base_dyn_inst.hh revision 12107
1/*
2 * Copyright (c) 2011,2013,2016 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * Copyright (c) 2009 The University of Edinburgh
17 * All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions are
21 * met: redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer;
23 * redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution;
26 * neither the name of the copyright holders nor the names of its
27 * contributors may be used to endorse or promote products derived from
28 * this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Authors: Kevin Lim
43 *          Timothy M. Jones
44 */
45
46#ifndef __CPU_BASE_DYN_INST_HH__
47#define __CPU_BASE_DYN_INST_HH__
48
49#include <array>
50#include <bitset>
51#include <list>
52#include <queue>
53#include <string>
54
55#include "arch/generic/tlb.hh"
56#include "arch/utility.hh"
57#include "base/trace.hh"
58#include "config/the_isa.hh"
59#include "cpu/checker/cpu.hh"
60#include "cpu/exec_context.hh"
61#include "cpu/exetrace.hh"
62#include "cpu/inst_res.hh"
63#include "cpu/inst_seq.hh"
64#include "cpu/o3/comm.hh"
65#include "cpu/op_class.hh"
66#include "cpu/static_inst.hh"
67#include "cpu/translation.hh"
68#include "mem/packet.hh"
69#include "mem/request.hh"
70#include "sim/byteswap.hh"
71#include "sim/system.hh"
72
73/**
74 * @file
75 * Defines a dynamic instruction context.
76 */
77
78template <class Impl>
79class BaseDynInst : public ExecContext, public RefCounted
80{
81  public:
82    // Typedef for the CPU.
83    typedef typename Impl::CPUType ImplCPU;
84    typedef typename ImplCPU::ImplState ImplState;
85
86    // The DynInstPtr type.
87    typedef typename Impl::DynInstPtr DynInstPtr;
88    typedef RefCountingPtr<BaseDynInst<Impl> > BaseDynInstPtr;
89
90    // The list of instructions iterator type.
91    typedef typename std::list<DynInstPtr>::iterator ListIt;
92
93    enum {
94        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,        /// Max source regs
95        MaxInstDestRegs = TheISA::MaxInstDestRegs       /// Max dest regs
96    };
97
98  protected:
99    enum Status {
100        IqEntry,                 /// Instruction is in the IQ
101        RobEntry,                /// Instruction is in the ROB
102        LsqEntry,                /// Instruction is in the LSQ
103        Completed,               /// Instruction has completed
104        ResultReady,             /// Instruction has its result
105        CanIssue,                /// Instruction can issue and execute
106        Issued,                  /// Instruction has issued
107        Executed,                /// Instruction has executed
108        CanCommit,               /// Instruction can commit
109        AtCommit,                /// Instruction has reached commit
110        Committed,               /// Instruction has committed
111        Squashed,                /// Instruction is squashed
112        SquashedInIQ,            /// Instruction is squashed in the IQ
113        SquashedInLSQ,           /// Instruction is squashed in the LSQ
114        SquashedInROB,           /// Instruction is squashed in the ROB
115        RecoverInst,             /// Is a recover instruction
116        BlockingInst,            /// Is a blocking instruction
117        ThreadsyncWait,          /// Is a thread synchronization instruction
118        SerializeBefore,         /// Needs to serialize on
119                                 /// instructions ahead of it
120        SerializeAfter,          /// Needs to serialize instructions behind it
121        SerializeHandled,        /// Serialization has been handled
122        NumStatus
123    };
124
125    enum Flags {
126        TranslationStarted,
127        TranslationCompleted,
128        PossibleLoadViolation,
129        HitExternalSnoop,
130        EffAddrValid,
131        RecordResult,
132        Predicate,
133        PredTaken,
134        /** Whether or not the effective address calculation is completed.
135         *  @todo: Consider if this is necessary or not.
136         */
137        EACalcDone,
138        IsStrictlyOrdered,
139        ReqMade,
140        MemOpDone,
141        MaxFlags
142    };
143
144  public:
145    /** The sequence number of the instruction. */
146    InstSeqNum seqNum;
147
148    /** The StaticInst used by this BaseDynInst. */
149    const StaticInstPtr staticInst;
150
151    /** Pointer to the Impl's CPU object. */
152    ImplCPU *cpu;
153
154    BaseCPU *getCpuPtr() { return cpu; }
155
156    /** Pointer to the thread state. */
157    ImplState *thread;
158
159    /** The kind of fault this instruction has generated. */
160    Fault fault;
161
162    /** InstRecord that tracks this instructions. */
163    Trace::InstRecord *traceData;
164
165  protected:
166    /** The result of the instruction; assumes an instruction can have many
167     *  destination registers.
168     */
169    std::queue<InstResult> instResult;
170
171    /** PC state for this instruction. */
172    TheISA::PCState pc;
173
174    /* An amalgamation of a lot of boolean values into one */
175    std::bitset<MaxFlags> instFlags;
176
177    /** The status of this BaseDynInst.  Several bits can be set. */
178    std::bitset<NumStatus> status;
179
180     /** Whether or not the source register is ready.
181     *  @todo: Not sure this should be here vs the derived class.
182     */
183    std::bitset<MaxInstSrcRegs> _readySrcRegIdx;
184
185  public:
186    /** The thread this instruction is from. */
187    ThreadID threadNumber;
188
189    /** Iterator pointing to this BaseDynInst in the list of all insts. */
190    ListIt instListIt;
191
192    ////////////////////// Branch Data ///////////////
193    /** Predicted PC state after this instruction. */
194    TheISA::PCState predPC;
195
196    /** The Macroop if one exists */
197    const StaticInstPtr macroop;
198
199    /** How many source registers are ready. */
200    uint8_t readyRegs;
201
202  public:
203    /////////////////////// Load Store Data //////////////////////
204    /** The effective virtual address (lds & stores only). */
205    Addr effAddr;
206
207    /** The effective physical address. */
208    Addr physEffAddrLow;
209
210    /** The effective physical address
211     *  of the second request for a split request
212     */
213    Addr physEffAddrHigh;
214
215    /** The memory request flags (from translation). */
216    unsigned memReqFlags;
217
218    /** data address space ID, for loads & stores. */
219    short asid;
220
221    /** The size of the request */
222    uint8_t effSize;
223
224    /** Pointer to the data for the memory access. */
225    uint8_t *memData;
226
227    /** Load queue index. */
228    int16_t lqIdx;
229
230    /** Store queue index. */
231    int16_t sqIdx;
232
233
234    /////////////////////// TLB Miss //////////////////////
235    /**
236     * Saved memory requests (needed when the DTB address translation is
237     * delayed due to a hw page table walk).
238     */
239    RequestPtr savedReq;
240    RequestPtr savedSreqLow;
241    RequestPtr savedSreqHigh;
242
243    /////////////////////// Checker //////////////////////
244    // Need a copy of main request pointer to verify on writes.
245    RequestPtr reqToVerify;
246
247  private:
248    /** Instruction effective address.
249     *  @todo: Consider if this is necessary or not.
250     */
251    Addr instEffAddr;
252
253  protected:
254    /** Flattened register index of the destination registers of this
255     *  instruction.
256     */
257    std::array<RegId, TheISA::MaxInstDestRegs> _flatDestRegIdx;
258
259    /** Physical register index of the destination registers of this
260     *  instruction.
261     */
262    std::array<PhysRegIdPtr, TheISA::MaxInstDestRegs> _destRegIdx;
263
264    /** Physical register index of the source registers of this
265     *  instruction.
266     */
267    std::array<PhysRegIdPtr, TheISA::MaxInstSrcRegs> _srcRegIdx;
268
269    /** Physical register index of the previous producers of the
270     *  architected destinations.
271     */
272    std::array<PhysRegIdPtr, TheISA::MaxInstDestRegs> _prevDestRegIdx;
273
274
275  public:
276    /** Records changes to result? */
277    void recordResult(bool f) { instFlags[RecordResult] = f; }
278
279    /** Is the effective virtual address valid. */
280    bool effAddrValid() const { return instFlags[EffAddrValid]; }
281
282    /** Whether or not the memory operation is done. */
283    bool memOpDone() const { return instFlags[MemOpDone]; }
284    void memOpDone(bool f) { instFlags[MemOpDone] = f; }
285
286
287    ////////////////////////////////////////////
288    //
289    // INSTRUCTION EXECUTION
290    //
291    ////////////////////////////////////////////
292
293    void demapPage(Addr vaddr, uint64_t asn)
294    {
295        cpu->demapPage(vaddr, asn);
296    }
297    void demapInstPage(Addr vaddr, uint64_t asn)
298    {
299        cpu->demapPage(vaddr, asn);
300    }
301    void demapDataPage(Addr vaddr, uint64_t asn)
302    {
303        cpu->demapPage(vaddr, asn);
304    }
305
306    Fault initiateMemRead(Addr addr, unsigned size, Request::Flags flags);
307
308    Fault writeMem(uint8_t *data, unsigned size, Addr addr,
309                   Request::Flags flags, uint64_t *res);
310
311    /** Splits a request in two if it crosses a dcache block. */
312    void splitRequest(RequestPtr req, RequestPtr &sreqLow,
313                      RequestPtr &sreqHigh);
314
315    /** Initiate a DTB address translation. */
316    void initiateTranslation(RequestPtr req, RequestPtr sreqLow,
317                             RequestPtr sreqHigh, uint64_t *res,
318                             BaseTLB::Mode mode);
319
320    /** Finish a DTB address translation. */
321    void finishTranslation(WholeTranslationState *state);
322
323    /** True if the DTB address translation has started. */
324    bool translationStarted() const { return instFlags[TranslationStarted]; }
325    void translationStarted(bool f) { instFlags[TranslationStarted] = f; }
326
327    /** True if the DTB address translation has completed. */
328    bool translationCompleted() const { return instFlags[TranslationCompleted]; }
329    void translationCompleted(bool f) { instFlags[TranslationCompleted] = f; }
330
331    /** True if this address was found to match a previous load and they issued
332     * out of order. If that happend, then it's only a problem if an incoming
333     * snoop invalidate modifies the line, in which case we need to squash.
334     * If nothing modified the line the order doesn't matter.
335     */
336    bool possibleLoadViolation() const { return instFlags[PossibleLoadViolation]; }
337    void possibleLoadViolation(bool f) { instFlags[PossibleLoadViolation] = f; }
338
339    /** True if the address hit a external snoop while sitting in the LSQ.
340     * If this is true and a older instruction sees it, this instruction must
341     * reexecute
342     */
343    bool hitExternalSnoop() const { return instFlags[HitExternalSnoop]; }
344    void hitExternalSnoop(bool f) { instFlags[HitExternalSnoop] = f; }
345
346    /**
347     * Returns true if the DTB address translation is being delayed due to a hw
348     * page table walk.
349     */
350    bool isTranslationDelayed() const
351    {
352        return (translationStarted() && !translationCompleted());
353    }
354
355  public:
356#ifdef DEBUG
357    void dumpSNList();
358#endif
359
360    /** Returns the physical register index of the i'th destination
361     *  register.
362     */
363    PhysRegIdPtr renamedDestRegIdx(int idx) const
364    {
365        return _destRegIdx[idx];
366    }
367
368    /** Returns the physical register index of the i'th source register. */
369    PhysRegIdPtr renamedSrcRegIdx(int idx) const
370    {
371        assert(TheISA::MaxInstSrcRegs > idx);
372        return _srcRegIdx[idx];
373    }
374
375    /** Returns the flattened register index of the i'th destination
376     *  register.
377     */
378    const RegId& flattenedDestRegIdx(int idx) const
379    {
380        return _flatDestRegIdx[idx];
381    }
382
383    /** Returns the physical register index of the previous physical register
384     *  that remapped to the same logical register index.
385     */
386    PhysRegIdPtr prevDestRegIdx(int idx) const
387    {
388        return _prevDestRegIdx[idx];
389    }
390
391    /** Renames a destination register to a physical register.  Also records
392     *  the previous physical register that the logical register mapped to.
393     */
394    void renameDestReg(int idx,
395                       PhysRegIdPtr renamed_dest,
396                       PhysRegIdPtr previous_rename)
397    {
398        _destRegIdx[idx] = renamed_dest;
399        _prevDestRegIdx[idx] = previous_rename;
400    }
401
402    /** Renames a source logical register to the physical register which
403     *  has/will produce that logical register's result.
404     *  @todo: add in whether or not the source register is ready.
405     */
406    void renameSrcReg(int idx, PhysRegIdPtr renamed_src)
407    {
408        _srcRegIdx[idx] = renamed_src;
409    }
410
411    /** Flattens a destination architectural register index into a logical
412     * index.
413     */
414    void flattenDestReg(int idx, const RegId& flattened_dest)
415    {
416        _flatDestRegIdx[idx] = flattened_dest;
417    }
418    /** BaseDynInst constructor given a binary instruction.
419     *  @param staticInst A StaticInstPtr to the underlying instruction.
420     *  @param pc The PC state for the instruction.
421     *  @param predPC The predicted next PC state for the instruction.
422     *  @param seq_num The sequence number of the instruction.
423     *  @param cpu Pointer to the instruction's CPU.
424     */
425    BaseDynInst(const StaticInstPtr &staticInst, const StaticInstPtr &macroop,
426                TheISA::PCState pc, TheISA::PCState predPC,
427                InstSeqNum seq_num, ImplCPU *cpu);
428
429    /** BaseDynInst constructor given a StaticInst pointer.
430     *  @param _staticInst The StaticInst for this BaseDynInst.
431     */
432    BaseDynInst(const StaticInstPtr &staticInst, const StaticInstPtr &macroop);
433
434    /** BaseDynInst destructor. */
435    ~BaseDynInst();
436
437  private:
438    /** Function to initialize variables in the constructors. */
439    void initVars();
440
441  public:
442    /** Dumps out contents of this BaseDynInst. */
443    void dump();
444
445    /** Dumps out contents of this BaseDynInst into given string. */
446    void dump(std::string &outstring);
447
448    /** Read this CPU's ID. */
449    int cpuId() const { return cpu->cpuId(); }
450
451    /** Read this CPU's Socket ID. */
452    uint32_t socketId() const { return cpu->socketId(); }
453
454    /** Read this CPU's data requestor ID */
455    MasterID masterId() const { return cpu->dataMasterId(); }
456
457    /** Read this context's system-wide ID **/
458    ContextID contextId() const { return thread->contextId(); }
459
460    /** Returns the fault type. */
461    Fault getFault() const { return fault; }
462
463    /** Checks whether or not this instruction has had its branch target
464     *  calculated yet.  For now it is not utilized and is hacked to be
465     *  always false.
466     *  @todo: Actually use this instruction.
467     */
468    bool doneTargCalc() { return false; }
469
470    /** Set the predicted target of this current instruction. */
471    void setPredTarg(const TheISA::PCState &_predPC)
472    {
473        predPC = _predPC;
474    }
475
476    const TheISA::PCState &readPredTarg() { return predPC; }
477
478    /** Returns the predicted PC immediately after the branch. */
479    Addr predInstAddr() { return predPC.instAddr(); }
480
481    /** Returns the predicted PC two instructions after the branch */
482    Addr predNextInstAddr() { return predPC.nextInstAddr(); }
483
484    /** Returns the predicted micro PC after the branch */
485    Addr predMicroPC() { return predPC.microPC(); }
486
487    /** Returns whether the instruction was predicted taken or not. */
488    bool readPredTaken()
489    {
490        return instFlags[PredTaken];
491    }
492
493    void setPredTaken(bool predicted_taken)
494    {
495        instFlags[PredTaken] = predicted_taken;
496    }
497
498    /** Returns whether the instruction mispredicted. */
499    bool mispredicted()
500    {
501        TheISA::PCState tempPC = pc;
502        TheISA::advancePC(tempPC, staticInst);
503        return !(tempPC == predPC);
504    }
505
506    //
507    //  Instruction types.  Forward checks to StaticInst object.
508    //
509    bool isNop()          const { return staticInst->isNop(); }
510    bool isMemRef()       const { return staticInst->isMemRef(); }
511    bool isLoad()         const { return staticInst->isLoad(); }
512    bool isStore()        const { return staticInst->isStore(); }
513    bool isStoreConditional() const
514    { return staticInst->isStoreConditional(); }
515    bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
516    bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
517    bool isInteger()      const { return staticInst->isInteger(); }
518    bool isFloating()     const { return staticInst->isFloating(); }
519    bool isControl()      const { return staticInst->isControl(); }
520    bool isCall()         const { return staticInst->isCall(); }
521    bool isReturn()       const { return staticInst->isReturn(); }
522    bool isDirectCtrl()   const { return staticInst->isDirectCtrl(); }
523    bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
524    bool isCondCtrl()     const { return staticInst->isCondCtrl(); }
525    bool isUncondCtrl()   const { return staticInst->isUncondCtrl(); }
526    bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
527    bool isThreadSync()   const { return staticInst->isThreadSync(); }
528    bool isSerializing()  const { return staticInst->isSerializing(); }
529    bool isSerializeBefore() const
530    { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
531    bool isSerializeAfter() const
532    { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
533    bool isSquashAfter() const { return staticInst->isSquashAfter(); }
534    bool isMemBarrier()   const { return staticInst->isMemBarrier(); }
535    bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
536    bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
537    bool isQuiesce() const { return staticInst->isQuiesce(); }
538    bool isIprAccess() const { return staticInst->isIprAccess(); }
539    bool isUnverifiable() const { return staticInst->isUnverifiable(); }
540    bool isSyscall() const { return staticInst->isSyscall(); }
541    bool isMacroop() const { return staticInst->isMacroop(); }
542    bool isMicroop() const { return staticInst->isMicroop(); }
543    bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
544    bool isLastMicroop() const { return staticInst->isLastMicroop(); }
545    bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
546    bool isMicroBranch() const { return staticInst->isMicroBranch(); }
547
548    /** Temporarily sets this instruction as a serialize before instruction. */
549    void setSerializeBefore() { status.set(SerializeBefore); }
550
551    /** Clears the serializeBefore part of this instruction. */
552    void clearSerializeBefore() { status.reset(SerializeBefore); }
553
554    /** Checks if this serializeBefore is only temporarily set. */
555    bool isTempSerializeBefore() { return status[SerializeBefore]; }
556
557    /** Temporarily sets this instruction as a serialize after instruction. */
558    void setSerializeAfter() { status.set(SerializeAfter); }
559
560    /** Clears the serializeAfter part of this instruction.*/
561    void clearSerializeAfter() { status.reset(SerializeAfter); }
562
563    /** Checks if this serializeAfter is only temporarily set. */
564    bool isTempSerializeAfter() { return status[SerializeAfter]; }
565
566    /** Sets the serialization part of this instruction as handled. */
567    void setSerializeHandled() { status.set(SerializeHandled); }
568
569    /** Checks if the serialization part of this instruction has been
570     *  handled.  This does not apply to the temporary serializing
571     *  state; it only applies to this instruction's own permanent
572     *  serializing state.
573     */
574    bool isSerializeHandled() { return status[SerializeHandled]; }
575
576    /** Returns the opclass of this instruction. */
577    OpClass opClass() const { return staticInst->opClass(); }
578
579    /** Returns the branch target address. */
580    TheISA::PCState branchTarget() const
581    { return staticInst->branchTarget(pc); }
582
583    /** Returns the number of source registers. */
584    int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
585
586    /** Returns the number of destination registers. */
587    int8_t numDestRegs() const { return staticInst->numDestRegs(); }
588
589    // the following are used to track physical register usage
590    // for machines with separate int & FP reg files
591    int8_t numFPDestRegs()  const { return staticInst->numFPDestRegs(); }
592    int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
593    int8_t numCCDestRegs() const { return staticInst->numCCDestRegs(); }
594
595    /** Returns the logical register index of the i'th destination register. */
596    const RegId& destRegIdx(int i) const { return staticInst->destRegIdx(i); }
597
598    /** Returns the logical register index of the i'th source register. */
599    const RegId& srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
600
601    /** Return the size of the instResult queue. */
602    uint8_t resultSize() { return instResult.size(); }
603
604    /** Pops a result off the instResult queue.
605     * If the result stack is empty, return the default value.
606     * */
607    InstResult popResult(InstResult dflt = InstResult())
608    {
609        if (!instResult.empty()) {
610            InstResult t = instResult.front();
611            instResult.pop();
612            return t;
613        }
614        return dflt;
615    }
616
617    /** Pushes a result onto the instResult queue. */
618    template<typename T>
619    void setScalarResult(T&& t)
620    {
621        if (instFlags[RecordResult]) {
622            instResult.push(InstResult(std::forward<T>(t),
623                        InstResult::ResultType::Scalar));
624        }
625    }
626
627    /** Records an integer register being set to a value. */
628    void setIntRegOperand(const StaticInst *si, int idx, IntReg val)
629    {
630        setScalarResult(val);
631    }
632
633    /** Records a CC register being set to a value. */
634    void setCCRegOperand(const StaticInst *si, int idx, CCReg val)
635    {
636        setScalarResult(val);
637    }
638
639    /** Records an fp register being set to a value. */
640    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
641    {
642        setScalarResult(val);
643    }
644
645    /** Records an fp register being set to an integer value. */
646    void
647    setFloatRegOperandBits(const StaticInst *si, int idx, FloatRegBits val)
648    {
649        setScalarResult(val);
650    }
651
652    /** Records that one of the source registers is ready. */
653    void markSrcRegReady();
654
655    /** Marks a specific register as ready. */
656    void markSrcRegReady(RegIndex src_idx);
657
658    /** Returns if a source register is ready. */
659    bool isReadySrcRegIdx(int idx) const
660    {
661        return this->_readySrcRegIdx[idx];
662    }
663
664    /** Sets this instruction as completed. */
665    void setCompleted() { status.set(Completed); }
666
667    /** Returns whether or not this instruction is completed. */
668    bool isCompleted() const { return status[Completed]; }
669
670    /** Marks the result as ready. */
671    void setResultReady() { status.set(ResultReady); }
672
673    /** Returns whether or not the result is ready. */
674    bool isResultReady() const { return status[ResultReady]; }
675
676    /** Sets this instruction as ready to issue. */
677    void setCanIssue() { status.set(CanIssue); }
678
679    /** Returns whether or not this instruction is ready to issue. */
680    bool readyToIssue() const { return status[CanIssue]; }
681
682    /** Clears this instruction being able to issue. */
683    void clearCanIssue() { status.reset(CanIssue); }
684
685    /** Sets this instruction as issued from the IQ. */
686    void setIssued() { status.set(Issued); }
687
688    /** Returns whether or not this instruction has issued. */
689    bool isIssued() const { return status[Issued]; }
690
691    /** Clears this instruction as being issued. */
692    void clearIssued() { status.reset(Issued); }
693
694    /** Sets this instruction as executed. */
695    void setExecuted() { status.set(Executed); }
696
697    /** Returns whether or not this instruction has executed. */
698    bool isExecuted() const { return status[Executed]; }
699
700    /** Sets this instruction as ready to commit. */
701    void setCanCommit() { status.set(CanCommit); }
702
703    /** Clears this instruction as being ready to commit. */
704    void clearCanCommit() { status.reset(CanCommit); }
705
706    /** Returns whether or not this instruction is ready to commit. */
707    bool readyToCommit() const { return status[CanCommit]; }
708
709    void setAtCommit() { status.set(AtCommit); }
710
711    bool isAtCommit() { return status[AtCommit]; }
712
713    /** Sets this instruction as committed. */
714    void setCommitted() { status.set(Committed); }
715
716    /** Returns whether or not this instruction is committed. */
717    bool isCommitted() const { return status[Committed]; }
718
719    /** Sets this instruction as squashed. */
720    void setSquashed() { status.set(Squashed); }
721
722    /** Returns whether or not this instruction is squashed. */
723    bool isSquashed() const { return status[Squashed]; }
724
725    //Instruction Queue Entry
726    //-----------------------
727    /** Sets this instruction as a entry the IQ. */
728    void setInIQ() { status.set(IqEntry); }
729
730    /** Sets this instruction as a entry the IQ. */
731    void clearInIQ() { status.reset(IqEntry); }
732
733    /** Returns whether or not this instruction has issued. */
734    bool isInIQ() const { return status[IqEntry]; }
735
736    /** Sets this instruction as squashed in the IQ. */
737    void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
738
739    /** Returns whether or not this instruction is squashed in the IQ. */
740    bool isSquashedInIQ() const { return status[SquashedInIQ]; }
741
742
743    //Load / Store Queue Functions
744    //-----------------------
745    /** Sets this instruction as a entry the LSQ. */
746    void setInLSQ() { status.set(LsqEntry); }
747
748    /** Sets this instruction as a entry the LSQ. */
749    void removeInLSQ() { status.reset(LsqEntry); }
750
751    /** Returns whether or not this instruction is in the LSQ. */
752    bool isInLSQ() const { return status[LsqEntry]; }
753
754    /** Sets this instruction as squashed in the LSQ. */
755    void setSquashedInLSQ() { status.set(SquashedInLSQ);}
756
757    /** Returns whether or not this instruction is squashed in the LSQ. */
758    bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
759
760
761    //Reorder Buffer Functions
762    //-----------------------
763    /** Sets this instruction as a entry the ROB. */
764    void setInROB() { status.set(RobEntry); }
765
766    /** Sets this instruction as a entry the ROB. */
767    void clearInROB() { status.reset(RobEntry); }
768
769    /** Returns whether or not this instruction is in the ROB. */
770    bool isInROB() const { return status[RobEntry]; }
771
772    /** Sets this instruction as squashed in the ROB. */
773    void setSquashedInROB() { status.set(SquashedInROB); }
774
775    /** Returns whether or not this instruction is squashed in the ROB. */
776    bool isSquashedInROB() const { return status[SquashedInROB]; }
777
778    /** Read the PC state of this instruction. */
779    TheISA::PCState pcState() const { return pc; }
780
781    /** Set the PC state of this instruction. */
782    void pcState(const TheISA::PCState &val) { pc = val; }
783
784    /** Read the PC of this instruction. */
785    Addr instAddr() const { return pc.instAddr(); }
786
787    /** Read the PC of the next instruction. */
788    Addr nextInstAddr() const { return pc.nextInstAddr(); }
789
790    /**Read the micro PC of this instruction. */
791    Addr microPC() const { return pc.microPC(); }
792
793    bool readPredicate()
794    {
795        return instFlags[Predicate];
796    }
797
798    void setPredicate(bool val)
799    {
800        instFlags[Predicate] = val;
801
802        if (traceData) {
803            traceData->setPredicate(val);
804        }
805    }
806
807    /** Sets the ASID. */
808    void setASID(short addr_space_id) { asid = addr_space_id; }
809
810    /** Sets the thread id. */
811    void setTid(ThreadID tid) { threadNumber = tid; }
812
813    /** Sets the pointer to the thread state. */
814    void setThreadState(ImplState *state) { thread = state; }
815
816    /** Returns the thread context. */
817    ThreadContext *tcBase() { return thread->getTC(); }
818
819  public:
820    /** Sets the effective address. */
821    void setEA(Addr ea) { instEffAddr = ea; instFlags[EACalcDone] = true; }
822
823    /** Returns the effective address. */
824    Addr getEA() const { return instEffAddr; }
825
826    /** Returns whether or not the eff. addr. calculation has been completed. */
827    bool doneEACalc() { return instFlags[EACalcDone]; }
828
829    /** Returns whether or not the eff. addr. source registers are ready. */
830    bool eaSrcsReady();
831
832    /** Is this instruction's memory access strictly ordered? */
833    bool strictlyOrdered() const { return instFlags[IsStrictlyOrdered]; }
834
835    /** Has this instruction generated a memory request. */
836    bool hasRequest() { return instFlags[ReqMade]; }
837
838    /** Returns iterator to this instruction in the list of all insts. */
839    ListIt &getInstListIt() { return instListIt; }
840
841    /** Sets iterator for this instruction in the list of all insts. */
842    void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
843
844  public:
845    /** Returns the number of consecutive store conditional failures. */
846    unsigned int readStCondFailures() const
847    { return thread->storeCondFailures; }
848
849    /** Sets the number of consecutive store conditional failures. */
850    void setStCondFailures(unsigned int sc_failures)
851    { thread->storeCondFailures = sc_failures; }
852
853  public:
854    // monitor/mwait funtions
855    void armMonitor(Addr address) { cpu->armMonitor(threadNumber, address); }
856    bool mwait(PacketPtr pkt) { return cpu->mwait(threadNumber, pkt); }
857    void mwaitAtomic(ThreadContext *tc)
858    { return cpu->mwaitAtomic(threadNumber, tc, cpu->dtb); }
859    AddressMonitor *getAddrMonitor()
860    { return cpu->getCpuAddrMonitor(threadNumber); }
861};
862
863template<class Impl>
864Fault
865BaseDynInst<Impl>::initiateMemRead(Addr addr, unsigned size,
866                                   Request::Flags flags)
867{
868    instFlags[ReqMade] = true;
869    Request *req = NULL;
870    Request *sreqLow = NULL;
871    Request *sreqHigh = NULL;
872
873    if (instFlags[ReqMade] && translationStarted()) {
874        req = savedReq;
875        sreqLow = savedSreqLow;
876        sreqHigh = savedSreqHigh;
877    } else {
878        req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(),
879                          thread->contextId());
880
881        req->taskId(cpu->taskId());
882
883        // Only split the request if the ISA supports unaligned accesses.
884        if (TheISA::HasUnalignedMemAcc) {
885            splitRequest(req, sreqLow, sreqHigh);
886        }
887        initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
888    }
889
890    if (translationCompleted()) {
891        if (fault == NoFault) {
892            effAddr = req->getVaddr();
893            effSize = size;
894            instFlags[EffAddrValid] = true;
895
896            if (cpu->checker) {
897                if (reqToVerify != NULL) {
898                    delete reqToVerify;
899                }
900                reqToVerify = new Request(*req);
901            }
902            fault = cpu->read(req, sreqLow, sreqHigh, lqIdx);
903        } else {
904            // Commit will have to clean up whatever happened.  Set this
905            // instruction as executed.
906            this->setExecuted();
907        }
908    }
909
910    if (traceData)
911        traceData->setMem(addr, size, flags);
912
913    return fault;
914}
915
916template<class Impl>
917Fault
918BaseDynInst<Impl>::writeMem(uint8_t *data, unsigned size, Addr addr,
919                            Request::Flags flags, uint64_t *res)
920{
921    if (traceData)
922        traceData->setMem(addr, size, flags);
923
924    instFlags[ReqMade] = true;
925    Request *req = NULL;
926    Request *sreqLow = NULL;
927    Request *sreqHigh = NULL;
928
929    if (instFlags[ReqMade] && translationStarted()) {
930        req = savedReq;
931        sreqLow = savedSreqLow;
932        sreqHigh = savedSreqHigh;
933    } else {
934        req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(),
935                          thread->contextId());
936
937        req->taskId(cpu->taskId());
938
939        // Only split the request if the ISA supports unaligned accesses.
940        if (TheISA::HasUnalignedMemAcc) {
941            splitRequest(req, sreqLow, sreqHigh);
942        }
943        initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
944    }
945
946    if (fault == NoFault && translationCompleted()) {
947        effAddr = req->getVaddr();
948        effSize = size;
949        instFlags[EffAddrValid] = true;
950
951        if (cpu->checker) {
952            if (reqToVerify != NULL) {
953                delete reqToVerify;
954            }
955            reqToVerify = new Request(*req);
956        }
957        fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
958    }
959
960    return fault;
961}
962
963template<class Impl>
964inline void
965BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow,
966                                RequestPtr &sreqHigh)
967{
968    // Check to see if the request crosses the next level block boundary.
969    unsigned block_size = cpu->cacheLineSize();
970    Addr addr = req->getVaddr();
971    Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
972    assert(split_addr <= addr || split_addr - addr < block_size);
973
974    // Spans two blocks.
975    if (split_addr > addr) {
976        req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
977    }
978}
979
980template<class Impl>
981inline void
982BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow,
983                                       RequestPtr sreqHigh, uint64_t *res,
984                                       BaseTLB::Mode mode)
985{
986    translationStarted(true);
987
988    if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
989        WholeTranslationState *state =
990            new WholeTranslationState(req, NULL, res, mode);
991
992        // One translation if the request isn't split.
993        DataTranslation<BaseDynInstPtr> *trans =
994            new DataTranslation<BaseDynInstPtr>(this, state);
995
996        cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
997
998        if (!translationCompleted()) {
999            // The translation isn't yet complete, so we can't possibly have a
1000            // fault. Overwrite any existing fault we might have from a previous
1001            // execution of this instruction (e.g. an uncachable load that
1002            // couldn't execute because it wasn't at the head of the ROB).
1003            fault = NoFault;
1004
1005            // Save memory requests.
1006            savedReq = state->mainReq;
1007            savedSreqLow = state->sreqLow;
1008            savedSreqHigh = state->sreqHigh;
1009        }
1010    } else {
1011        WholeTranslationState *state =
1012            new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);
1013
1014        // Two translations when the request is split.
1015        DataTranslation<BaseDynInstPtr> *stransLow =
1016            new DataTranslation<BaseDynInstPtr>(this, state, 0);
1017        DataTranslation<BaseDynInstPtr> *stransHigh =
1018            new DataTranslation<BaseDynInstPtr>(this, state, 1);
1019
1020        cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
1021        cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);
1022
1023        if (!translationCompleted()) {
1024            // The translation isn't yet complete, so we can't possibly have a
1025            // fault. Overwrite any existing fault we might have from a previous
1026            // execution of this instruction (e.g. an uncachable load that
1027            // couldn't execute because it wasn't at the head of the ROB).
1028            fault = NoFault;
1029
1030            // Save memory requests.
1031            savedReq = state->mainReq;
1032            savedSreqLow = state->sreqLow;
1033            savedSreqHigh = state->sreqHigh;
1034        }
1035    }
1036}
1037
1038template<class Impl>
1039inline void
1040BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state)
1041{
1042    fault = state->getFault();
1043
1044    instFlags[IsStrictlyOrdered] = state->isStrictlyOrdered();
1045
1046    if (fault == NoFault) {
1047        // save Paddr for a single req
1048        physEffAddrLow = state->getPaddr();
1049
1050        // case for the request that has been split
1051        if (state->isSplit) {
1052          physEffAddrLow = state->sreqLow->getPaddr();
1053          physEffAddrHigh = state->sreqHigh->getPaddr();
1054        }
1055
1056        memReqFlags = state->getFlags();
1057
1058        if (state->mainReq->isCondSwap()) {
1059            assert(state->res);
1060            state->mainReq->setExtraData(*state->res);
1061        }
1062
1063    } else {
1064        state->deleteReqs();
1065    }
1066    delete state;
1067
1068    translationCompleted(true);
1069}
1070
1071#endif // __CPU_BASE_DYN_INST_HH__
1072