base_dyn_inst.hh revision 12420:f5c80f4ed41f
1/*
2 * Copyright (c) 2011,2013,2016 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * Copyright (c) 2009 The University of Edinburgh
17 * All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions are
21 * met: redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer;
23 * redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution;
26 * neither the name of the copyright holders nor the names of its
27 * contributors may be used to endorse or promote products derived from
28 * this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Authors: Kevin Lim
43 *          Timothy M. Jones
44 */
45
46#ifndef __CPU_BASE_DYN_INST_HH__
47#define __CPU_BASE_DYN_INST_HH__
48
49#include <array>
50#include <bitset>
51#include <deque>
52#include <list>
53#include <string>
54
55#include "arch/generic/tlb.hh"
56#include "arch/utility.hh"
57#include "base/trace.hh"
58#include "config/the_isa.hh"
59#include "cpu/checker/cpu.hh"
60#include "cpu/exec_context.hh"
61#include "cpu/exetrace.hh"
62#include "cpu/inst_res.hh"
63#include "cpu/inst_seq.hh"
64#include "cpu/o3/comm.hh"
65#include "cpu/op_class.hh"
66#include "cpu/static_inst.hh"
67#include "cpu/translation.hh"
68#include "mem/packet.hh"
69#include "mem/request.hh"
70#include "sim/byteswap.hh"
71#include "sim/system.hh"
72
73/**
74 * @file
75 * Defines a dynamic instruction context.
76 */
77
78template <class Impl>
79class BaseDynInst : public ExecContext, public RefCounted
80{
81  public:
82    // Typedef for the CPU.
83    typedef typename Impl::CPUType ImplCPU;
84    typedef typename ImplCPU::ImplState ImplState;
85    using VecRegContainer = TheISA::VecRegContainer;
86
87    // The DynInstPtr type.
88    typedef typename Impl::DynInstPtr DynInstPtr;
89    typedef RefCountingPtr<BaseDynInst<Impl> > BaseDynInstPtr;
90
91    // The list of instructions iterator type.
92    typedef typename std::list<DynInstPtr>::iterator ListIt;
93
94    enum {
95        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,        /// Max source regs
96        MaxInstDestRegs = TheISA::MaxInstDestRegs       /// Max dest regs
97    };
98
99  protected:
100    enum Status {
101        IqEntry,                 /// Instruction is in the IQ
102        RobEntry,                /// Instruction is in the ROB
103        LsqEntry,                /// Instruction is in the LSQ
104        Completed,               /// Instruction has completed
105        ResultReady,             /// Instruction has its result
106        CanIssue,                /// Instruction can issue and execute
107        Issued,                  /// Instruction has issued
108        Executed,                /// Instruction has executed
109        CanCommit,               /// Instruction can commit
110        AtCommit,                /// Instruction has reached commit
111        Committed,               /// Instruction has committed
112        Squashed,                /// Instruction is squashed
113        SquashedInIQ,            /// Instruction is squashed in the IQ
114        SquashedInLSQ,           /// Instruction is squashed in the LSQ
115        SquashedInROB,           /// Instruction is squashed in the ROB
116        RecoverInst,             /// Is a recover instruction
117        BlockingInst,            /// Is a blocking instruction
118        ThreadsyncWait,          /// Is a thread synchronization instruction
119        SerializeBefore,         /// Needs to serialize on
120                                 /// instructions ahead of it
121        SerializeAfter,          /// Needs to serialize instructions behind it
122        SerializeHandled,        /// Serialization has been handled
123        NumStatus
124    };
125
126    enum Flags {
127        TranslationStarted,
128        TranslationCompleted,
129        PossibleLoadViolation,
130        HitExternalSnoop,
131        EffAddrValid,
132        RecordResult,
133        Predicate,
134        PredTaken,
135        IsStrictlyOrdered,
136        ReqMade,
137        MemOpDone,
138        MaxFlags
139    };
140
141  public:
142    /** The sequence number of the instruction. */
143    InstSeqNum seqNum;
144
145    /** The StaticInst used by this BaseDynInst. */
146    const StaticInstPtr staticInst;
147
148    /** Pointer to the Impl's CPU object. */
149    ImplCPU *cpu;
150
151    BaseCPU *getCpuPtr() { return cpu; }
152
153    /** Pointer to the thread state. */
154    ImplState *thread;
155
156    /** The kind of fault this instruction has generated. */
157    Fault fault;
158
159    /** InstRecord that tracks this instructions. */
160    Trace::InstRecord *traceData;
161
162  protected:
163    /** The result of the instruction; assumes an instruction can have many
164     *  destination registers.
165     */
166    std::queue<InstResult> instResult;
167
168    /** PC state for this instruction. */
169    TheISA::PCState pc;
170
171    /* An amalgamation of a lot of boolean values into one */
172    std::bitset<MaxFlags> instFlags;
173
174    /** The status of this BaseDynInst.  Several bits can be set. */
175    std::bitset<NumStatus> status;
176
177     /** Whether or not the source register is ready.
178     *  @todo: Not sure this should be here vs the derived class.
179     */
180    std::bitset<MaxInstSrcRegs> _readySrcRegIdx;
181
182  public:
183    /** The thread this instruction is from. */
184    ThreadID threadNumber;
185
186    /** Iterator pointing to this BaseDynInst in the list of all insts. */
187    ListIt instListIt;
188
189    ////////////////////// Branch Data ///////////////
190    /** Predicted PC state after this instruction. */
191    TheISA::PCState predPC;
192
193    /** The Macroop if one exists */
194    const StaticInstPtr macroop;
195
196    /** How many source registers are ready. */
197    uint8_t readyRegs;
198
199  public:
200    /////////////////////// Load Store Data //////////////////////
201    /** The effective virtual address (lds & stores only). */
202    Addr effAddr;
203
204    /** The effective physical address. */
205    Addr physEffAddrLow;
206
207    /** The effective physical address
208     *  of the second request for a split request
209     */
210    Addr physEffAddrHigh;
211
212    /** The memory request flags (from translation). */
213    unsigned memReqFlags;
214
215    /** data address space ID, for loads & stores. */
216    short asid;
217
218    /** The size of the request */
219    uint8_t effSize;
220
221    /** Pointer to the data for the memory access. */
222    uint8_t *memData;
223
224    /** Load queue index. */
225    int16_t lqIdx;
226
227    /** Store queue index. */
228    int16_t sqIdx;
229
230
231    /////////////////////// TLB Miss //////////////////////
232    /**
233     * Saved memory requests (needed when the DTB address translation is
234     * delayed due to a hw page table walk).
235     */
236    RequestPtr savedReq;
237    RequestPtr savedSreqLow;
238    RequestPtr savedSreqHigh;
239
240    /////////////////////// Checker //////////////////////
241    // Need a copy of main request pointer to verify on writes.
242    RequestPtr reqToVerify;
243
244  protected:
245    /** Flattened register index of the destination registers of this
246     *  instruction.
247     */
248    std::array<RegId, TheISA::MaxInstDestRegs> _flatDestRegIdx;
249
250    /** Physical register index of the destination registers of this
251     *  instruction.
252     */
253    std::array<PhysRegIdPtr, TheISA::MaxInstDestRegs> _destRegIdx;
254
255    /** Physical register index of the source registers of this
256     *  instruction.
257     */
258    std::array<PhysRegIdPtr, TheISA::MaxInstSrcRegs> _srcRegIdx;
259
260    /** Physical register index of the previous producers of the
261     *  architected destinations.
262     */
263    std::array<PhysRegIdPtr, TheISA::MaxInstDestRegs> _prevDestRegIdx;
264
265
266  public:
267    /** Records changes to result? */
268    void recordResult(bool f) { instFlags[RecordResult] = f; }
269
270    /** Is the effective virtual address valid. */
271    bool effAddrValid() const { return instFlags[EffAddrValid]; }
272
273    /** Whether or not the memory operation is done. */
274    bool memOpDone() const { return instFlags[MemOpDone]; }
275    void memOpDone(bool f) { instFlags[MemOpDone] = f; }
276
277
278    ////////////////////////////////////////////
279    //
280    // INSTRUCTION EXECUTION
281    //
282    ////////////////////////////////////////////
283
284    void demapPage(Addr vaddr, uint64_t asn)
285    {
286        cpu->demapPage(vaddr, asn);
287    }
288    void demapInstPage(Addr vaddr, uint64_t asn)
289    {
290        cpu->demapPage(vaddr, asn);
291    }
292    void demapDataPage(Addr vaddr, uint64_t asn)
293    {
294        cpu->demapPage(vaddr, asn);
295    }
296
297    Fault initiateMemRead(Addr addr, unsigned size, Request::Flags flags);
298
299    Fault writeMem(uint8_t *data, unsigned size, Addr addr,
300                   Request::Flags flags, uint64_t *res);
301
302    /** Splits a request in two if it crosses a dcache block. */
303    void splitRequest(RequestPtr req, RequestPtr &sreqLow,
304                      RequestPtr &sreqHigh);
305
306    /** Initiate a DTB address translation. */
307    void initiateTranslation(RequestPtr req, RequestPtr sreqLow,
308                             RequestPtr sreqHigh, uint64_t *res,
309                             BaseTLB::Mode mode);
310
311    /** Finish a DTB address translation. */
312    void finishTranslation(WholeTranslationState *state);
313
314    /** True if the DTB address translation has started. */
315    bool translationStarted() const { return instFlags[TranslationStarted]; }
316    void translationStarted(bool f) { instFlags[TranslationStarted] = f; }
317
318    /** True if the DTB address translation has completed. */
319    bool translationCompleted() const { return instFlags[TranslationCompleted]; }
320    void translationCompleted(bool f) { instFlags[TranslationCompleted] = f; }
321
322    /** True if this address was found to match a previous load and they issued
323     * out of order. If that happend, then it's only a problem if an incoming
324     * snoop invalidate modifies the line, in which case we need to squash.
325     * If nothing modified the line the order doesn't matter.
326     */
327    bool possibleLoadViolation() const { return instFlags[PossibleLoadViolation]; }
328    void possibleLoadViolation(bool f) { instFlags[PossibleLoadViolation] = f; }
329
330    /** True if the address hit a external snoop while sitting in the LSQ.
331     * If this is true and a older instruction sees it, this instruction must
332     * reexecute
333     */
334    bool hitExternalSnoop() const { return instFlags[HitExternalSnoop]; }
335    void hitExternalSnoop(bool f) { instFlags[HitExternalSnoop] = f; }
336
337    /**
338     * Returns true if the DTB address translation is being delayed due to a hw
339     * page table walk.
340     */
341    bool isTranslationDelayed() const
342    {
343        return (translationStarted() && !translationCompleted());
344    }
345
346  public:
347#ifdef DEBUG
348    void dumpSNList();
349#endif
350
351    /** Returns the physical register index of the i'th destination
352     *  register.
353     */
354    PhysRegIdPtr renamedDestRegIdx(int idx) const
355    {
356        return _destRegIdx[idx];
357    }
358
359    /** Returns the physical register index of the i'th source register. */
360    PhysRegIdPtr renamedSrcRegIdx(int idx) const
361    {
362        assert(TheISA::MaxInstSrcRegs > idx);
363        return _srcRegIdx[idx];
364    }
365
366    /** Returns the flattened register index of the i'th destination
367     *  register.
368     */
369    const RegId& flattenedDestRegIdx(int idx) const
370    {
371        return _flatDestRegIdx[idx];
372    }
373
374    /** Returns the physical register index of the previous physical register
375     *  that remapped to the same logical register index.
376     */
377    PhysRegIdPtr prevDestRegIdx(int idx) const
378    {
379        return _prevDestRegIdx[idx];
380    }
381
382    /** Renames a destination register to a physical register.  Also records
383     *  the previous physical register that the logical register mapped to.
384     */
385    void renameDestReg(int idx,
386                       PhysRegIdPtr renamed_dest,
387                       PhysRegIdPtr previous_rename)
388    {
389        _destRegIdx[idx] = renamed_dest;
390        _prevDestRegIdx[idx] = previous_rename;
391    }
392
393    /** Renames a source logical register to the physical register which
394     *  has/will produce that logical register's result.
395     *  @todo: add in whether or not the source register is ready.
396     */
397    void renameSrcReg(int idx, PhysRegIdPtr renamed_src)
398    {
399        _srcRegIdx[idx] = renamed_src;
400    }
401
402    /** Flattens a destination architectural register index into a logical
403     * index.
404     */
405    void flattenDestReg(int idx, const RegId& flattened_dest)
406    {
407        _flatDestRegIdx[idx] = flattened_dest;
408    }
409    /** BaseDynInst constructor given a binary instruction.
410     *  @param staticInst A StaticInstPtr to the underlying instruction.
411     *  @param pc The PC state for the instruction.
412     *  @param predPC The predicted next PC state for the instruction.
413     *  @param seq_num The sequence number of the instruction.
414     *  @param cpu Pointer to the instruction's CPU.
415     */
416    BaseDynInst(const StaticInstPtr &staticInst, const StaticInstPtr &macroop,
417                TheISA::PCState pc, TheISA::PCState predPC,
418                InstSeqNum seq_num, ImplCPU *cpu);
419
420    /** BaseDynInst constructor given a StaticInst pointer.
421     *  @param _staticInst The StaticInst for this BaseDynInst.
422     */
423    BaseDynInst(const StaticInstPtr &staticInst, const StaticInstPtr &macroop);
424
425    /** BaseDynInst destructor. */
426    ~BaseDynInst();
427
428  private:
429    /** Function to initialize variables in the constructors. */
430    void initVars();
431
432  public:
433    /** Dumps out contents of this BaseDynInst. */
434    void dump();
435
436    /** Dumps out contents of this BaseDynInst into given string. */
437    void dump(std::string &outstring);
438
439    /** Read this CPU's ID. */
440    int cpuId() const { return cpu->cpuId(); }
441
442    /** Read this CPU's Socket ID. */
443    uint32_t socketId() const { return cpu->socketId(); }
444
445    /** Read this CPU's data requestor ID */
446    MasterID masterId() const { return cpu->dataMasterId(); }
447
448    /** Read this context's system-wide ID **/
449    ContextID contextId() const { return thread->contextId(); }
450
451    /** Returns the fault type. */
452    Fault getFault() const { return fault; }
453
454    /** Checks whether or not this instruction has had its branch target
455     *  calculated yet.  For now it is not utilized and is hacked to be
456     *  always false.
457     *  @todo: Actually use this instruction.
458     */
459    bool doneTargCalc() { return false; }
460
461    /** Set the predicted target of this current instruction. */
462    void setPredTarg(const TheISA::PCState &_predPC)
463    {
464        predPC = _predPC;
465    }
466
467    const TheISA::PCState &readPredTarg() { return predPC; }
468
469    /** Returns the predicted PC immediately after the branch. */
470    Addr predInstAddr() { return predPC.instAddr(); }
471
472    /** Returns the predicted PC two instructions after the branch */
473    Addr predNextInstAddr() { return predPC.nextInstAddr(); }
474
475    /** Returns the predicted micro PC after the branch */
476    Addr predMicroPC() { return predPC.microPC(); }
477
478    /** Returns whether the instruction was predicted taken or not. */
479    bool readPredTaken()
480    {
481        return instFlags[PredTaken];
482    }
483
484    void setPredTaken(bool predicted_taken)
485    {
486        instFlags[PredTaken] = predicted_taken;
487    }
488
489    /** Returns whether the instruction mispredicted. */
490    bool mispredicted()
491    {
492        TheISA::PCState tempPC = pc;
493        TheISA::advancePC(tempPC, staticInst);
494        return !(tempPC == predPC);
495    }
496
497    //
498    //  Instruction types.  Forward checks to StaticInst object.
499    //
500    bool isNop()          const { return staticInst->isNop(); }
501    bool isMemRef()       const { return staticInst->isMemRef(); }
502    bool isLoad()         const { return staticInst->isLoad(); }
503    bool isStore()        const { return staticInst->isStore(); }
504    bool isStoreConditional() const
505    { return staticInst->isStoreConditional(); }
506    bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
507    bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
508    bool isInteger()      const { return staticInst->isInteger(); }
509    bool isFloating()     const { return staticInst->isFloating(); }
510    bool isVector()       const { return staticInst->isVector(); }
511    bool isControl()      const { return staticInst->isControl(); }
512    bool isCall()         const { return staticInst->isCall(); }
513    bool isReturn()       const { return staticInst->isReturn(); }
514    bool isDirectCtrl()   const { return staticInst->isDirectCtrl(); }
515    bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
516    bool isCondCtrl()     const { return staticInst->isCondCtrl(); }
517    bool isUncondCtrl()   const { return staticInst->isUncondCtrl(); }
518    bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
519    bool isThreadSync()   const { return staticInst->isThreadSync(); }
520    bool isSerializing()  const { return staticInst->isSerializing(); }
521    bool isSerializeBefore() const
522    { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
523    bool isSerializeAfter() const
524    { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
525    bool isSquashAfter() const { return staticInst->isSquashAfter(); }
526    bool isMemBarrier()   const { return staticInst->isMemBarrier(); }
527    bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
528    bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
529    bool isQuiesce() const { return staticInst->isQuiesce(); }
530    bool isIprAccess() const { return staticInst->isIprAccess(); }
531    bool isUnverifiable() const { return staticInst->isUnverifiable(); }
532    bool isSyscall() const { return staticInst->isSyscall(); }
533    bool isMacroop() const { return staticInst->isMacroop(); }
534    bool isMicroop() const { return staticInst->isMicroop(); }
535    bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
536    bool isLastMicroop() const { return staticInst->isLastMicroop(); }
537    bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
538    bool isMicroBranch() const { return staticInst->isMicroBranch(); }
539
540    /** Temporarily sets this instruction as a serialize before instruction. */
541    void setSerializeBefore() { status.set(SerializeBefore); }
542
543    /** Clears the serializeBefore part of this instruction. */
544    void clearSerializeBefore() { status.reset(SerializeBefore); }
545
546    /** Checks if this serializeBefore is only temporarily set. */
547    bool isTempSerializeBefore() { return status[SerializeBefore]; }
548
549    /** Temporarily sets this instruction as a serialize after instruction. */
550    void setSerializeAfter() { status.set(SerializeAfter); }
551
552    /** Clears the serializeAfter part of this instruction.*/
553    void clearSerializeAfter() { status.reset(SerializeAfter); }
554
555    /** Checks if this serializeAfter is only temporarily set. */
556    bool isTempSerializeAfter() { return status[SerializeAfter]; }
557
558    /** Sets the serialization part of this instruction as handled. */
559    void setSerializeHandled() { status.set(SerializeHandled); }
560
561    /** Checks if the serialization part of this instruction has been
562     *  handled.  This does not apply to the temporary serializing
563     *  state; it only applies to this instruction's own permanent
564     *  serializing state.
565     */
566    bool isSerializeHandled() { return status[SerializeHandled]; }
567
568    /** Returns the opclass of this instruction. */
569    OpClass opClass() const { return staticInst->opClass(); }
570
571    /** Returns the branch target address. */
572    TheISA::PCState branchTarget() const
573    { return staticInst->branchTarget(pc); }
574
575    /** Returns the number of source registers. */
576    int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
577
578    /** Returns the number of destination registers. */
579    int8_t numDestRegs() const { return staticInst->numDestRegs(); }
580
581    // the following are used to track physical register usage
582    // for machines with separate int & FP reg files
583    int8_t numFPDestRegs()  const { return staticInst->numFPDestRegs(); }
584    int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
585    int8_t numCCDestRegs() const { return staticInst->numCCDestRegs(); }
586    int8_t numVecDestRegs() const { return staticInst->numVecDestRegs(); }
587    int8_t numVecElemDestRegs() const {
588        return staticInst->numVecElemDestRegs();
589    }
590
591    /** Returns the logical register index of the i'th destination register. */
592    const RegId& destRegIdx(int i) const { return staticInst->destRegIdx(i); }
593
594    /** Returns the logical register index of the i'th source register. */
595    const RegId& srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
596
597    /** Return the size of the instResult queue. */
598    uint8_t resultSize() { return instResult.size(); }
599
600    /** Pops a result off the instResult queue.
601     * If the result stack is empty, return the default value.
602     * */
603    InstResult popResult(InstResult dflt = InstResult())
604    {
605        if (!instResult.empty()) {
606            InstResult t = instResult.front();
607            instResult.pop();
608            return t;
609        }
610        return dflt;
611    }
612
613    /** Pushes a result onto the instResult queue. */
614    /** @{ */
615    /** Scalar result. */
616    template<typename T>
617    void setScalarResult(T&& t)
618    {
619        if (instFlags[RecordResult]) {
620            instResult.push(InstResult(std::forward<T>(t),
621                        InstResult::ResultType::Scalar));
622        }
623    }
624
625    /** Full vector result. */
626    template<typename T>
627    void setVecResult(T&& t)
628    {
629        if (instFlags[RecordResult]) {
630            instResult.push(InstResult(std::forward<T>(t),
631                        InstResult::ResultType::VecReg));
632        }
633    }
634
635    /** Vector element result. */
636    template<typename T>
637    void setVecElemResult(T&& t)
638    {
639        if (instFlags[RecordResult]) {
640            instResult.push(InstResult(std::forward<T>(t),
641                        InstResult::ResultType::VecElem));
642        }
643    }
644    /** @} */
645
646    /** Records an integer register being set to a value. */
647    void setIntRegOperand(const StaticInst *si, int idx, IntReg val)
648    {
649        setScalarResult(val);
650    }
651
652    /** Records a CC register being set to a value. */
653    void setCCRegOperand(const StaticInst *si, int idx, CCReg val)
654    {
655        setScalarResult(val);
656    }
657
658    /** Records an fp register being set to a value. */
659    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
660    {
661        setScalarResult(val);
662    }
663
664    /** Record a vector register being set to a value */
665    void setVecRegOperand(const StaticInst *si, int idx,
666            const VecRegContainer& val)
667    {
668        setVecResult(val);
669    }
670
671    /** Records an fp register being set to an integer value. */
672    void
673    setFloatRegOperandBits(const StaticInst *si, int idx, FloatRegBits val)
674    {
675        setScalarResult(val);
676    }
677
678    /** Record a vector register being set to a value */
679    void setVecElemOperand(const StaticInst *si, int idx, const VecElem val)
680    {
681        setVecElemResult(val);
682    }
683
684    /** Records that one of the source registers is ready. */
685    void markSrcRegReady();
686
687    /** Marks a specific register as ready. */
688    void markSrcRegReady(RegIndex src_idx);
689
690    /** Returns if a source register is ready. */
691    bool isReadySrcRegIdx(int idx) const
692    {
693        return this->_readySrcRegIdx[idx];
694    }
695
696    /** Sets this instruction as completed. */
697    void setCompleted() { status.set(Completed); }
698
699    /** Returns whether or not this instruction is completed. */
700    bool isCompleted() const { return status[Completed]; }
701
702    /** Marks the result as ready. */
703    void setResultReady() { status.set(ResultReady); }
704
705    /** Returns whether or not the result is ready. */
706    bool isResultReady() const { return status[ResultReady]; }
707
708    /** Sets this instruction as ready to issue. */
709    void setCanIssue() { status.set(CanIssue); }
710
711    /** Returns whether or not this instruction is ready to issue. */
712    bool readyToIssue() const { return status[CanIssue]; }
713
714    /** Clears this instruction being able to issue. */
715    void clearCanIssue() { status.reset(CanIssue); }
716
717    /** Sets this instruction as issued from the IQ. */
718    void setIssued() { status.set(Issued); }
719
720    /** Returns whether or not this instruction has issued. */
721    bool isIssued() const { return status[Issued]; }
722
723    /** Clears this instruction as being issued. */
724    void clearIssued() { status.reset(Issued); }
725
726    /** Sets this instruction as executed. */
727    void setExecuted() { status.set(Executed); }
728
729    /** Returns whether or not this instruction has executed. */
730    bool isExecuted() const { return status[Executed]; }
731
732    /** Sets this instruction as ready to commit. */
733    void setCanCommit() { status.set(CanCommit); }
734
735    /** Clears this instruction as being ready to commit. */
736    void clearCanCommit() { status.reset(CanCommit); }
737
738    /** Returns whether or not this instruction is ready to commit. */
739    bool readyToCommit() const { return status[CanCommit]; }
740
741    void setAtCommit() { status.set(AtCommit); }
742
743    bool isAtCommit() { return status[AtCommit]; }
744
745    /** Sets this instruction as committed. */
746    void setCommitted() { status.set(Committed); }
747
748    /** Returns whether or not this instruction is committed. */
749    bool isCommitted() const { return status[Committed]; }
750
751    /** Sets this instruction as squashed. */
752    void setSquashed() { status.set(Squashed); }
753
754    /** Returns whether or not this instruction is squashed. */
755    bool isSquashed() const { return status[Squashed]; }
756
757    //Instruction Queue Entry
758    //-----------------------
759    /** Sets this instruction as a entry the IQ. */
760    void setInIQ() { status.set(IqEntry); }
761
762    /** Sets this instruction as a entry the IQ. */
763    void clearInIQ() { status.reset(IqEntry); }
764
765    /** Returns whether or not this instruction has issued. */
766    bool isInIQ() const { return status[IqEntry]; }
767
768    /** Sets this instruction as squashed in the IQ. */
769    void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
770
771    /** Returns whether or not this instruction is squashed in the IQ. */
772    bool isSquashedInIQ() const { return status[SquashedInIQ]; }
773
774
775    //Load / Store Queue Functions
776    //-----------------------
777    /** Sets this instruction as a entry the LSQ. */
778    void setInLSQ() { status.set(LsqEntry); }
779
780    /** Sets this instruction as a entry the LSQ. */
781    void removeInLSQ() { status.reset(LsqEntry); }
782
783    /** Returns whether or not this instruction is in the LSQ. */
784    bool isInLSQ() const { return status[LsqEntry]; }
785
786    /** Sets this instruction as squashed in the LSQ. */
787    void setSquashedInLSQ() { status.set(SquashedInLSQ);}
788
789    /** Returns whether or not this instruction is squashed in the LSQ. */
790    bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
791
792
793    //Reorder Buffer Functions
794    //-----------------------
795    /** Sets this instruction as a entry the ROB. */
796    void setInROB() { status.set(RobEntry); }
797
798    /** Sets this instruction as a entry the ROB. */
799    void clearInROB() { status.reset(RobEntry); }
800
801    /** Returns whether or not this instruction is in the ROB. */
802    bool isInROB() const { return status[RobEntry]; }
803
804    /** Sets this instruction as squashed in the ROB. */
805    void setSquashedInROB() { status.set(SquashedInROB); }
806
807    /** Returns whether or not this instruction is squashed in the ROB. */
808    bool isSquashedInROB() const { return status[SquashedInROB]; }
809
810    /** Read the PC state of this instruction. */
811    TheISA::PCState pcState() const { return pc; }
812
813    /** Set the PC state of this instruction. */
814    void pcState(const TheISA::PCState &val) { pc = val; }
815
816    /** Read the PC of this instruction. */
817    Addr instAddr() const { return pc.instAddr(); }
818
819    /** Read the PC of the next instruction. */
820    Addr nextInstAddr() const { return pc.nextInstAddr(); }
821
822    /**Read the micro PC of this instruction. */
823    Addr microPC() const { return pc.microPC(); }
824
825    bool readPredicate()
826    {
827        return instFlags[Predicate];
828    }
829
830    void setPredicate(bool val)
831    {
832        instFlags[Predicate] = val;
833
834        if (traceData) {
835            traceData->setPredicate(val);
836        }
837    }
838
839    /** Sets the ASID. */
840    void setASID(short addr_space_id) { asid = addr_space_id; }
841
842    /** Sets the thread id. */
843    void setTid(ThreadID tid) { threadNumber = tid; }
844
845    /** Sets the pointer to the thread state. */
846    void setThreadState(ImplState *state) { thread = state; }
847
848    /** Returns the thread context. */
849    ThreadContext *tcBase() { return thread->getTC(); }
850
851  public:
852    /** Returns whether or not the eff. addr. source registers are ready. */
853    bool eaSrcsReady();
854
855    /** Is this instruction's memory access strictly ordered? */
856    bool strictlyOrdered() const { return instFlags[IsStrictlyOrdered]; }
857
858    /** Has this instruction generated a memory request. */
859    bool hasRequest() { return instFlags[ReqMade]; }
860
861    /** Returns iterator to this instruction in the list of all insts. */
862    ListIt &getInstListIt() { return instListIt; }
863
864    /** Sets iterator for this instruction in the list of all insts. */
865    void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
866
867  public:
868    /** Returns the number of consecutive store conditional failures. */
869    unsigned int readStCondFailures() const
870    { return thread->storeCondFailures; }
871
872    /** Sets the number of consecutive store conditional failures. */
873    void setStCondFailures(unsigned int sc_failures)
874    { thread->storeCondFailures = sc_failures; }
875
876  public:
877    // monitor/mwait funtions
878    void armMonitor(Addr address) { cpu->armMonitor(threadNumber, address); }
879    bool mwait(PacketPtr pkt) { return cpu->mwait(threadNumber, pkt); }
880    void mwaitAtomic(ThreadContext *tc)
881    { return cpu->mwaitAtomic(threadNumber, tc, cpu->dtb); }
882    AddressMonitor *getAddrMonitor()
883    { return cpu->getCpuAddrMonitor(threadNumber); }
884};
885
886template<class Impl>
887Fault
888BaseDynInst<Impl>::initiateMemRead(Addr addr, unsigned size,
889                                   Request::Flags flags)
890{
891    instFlags[ReqMade] = true;
892    Request *req = NULL;
893    Request *sreqLow = NULL;
894    Request *sreqHigh = NULL;
895
896    if (instFlags[ReqMade] && translationStarted()) {
897        req = savedReq;
898        sreqLow = savedSreqLow;
899        sreqHigh = savedSreqHigh;
900    } else {
901        req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(),
902                          thread->contextId());
903
904        req->taskId(cpu->taskId());
905
906        // Only split the request if the ISA supports unaligned accesses.
907        if (TheISA::HasUnalignedMemAcc) {
908            splitRequest(req, sreqLow, sreqHigh);
909        }
910        initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
911    }
912
913    if (translationCompleted()) {
914        if (fault == NoFault) {
915            effAddr = req->getVaddr();
916            effSize = size;
917            instFlags[EffAddrValid] = true;
918
919            if (cpu->checker) {
920                if (reqToVerify != NULL) {
921                    delete reqToVerify;
922                }
923                reqToVerify = new Request(*req);
924            }
925            fault = cpu->read(req, sreqLow, sreqHigh, lqIdx);
926        } else {
927            // Commit will have to clean up whatever happened.  Set this
928            // instruction as executed.
929            this->setExecuted();
930        }
931    }
932
933    if (traceData)
934        traceData->setMem(addr, size, flags);
935
936    return fault;
937}
938
939template<class Impl>
940Fault
941BaseDynInst<Impl>::writeMem(uint8_t *data, unsigned size, Addr addr,
942                            Request::Flags flags, uint64_t *res)
943{
944    if (traceData)
945        traceData->setMem(addr, size, flags);
946
947    instFlags[ReqMade] = true;
948    Request *req = NULL;
949    Request *sreqLow = NULL;
950    Request *sreqHigh = NULL;
951
952    if (instFlags[ReqMade] && translationStarted()) {
953        req = savedReq;
954        sreqLow = savedSreqLow;
955        sreqHigh = savedSreqHigh;
956    } else {
957        req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(),
958                          thread->contextId());
959
960        req->taskId(cpu->taskId());
961
962        // Only split the request if the ISA supports unaligned accesses.
963        if (TheISA::HasUnalignedMemAcc) {
964            splitRequest(req, sreqLow, sreqHigh);
965        }
966        initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
967    }
968
969    if (fault == NoFault && translationCompleted()) {
970        effAddr = req->getVaddr();
971        effSize = size;
972        instFlags[EffAddrValid] = true;
973
974        if (cpu->checker) {
975            if (reqToVerify != NULL) {
976                delete reqToVerify;
977            }
978            reqToVerify = new Request(*req);
979        }
980        fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
981    }
982
983    return fault;
984}
985
986template<class Impl>
987inline void
988BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow,
989                                RequestPtr &sreqHigh)
990{
991    // Check to see if the request crosses the next level block boundary.
992    unsigned block_size = cpu->cacheLineSize();
993    Addr addr = req->getVaddr();
994    Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
995    assert(split_addr <= addr || split_addr - addr < block_size);
996
997    // Spans two blocks.
998    if (split_addr > addr) {
999        req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
1000    }
1001}
1002
1003template<class Impl>
1004inline void
1005BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow,
1006                                       RequestPtr sreqHigh, uint64_t *res,
1007                                       BaseTLB::Mode mode)
1008{
1009    translationStarted(true);
1010
1011    if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
1012        WholeTranslationState *state =
1013            new WholeTranslationState(req, NULL, res, mode);
1014
1015        // One translation if the request isn't split.
1016        DataTranslation<BaseDynInstPtr> *trans =
1017            new DataTranslation<BaseDynInstPtr>(this, state);
1018
1019        cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
1020
1021        if (!translationCompleted()) {
1022            // The translation isn't yet complete, so we can't possibly have a
1023            // fault. Overwrite any existing fault we might have from a previous
1024            // execution of this instruction (e.g. an uncachable load that
1025            // couldn't execute because it wasn't at the head of the ROB).
1026            fault = NoFault;
1027
1028            // Save memory requests.
1029            savedReq = state->mainReq;
1030            savedSreqLow = state->sreqLow;
1031            savedSreqHigh = state->sreqHigh;
1032        }
1033    } else {
1034        WholeTranslationState *state =
1035            new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);
1036
1037        // Two translations when the request is split.
1038        DataTranslation<BaseDynInstPtr> *stransLow =
1039            new DataTranslation<BaseDynInstPtr>(this, state, 0);
1040        DataTranslation<BaseDynInstPtr> *stransHigh =
1041            new DataTranslation<BaseDynInstPtr>(this, state, 1);
1042
1043        cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
1044        cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);
1045
1046        if (!translationCompleted()) {
1047            // The translation isn't yet complete, so we can't possibly have a
1048            // fault. Overwrite any existing fault we might have from a previous
1049            // execution of this instruction (e.g. an uncachable load that
1050            // couldn't execute because it wasn't at the head of the ROB).
1051            fault = NoFault;
1052
1053            // Save memory requests.
1054            savedReq = state->mainReq;
1055            savedSreqLow = state->sreqLow;
1056            savedSreqHigh = state->sreqHigh;
1057        }
1058    }
1059}
1060
1061template<class Impl>
1062inline void
1063BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state)
1064{
1065    fault = state->getFault();
1066
1067    instFlags[IsStrictlyOrdered] = state->isStrictlyOrdered();
1068
1069    if (fault == NoFault) {
1070        // save Paddr for a single req
1071        physEffAddrLow = state->getPaddr();
1072
1073        // case for the request that has been split
1074        if (state->isSplit) {
1075          physEffAddrLow = state->sreqLow->getPaddr();
1076          physEffAddrHigh = state->sreqHigh->getPaddr();
1077        }
1078
1079        memReqFlags = state->getFlags();
1080
1081        if (state->mainReq->isCondSwap()) {
1082            assert(state->res);
1083            state->mainReq->setExtraData(*state->res);
1084        }
1085
1086    } else {
1087        state->deleteReqs();
1088    }
1089    delete state;
1090
1091    translationCompleted(true);
1092}
1093
1094#endif // __CPU_BASE_DYN_INST_HH__
1095