PCState branchTarget() const
578    { return staticInst->branchTarget(pc); }
579
580    /** Returns the number of source registers. */
581    int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
582
583    /** Returns the number of destination registers. */
584    int8_t numDestRegs() const { return staticInst->numDestRegs(); }
585
586    // the following are used to track physical register usage
587    // for machines with separate int & FP reg files
588    int8_t numFPDestRegs()  const { return staticInst->numFPDestRegs(); }
589    int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
590    int8_t numCCDestRegs() const { return staticInst->numCCDestRegs(); }
591    int8_t numVecDestRegs() const { return staticInst->numVecDestRegs(); }
592    int8_t numVecElemDestRegs() const {
593        return staticInst->numVecElemDestRegs();
594    }
595
596    /** Returns the logical register index of the i'th destination register. */
597    const RegId& destRegIdx(int i) const { return staticInst->destRegIdx(i); }
598
599    /** Returns the logical register index of the i'th source register. */
600    const RegId& srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
601
602    /** Return the size of the instResult queue. */
603    uint8_t resultSize() { return instResult.size(); }
604
605    /** Pops a result off the instResult queue.
606     * If the result stack is empty, return the default value.
607     * */
608    InstResult popResult(InstResult dflt = InstResult())
609    {
610        if (!instResult.empty()) {
611            InstResult t = instResult.front();
612            instResult.pop();
613            return t;
614        }
615        return dflt;
616    }
617
618    /** Pushes a result onto the instResult queue. */
619    /** @{ */
620    /** Scalar result. */
621    template<typename T>
622    void setScalarResult(T&& t)
623    {
624        if (instFlags[RecordResult]) {
625            instResult.push(InstResult(std::forward<T>(t),
626                        InstResult::ResultType::Scalar));
627        }
628    }
629
630    /** Full vector result. */
631    template<typename T>
632    void setVecResult(T&& t)
633    {
634        if (instFlags[RecordResult]) {
635            instResult.push(InstResult(std::forward<T>(t),
636                        InstResult::ResultType::VecReg));
637        }
638    }
639
640    /** Vector element result. */
641    template<typename T>
642    void setVecElemResult(T&& t)
643    {
644        if (instFlags[RecordResult]) {
645            instResult.push(InstResult(std::forward<T>(t),
646                        InstResult::ResultType::VecElem));
647        }
648    }
649    /** @} */
650
651    /** Records an integer register being set to a value. */
652    void setIntRegOperand(const StaticInst *si, int idx, RegVal val)
653    {
654        setScalarResult(val);
655    }
656
657    /** Records a CC register being set to a value. */
658    void setCCRegOperand(const StaticInst *si, int idx, CCReg val)
659    {
660        setScalarResult(val);
661    }
662
663    /** Record a vector register being set to a value */
664    void setVecRegOperand(const StaticInst *si, int idx,
665            const VecRegContainer& val)
666    {
667        setVecResult(val);
668    }
669
670    /** Records an fp register being set to an integer value. */
671    void
672    setFloatRegOperandBits(const StaticInst *si, int idx, RegVal val)
673    {
674        setScalarResult(val);
675    }
676
677    /** Record a vector register being set to a value */
678    void setVecElemOperand(const StaticInst *si, int idx, const VecElem val)
679    {
680        setVecElemResult(val);
681    }
682
683    /** Records that one of the source registers is ready. */
684    void markSrcRegReady();
685
686    /** Marks a specific register as ready. */
687    void markSrcRegReady(RegIndex src_idx);
688
689    /** Returns if a source register is ready. */
690    bool isReadySrcRegIdx(int idx) const
691    {
692        return this->_readySrcRegIdx[idx];
693    }
694
695    /** Sets this instruction as completed. */
696    void setCompleted() { status.set(Completed); }
697
698    /** Returns whether or not this instruction is completed. */
699    bool isCompleted() const { return status[Completed]; }
700
701    /** Marks the result as ready. */
702    void setResultReady() { status.set(ResultReady); }
703
704    /** Returns whether or not the result is ready. */
705    bool isResultReady() const { return status[ResultReady]; }
706
707    /** Sets this instruction as ready to issue. */
708    void setCanIssue() { status.set(CanIssue); }
709
710    /** Returns whether or not this instruction is ready to issue. */
711    bool readyToIssue() const { return status[CanIssue]; }
712
713    /** Clears this instruction being able to issue. */
714    void clearCanIssue() { status.reset(CanIssue); }
715
716    /** Sets this instruction as issued from the IQ. */
717    void setIssued() { status.set(Issued); }
718
719    /** Returns whether or not this instruction has issued. */
720    bool isIssued() const { return status[Issued]; }
721
722    /** Clears this instruction as being issued. */
723    void clearIssued() { status.reset(Issued); }
724
725    /** Sets this instruction as executed. */
726    void setExecuted() { status.set(Executed); }
727
728    /** Returns whether or not this instruction has executed. */
729    bool isExecuted() const { return status[Executed]; }
730
731    /** Sets this instruction as ready to commit. */
732    void setCanCommit() { status.set(CanCommit); }
733
734    /** Clears this instruction as being ready to commit. */
735    void clearCanCommit() { status.reset(CanCommit); }
736
737    /** Returns whether or not this instruction is ready to commit. */
738    bool readyToCommit() const { return status[CanCommit]; }
739
740    void setAtCommit() { status.set(AtCommit); }
741
742    bool isAtCommit() { return status[AtCommit]; }
743
744    /** Sets this instruction as committed. */
745    void setCommitted() { status.set(Committed); }
746
747    /** Returns whether or not this instruction is committed. */
748    bool isCommitted() const { return status[Committed]; }
749
750    /** Sets this instruction as squashed. */
751    void setSquashed() { status.set(Squashed); }
752
753    /** Returns whether or not this instruction is squashed. */
754    bool isSquashed() const { return status[Squashed]; }
755
756    //Instruction Queue Entry
757    //-----------------------
758    /** Sets this instruction as a entry the IQ. */
759    void setInIQ() { status.set(IqEntry); }
760
761    /** Sets this instruction as a entry the IQ. */
762    void clearInIQ() { status.reset(IqEntry); }
763
764    /** Returns whether or not this instruction has issued. */
765    bool isInIQ() const { return status[IqEntry]; }
766
767    /** Sets this instruction as squashed in the IQ. */
768    void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
769
770    /** Returns whether or not this instruction is squashed in the IQ. */
771    bool isSquashedInIQ() const { return status[SquashedInIQ]; }
772
773
774    //Load / Store Queue Functions
775    //-----------------------
776    /** Sets this instruction as a entry the LSQ. */
777    void setInLSQ() { status.set(LsqEntry); }
778
779    /** Sets this instruction as a entry the LSQ. */
780    void removeInLSQ() { status.reset(LsqEntry); }
781
782    /** Returns whether or not this instruction is in the LSQ. */
783    bool isInLSQ() const { return status[LsqEntry]; }
784
785    /** Sets this instruction as squashed in the LSQ. */
786    void setSquashedInLSQ() { status.set(SquashedInLSQ);}
787
788    /** Returns whether or not this instruction is squashed in the LSQ. */
789    bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
790
791
792    //Reorder Buffer Functions
793    //-----------------------
794    /** Sets this instruction as a entry the ROB. */
795    void setInROB() { status.set(RobEntry); }
796
797    /** Sets this instruction as a entry the ROB. */
798    void clearInROB() { status.reset(RobEntry); }
799
800    /** Returns whether or not this instruction is in the ROB. */
801    bool isInROB() const { return status[RobEntry]; }
802
803    /** Sets this instruction as squashed in the ROB. */
804    void setSquashedInROB() { status.set(SquashedInROB); }
805
806    /** Returns whether or not this instruction is squashed in the ROB. */
807    bool isSquashedInROB() const { return status[SquashedInROB]; }
808
809    /** Read the PC state of this instruction. */
810    TheISA::PCState pcState() const { return pc; }
811
812    /** Set the PC state of this instruction. */
813    void pcState(const TheISA::PCState &val) { pc = val; }
814
815    /** Read the PC of this instruction. */
816    Addr instAddr() const { return pc.instAddr(); }
817
818    /** Read the PC of the next instruction. */
819    Addr nextInstAddr() const { return pc.nextInstAddr(); }
820
821    /**Read the micro PC of this instruction. */
822    Addr microPC() const { return pc.microPC(); }
823
824    bool readPredicate() const
825    {
826        return instFlags[Predicate];
827    }
828
829    void setPredicate(bool val)
830    {
831        instFlags[Predicate] = val;
832
833        if (traceData) {
834            traceData->setPredicate(val);
835        }
836    }
837
838    /** Sets the ASID. */
839    void setASID(short addr_space_id) { asid = addr_space_id; }
840
841    /** Sets the thread id. */
842    void setTid(ThreadID tid) { threadNumber = tid; }
843
844    /** Sets the pointer to the thread state. */
845    void setThreadState(ImplState *state) { thread = state; }
846
847    /** Returns the thread context. */
848    ThreadContext *tcBase() { return thread->getTC(); }
849
850  public:
851    /** Returns whether or not the eff. addr. source registers are ready. */
852    bool eaSrcsReady() const;
853
854    /** Is this instruction's memory access strictly ordered? */
855    bool strictlyOrdered() const { return instFlags[IsStrictlyOrdered]; }
856
857    /** Has this instruction generated a memory request. */
858    bool hasRequest() const { return instFlags[ReqMade]; }
859
860    /** Returns iterator to this instruction in the list of all insts. */
861    ListIt &getInstListIt() { return instListIt; }
862
863    /** Sets iterator for this instruction in the list of all insts. */
864    void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
865
866  public:
867    /** Returns the number of consecutive store conditional failures. */
868    unsigned int readStCondFailures() const
869    { return thread->storeCondFailures; }
870
871    /** Sets the number of consecutive store conditional failures. */
872    void setStCondFailures(unsigned int sc_failures)
873    { thread->storeCondFailures = sc_failures; }
874
875  public:
876    // monitor/mwait funtions
877    void armMonitor(Addr address) { cpu->armMonitor(threadNumber, address); }
878    bool mwait(PacketPtr pkt) { return cpu->mwait(threadNumber, pkt); }
879    void mwaitAtomic(ThreadContext *tc)
880    { return cpu->mwaitAtomic(threadNumber, tc, cpu->dtb); }
881    AddressMonitor *getAddrMonitor()
882    { return cpu->getCpuAddrMonitor(threadNumber); }
883};
884
885template<class Impl>
886Fault
887BaseDynInst<Impl>::initiateMemRead(Addr addr, unsigned size,
888                                   Request::Flags flags)
889{
890    instFlags[ReqMade] = true;
891    RequestPtr req = NULL;
892    RequestPtr sreqLow = NULL;
893    RequestPtr sreqHigh = NULL;
894
895    if (instFlags[ReqMade] && translationStarted()) {
896        req = savedReq;
897        sreqLow = savedSreqLow;
898        sreqHigh = savedSreqHigh;
899    } else {
900        req = std::make_shared<Request>(
901            asid, addr, size, flags, masterId(),
902            this->pc.instAddr(), thread->contextId());
903
904        req->taskId(cpu->taskId());
905
906        // Only split the request if the ISA supports unaligned accesses.
907        if (TheISA::HasUnalignedMemAcc) {
908            splitRequest(req, sreqLow, sreqHigh);
909        }
910        initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
911    }
912
913    if (translationCompleted()) {
914        if (fault == NoFault) {
915            effAddr = req->getVaddr();
916            effSize = size;
917            instFlags[EffAddrValid] = true;
918
919            if (cpu->checker) {
920                reqToVerify = std::make_shared<Request>(*req);
921            }
922            fault = cpu->read(req, sreqLow, sreqHigh, lqIdx);
923        } else {
924            // Commit will have to clean up whatever happened.  Set this
925            // instruction as executed.
926            this->setExecuted();
927        }
928    }
929
930    if (traceData)
931        traceData->setMem(addr, size, flags);
932
933    return fault;
934}
935
936template<class Impl>
937Fault
938BaseDynInst<Impl>::writeMem(uint8_t *data, unsigned size, Addr addr,
939                            Request::Flags flags, uint64_t *res)
940{
941    if (traceData)
942        traceData->setMem(addr, size, flags);
943
944    instFlags[ReqMade] = true;
945    RequestPtr req = NULL;
946    RequestPtr sreqLow = NULL;
947    RequestPtr sreqHigh = NULL;
948
949    if (instFlags[ReqMade] && translationStarted()) {
950        req = savedReq;
951        sreqLow = savedSreqLow;
952        sreqHigh = savedSreqHigh;
953    } else {
954        req = std::make_shared<Request>(
955            asid, addr, size, flags, masterId(),
956            this->pc.instAddr(), thread->contextId());
957
958        req->taskId(cpu->taskId());
959
960        // Only split the request if the ISA supports unaligned accesses.
961        if (TheISA::HasUnalignedMemAcc) {
962            splitRequest(req, sreqLow, sreqHigh);
963        }
964        initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
965    }
966
967    if (fault == NoFault && translationCompleted()) {
968        effAddr = req->getVaddr();
969        effSize = size;
970        instFlags[EffAddrValid] = true;
971
972        if (cpu->checker) {
973            reqToVerify = std::make_shared<Request>(*req);
974        }
975        fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
976    }
977
978    return fault;
979}
980
981template<class Impl>
982inline void
983BaseDynInst<Impl>::splitRequest(const RequestPtr &req, RequestPtr &sreqLow,
984                                RequestPtr &sreqHigh)
985{
986    // Check to see if the request crosses the next level block boundary.
987    unsigned block_size = cpu->cacheLineSize();
988    Addr addr = req->getVaddr();
989    Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
990    assert(split_addr <= addr || split_addr - addr < block_size);
991
992    // Spans two blocks.
993    if (split_addr > addr) {
994        req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
995    }
996}
997
998template<class Impl>
999inline void
1000BaseDynInst<Impl>::initiateTranslation(const RequestPtr &req,
1001                                       const RequestPtr &sreqLow,
1002                                       const RequestPtr &sreqHigh,
1003                                       uint64_t *res,
1004                                       BaseTLB::Mode mode)
1005{
1006    translationStarted(true);
1007
1008    if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
1009        WholeTranslationState *state =
1010            new WholeTranslationState(req, NULL, res, mode);
1011
1012        // One translation if the request isn't split.
1013        DataTranslation<BaseDynInstPtr> *trans =
1014            new DataTranslation<BaseDynInstPtr>(this, state);
1015
1016        cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
1017
1018        if (!translationCompleted()) {
1019            // The translation isn't yet complete, so we can't possibly have a
1020            // fault. Overwrite any existing fault we might have from a previous
1021            // execution of this instruction (e.g. an uncachable load that
1022            // couldn't execute because it wasn't at the head of the ROB).
1023            fault = NoFault;
1024
1025            // Save memory requests.
1026            savedReq = state->mainReq;
1027            savedSreqLow = state->sreqLow;
1028            savedSreqHigh = state->sreqHigh;
1029        }
1030    } else {
1031        WholeTranslationState *state =
1032            new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);
1033
1034        // Two translations when the request is split.
1035        DataTranslation<BaseDynInstPtr> *stransLow =
1036            new DataTranslation<BaseDynInstPtr>(this, state, 0);
1037        DataTranslation<BaseDynInstPtr> *stransHigh =
1038            new DataTranslation<BaseDynInstPtr>(this, state, 1);
1039
1040        cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
1041        cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);
1042
1043        if (!translationCompleted()) {
1044            // The translation isn't yet complete, so we can't possibly have a
1045            // fault. Overwrite any existing fault we might have from a previous
1046            // execution of this instruction (e.g. an uncachable load that
1047            // couldn't execute because it wasn't at the head of the ROB).
1048            fault = NoFault;
1049
1050            // Save memory requests.
1051            savedReq = state->mainReq;
1052            savedSreqLow = state->sreqLow;
1053            savedSreqHigh = state->sreqHigh;
1054        }
1055    }
1056}
1057
1058template<class Impl>
1059inline void
1060BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state)
1061{
1062    fault = state->getFault();
1063
1064    instFlags[IsStrictlyOrdered] = state->isStrictlyOrdered();
1065
1066    if (fault == NoFault) {
1067        // save Paddr for a single req
1068        physEffAddrLow = state->getPaddr();
1069
1070        // case for the request that has been split
1071        if (state->isSplit) {
1072          physEffAddrLow = state->sreqLow->getPaddr();
1073          physEffAddrHigh = state->sreqHigh->getPaddr();
1074        }
1075
1076        memReqFlags = state->getFlags();
1077
1078        if (state->mainReq->isCondSwap()) {
1079            assert(state->res);
1080            state->mainReq->setExtraData(*state->res);
1081        }
1082
1083    } else {
1084        state->deleteReqs();
1085    }
1086    delete state;
1087
1088    translationCompleted(true);
1089}
1090
1091#endif // __CPU_BASE_DYN_INST_HH__
1092