base_dyn_inst.hh revision 10319
1/*
2 * Copyright (c) 2011,2013 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * Copyright (c) 2009 The University of Edinburgh
17 * All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions are
21 * met: redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer;
23 * redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution;
26 * neither the name of the copyright holders nor the names of its
27 * contributors may be used to endorse or promote products derived from
28 * this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Authors: Kevin Lim
43 *          Timothy M. Jones
44 */
45
46#ifndef __CPU_BASE_DYN_INST_HH__
47#define __CPU_BASE_DYN_INST_HH__
48
49#include <bitset>
50#include <list>
51#include <string>
52#include <queue>
53
54#include "arch/utility.hh"
55#include "base/trace.hh"
56#include "config/the_isa.hh"
57#include "cpu/checker/cpu.hh"
58#include "cpu/o3/comm.hh"
59#include "cpu/exec_context.hh"
60#include "cpu/exetrace.hh"
61#include "cpu/inst_seq.hh"
62#include "cpu/op_class.hh"
63#include "cpu/static_inst.hh"
64#include "cpu/translation.hh"
65#include "mem/packet.hh"
66#include "sim/byteswap.hh"
67#include "sim/fault_fwd.hh"
68#include "sim/system.hh"
69#include "sim/tlb.hh"
70
71/**
72 * @file
73 * Defines a dynamic instruction context.
74 */
75
76template <class Impl>
77class BaseDynInst : public ExecContext, public RefCounted
78{
79  public:
80    // Typedef for the CPU.
81    typedef typename Impl::CPUType ImplCPU;
82    typedef typename ImplCPU::ImplState ImplState;
83
84    // Logical register index type.
85    typedef TheISA::RegIndex RegIndex;
86
87    // The DynInstPtr type.
88    typedef typename Impl::DynInstPtr DynInstPtr;
89    typedef RefCountingPtr<BaseDynInst<Impl> > BaseDynInstPtr;
90
91    // The list of instructions iterator type.
92    typedef typename std::list<DynInstPtr>::iterator ListIt;
93
94    enum {
95        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,        /// Max source regs
96        MaxInstDestRegs = TheISA::MaxInstDestRegs       /// Max dest regs
97    };
98
99    union Result {
100        uint64_t integer;
101        double dbl;
102        void set(uint64_t i) { integer = i; }
103        void set(double d) { dbl = d; }
104        void get(uint64_t& i) { i = integer; }
105        void get(double& d) { d = dbl; }
106    };
107
108  protected:
109    enum Status {
110        IqEntry,                 /// Instruction is in the IQ
111        RobEntry,                /// Instruction is in the ROB
112        LsqEntry,                /// Instruction is in the LSQ
113        Completed,               /// Instruction has completed
114        ResultReady,             /// Instruction has its result
115        CanIssue,                /// Instruction can issue and execute
116        Issued,                  /// Instruction has issued
117        Executed,                /// Instruction has executed
118        CanCommit,               /// Instruction can commit
119        AtCommit,                /// Instruction has reached commit
120        Committed,               /// Instruction has committed
121        Squashed,                /// Instruction is squashed
122        SquashedInIQ,            /// Instruction is squashed in the IQ
123        SquashedInLSQ,           /// Instruction is squashed in the LSQ
124        SquashedInROB,           /// Instruction is squashed in the ROB
125        RecoverInst,             /// Is a recover instruction
126        BlockingInst,            /// Is a blocking instruction
127        ThreadsyncWait,          /// Is a thread synchronization instruction
128        SerializeBefore,         /// Needs to serialize on
129                                 /// instructions ahead of it
130        SerializeAfter,          /// Needs to serialize instructions behind it
131        SerializeHandled,        /// Serialization has been handled
132        NumStatus
133    };
134
135    enum Flags {
136        TranslationStarted,
137        TranslationCompleted,
138        PossibleLoadViolation,
139        HitExternalSnoop,
140        EffAddrValid,
141        RecordResult,
142        Predicate,
143        PredTaken,
144        /** Whether or not the effective address calculation is completed.
145         *  @todo: Consider if this is necessary or not.
146         */
147        EACalcDone,
148        IsUncacheable,
149        ReqMade,
150        MemOpDone,
151        MaxFlags
152    };
153
154  public:
155    /** The sequence number of the instruction. */
156    InstSeqNum seqNum;
157
158    /** The StaticInst used by this BaseDynInst. */
159    StaticInstPtr staticInst;
160
161    /** Pointer to the Impl's CPU object. */
162    ImplCPU *cpu;
163
164    BaseCPU *getCpuPtr() { return cpu; }
165
166    /** Pointer to the thread state. */
167    ImplState *thread;
168
169    /** The kind of fault this instruction has generated. */
170    Fault fault;
171
172    /** InstRecord that tracks this instructions. */
173    Trace::InstRecord *traceData;
174
175  protected:
176    /** The result of the instruction; assumes an instruction can have many
177     *  destination registers.
178     */
179    std::queue<Result> instResult;
180
181    /** PC state for this instruction. */
182    TheISA::PCState pc;
183
184    /* An amalgamation of a lot of boolean values into one */
185    std::bitset<MaxFlags> instFlags;
186
187    /** The status of this BaseDynInst.  Several bits can be set. */
188    std::bitset<NumStatus> status;
189
190     /** Whether or not the source register is ready.
191     *  @todo: Not sure this should be here vs the derived class.
192     */
193    std::bitset<MaxInstSrcRegs> _readySrcRegIdx;
194
195  public:
196    /** The thread this instruction is from. */
197    ThreadID threadNumber;
198
199    /** Iterator pointing to this BaseDynInst in the list of all insts. */
200    ListIt instListIt;
201
202    ////////////////////// Branch Data ///////////////
203    /** Predicted PC state after this instruction. */
204    TheISA::PCState predPC;
205
206    /** The Macroop if one exists */
207    StaticInstPtr macroop;
208
209    /** How many source registers are ready. */
210    uint8_t readyRegs;
211
212  public:
213    /////////////////////// Load Store Data //////////////////////
214    /** The effective virtual address (lds & stores only). */
215    Addr effAddr;
216
217    /** The effective physical address. */
218    Addr physEffAddr;
219
220    /** The memory request flags (from translation). */
221    unsigned memReqFlags;
222
223    /** data address space ID, for loads & stores. */
224    short asid;
225
226    /** The size of the request */
227    uint8_t effSize;
228
229    /** Pointer to the data for the memory access. */
230    uint8_t *memData;
231
232    /** Load queue index. */
233    int16_t lqIdx;
234
235    /** Store queue index. */
236    int16_t sqIdx;
237
238
239    /////////////////////// TLB Miss //////////////////////
240    /**
241     * Saved memory requests (needed when the DTB address translation is
242     * delayed due to a hw page table walk).
243     */
244    RequestPtr savedReq;
245    RequestPtr savedSreqLow;
246    RequestPtr savedSreqHigh;
247
248    /////////////////////// Checker //////////////////////
249    // Need a copy of main request pointer to verify on writes.
250    RequestPtr reqToVerify;
251
252  private:
253    /** Instruction effective address.
254     *  @todo: Consider if this is necessary or not.
255     */
256    Addr instEffAddr;
257
258  protected:
259    /** Flattened register index of the destination registers of this
260     *  instruction.
261     */
262    TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
263
264    /** Physical register index of the destination registers of this
265     *  instruction.
266     */
267    PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
268
269    /** Physical register index of the source registers of this
270     *  instruction.
271     */
272    PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
273
274    /** Physical register index of the previous producers of the
275     *  architected destinations.
276     */
277    PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
278
279
280  public:
281    /** Records changes to result? */
282    void recordResult(bool f) { instFlags[RecordResult] = f; }
283
284    /** Is the effective virtual address valid. */
285    bool effAddrValid() const { return instFlags[EffAddrValid]; }
286
287    /** Whether or not the memory operation is done. */
288    bool memOpDone() const { return instFlags[MemOpDone]; }
289    void memOpDone(bool f) { instFlags[MemOpDone] = f; }
290
291
292    ////////////////////////////////////////////
293    //
294    // INSTRUCTION EXECUTION
295    //
296    ////////////////////////////////////////////
297
298    void demapPage(Addr vaddr, uint64_t asn)
299    {
300        cpu->demapPage(vaddr, asn);
301    }
302    void demapInstPage(Addr vaddr, uint64_t asn)
303    {
304        cpu->demapPage(vaddr, asn);
305    }
306    void demapDataPage(Addr vaddr, uint64_t asn)
307    {
308        cpu->demapPage(vaddr, asn);
309    }
310
311    Fault readMem(Addr addr, uint8_t *data, unsigned size, unsigned flags);
312
313    Fault writeMem(uint8_t *data, unsigned size,
314                   Addr addr, unsigned flags, uint64_t *res);
315
316    /** Splits a request in two if it crosses a dcache block. */
317    void splitRequest(RequestPtr req, RequestPtr &sreqLow,
318                      RequestPtr &sreqHigh);
319
320    /** Initiate a DTB address translation. */
321    void initiateTranslation(RequestPtr req, RequestPtr sreqLow,
322                             RequestPtr sreqHigh, uint64_t *res,
323                             BaseTLB::Mode mode);
324
325    /** Finish a DTB address translation. */
326    void finishTranslation(WholeTranslationState *state);
327
328    /** True if the DTB address translation has started. */
329    bool translationStarted() const { return instFlags[TranslationStarted]; }
330    void translationStarted(bool f) { instFlags[TranslationStarted] = f; }
331
332    /** True if the DTB address translation has completed. */
333    bool translationCompleted() const { return instFlags[TranslationCompleted]; }
334    void translationCompleted(bool f) { instFlags[TranslationCompleted] = f; }
335
336    /** True if this address was found to match a previous load and they issued
337     * out of order. If that happend, then it's only a problem if an incoming
338     * snoop invalidate modifies the line, in which case we need to squash.
339     * If nothing modified the line the order doesn't matter.
340     */
341    bool possibleLoadViolation() const { return instFlags[PossibleLoadViolation]; }
342    void possibleLoadViolation(bool f) { instFlags[PossibleLoadViolation] = f; }
343
344    /** True if the address hit a external snoop while sitting in the LSQ.
345     * If this is true and a older instruction sees it, this instruction must
346     * reexecute
347     */
348    bool hitExternalSnoop() const { return instFlags[HitExternalSnoop]; }
349    void hitExternalSnoop(bool f) { instFlags[HitExternalSnoop] = f; }
350
351    /**
352     * Returns true if the DTB address translation is being delayed due to a hw
353     * page table walk.
354     */
355    bool isTranslationDelayed() const
356    {
357        return (translationStarted() && !translationCompleted());
358    }
359
360  public:
361#ifdef DEBUG
362    void dumpSNList();
363#endif
364
365    /** Returns the physical register index of the i'th destination
366     *  register.
367     */
368    PhysRegIndex renamedDestRegIdx(int idx) const
369    {
370        return _destRegIdx[idx];
371    }
372
373    /** Returns the physical register index of the i'th source register. */
374    PhysRegIndex renamedSrcRegIdx(int idx) const
375    {
376        assert(TheISA::MaxInstSrcRegs > idx);
377        return _srcRegIdx[idx];
378    }
379
380    /** Returns the flattened register index of the i'th destination
381     *  register.
382     */
383    TheISA::RegIndex flattenedDestRegIdx(int idx) const
384    {
385        return _flatDestRegIdx[idx];
386    }
387
388    /** Returns the physical register index of the previous physical register
389     *  that remapped to the same logical register index.
390     */
391    PhysRegIndex prevDestRegIdx(int idx) const
392    {
393        return _prevDestRegIdx[idx];
394    }
395
396    /** Renames a destination register to a physical register.  Also records
397     *  the previous physical register that the logical register mapped to.
398     */
399    void renameDestReg(int idx,
400                       PhysRegIndex renamed_dest,
401                       PhysRegIndex previous_rename)
402    {
403        _destRegIdx[idx] = renamed_dest;
404        _prevDestRegIdx[idx] = previous_rename;
405    }
406
407    /** Renames a source logical register to the physical register which
408     *  has/will produce that logical register's result.
409     *  @todo: add in whether or not the source register is ready.
410     */
411    void renameSrcReg(int idx, PhysRegIndex renamed_src)
412    {
413        _srcRegIdx[idx] = renamed_src;
414    }
415
416    /** Flattens a destination architectural register index into a logical
417     * index.
418     */
419    void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
420    {
421        _flatDestRegIdx[idx] = flattened_dest;
422    }
423    /** BaseDynInst constructor given a binary instruction.
424     *  @param staticInst A StaticInstPtr to the underlying instruction.
425     *  @param pc The PC state for the instruction.
426     *  @param predPC The predicted next PC state for the instruction.
427     *  @param seq_num The sequence number of the instruction.
428     *  @param cpu Pointer to the instruction's CPU.
429     */
430    BaseDynInst(StaticInstPtr staticInst, StaticInstPtr macroop,
431                TheISA::PCState pc, TheISA::PCState predPC,
432                InstSeqNum seq_num, ImplCPU *cpu);
433
434    /** BaseDynInst constructor given a StaticInst pointer.
435     *  @param _staticInst The StaticInst for this BaseDynInst.
436     */
437    BaseDynInst(StaticInstPtr staticInst, StaticInstPtr macroop);
438
439    /** BaseDynInst destructor. */
440    ~BaseDynInst();
441
442  private:
443    /** Function to initialize variables in the constructors. */
444    void initVars();
445
446  public:
447    /** Dumps out contents of this BaseDynInst. */
448    void dump();
449
450    /** Dumps out contents of this BaseDynInst into given string. */
451    void dump(std::string &outstring);
452
453    /** Read this CPU's ID. */
454    int cpuId() const { return cpu->cpuId(); }
455
456    /** Read this CPU's Socket ID. */
457    uint32_t socketId() const { return cpu->socketId(); }
458
459    /** Read this CPU's data requestor ID */
460    MasterID masterId() const { return cpu->dataMasterId(); }
461
462    /** Read this context's system-wide ID **/
463    int contextId() const { return thread->contextId(); }
464
465    /** Returns the fault type. */
466    Fault getFault() const { return fault; }
467
468    /** Checks whether or not this instruction has had its branch target
469     *  calculated yet.  For now it is not utilized and is hacked to be
470     *  always false.
471     *  @todo: Actually use this instruction.
472     */
473    bool doneTargCalc() { return false; }
474
475    /** Set the predicted target of this current instruction. */
476    void setPredTarg(const TheISA::PCState &_predPC)
477    {
478        predPC = _predPC;
479    }
480
481    const TheISA::PCState &readPredTarg() { return predPC; }
482
483    /** Returns the predicted PC immediately after the branch. */
484    Addr predInstAddr() { return predPC.instAddr(); }
485
486    /** Returns the predicted PC two instructions after the branch */
487    Addr predNextInstAddr() { return predPC.nextInstAddr(); }
488
489    /** Returns the predicted micro PC after the branch */
490    Addr predMicroPC() { return predPC.microPC(); }
491
492    /** Returns whether the instruction was predicted taken or not. */
493    bool readPredTaken()
494    {
495        return instFlags[PredTaken];
496    }
497
498    void setPredTaken(bool predicted_taken)
499    {
500        instFlags[PredTaken] = predicted_taken;
501    }
502
503    /** Returns whether the instruction mispredicted. */
504    bool mispredicted()
505    {
506        TheISA::PCState tempPC = pc;
507        TheISA::advancePC(tempPC, staticInst);
508        return !(tempPC == predPC);
509    }
510
511    //
512    //  Instruction types.  Forward checks to StaticInst object.
513    //
514    bool isNop()          const { return staticInst->isNop(); }
515    bool isMemRef()       const { return staticInst->isMemRef(); }
516    bool isLoad()         const { return staticInst->isLoad(); }
517    bool isStore()        const { return staticInst->isStore(); }
518    bool isStoreConditional() const
519    { return staticInst->isStoreConditional(); }
520    bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
521    bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
522    bool isInteger()      const { return staticInst->isInteger(); }
523    bool isFloating()     const { return staticInst->isFloating(); }
524    bool isControl()      const { return staticInst->isControl(); }
525    bool isCall()         const { return staticInst->isCall(); }
526    bool isReturn()       const { return staticInst->isReturn(); }
527    bool isDirectCtrl()   const { return staticInst->isDirectCtrl(); }
528    bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
529    bool isCondCtrl()     const { return staticInst->isCondCtrl(); }
530    bool isUncondCtrl()   const { return staticInst->isUncondCtrl(); }
531    bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
532    bool isThreadSync()   const { return staticInst->isThreadSync(); }
533    bool isSerializing()  const { return staticInst->isSerializing(); }
534    bool isSerializeBefore() const
535    { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
536    bool isSerializeAfter() const
537    { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
538    bool isSquashAfter() const { return staticInst->isSquashAfter(); }
539    bool isMemBarrier()   const { return staticInst->isMemBarrier(); }
540    bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
541    bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
542    bool isQuiesce() const { return staticInst->isQuiesce(); }
543    bool isIprAccess() const { return staticInst->isIprAccess(); }
544    bool isUnverifiable() const { return staticInst->isUnverifiable(); }
545    bool isSyscall() const { return staticInst->isSyscall(); }
546    bool isMacroop() const { return staticInst->isMacroop(); }
547    bool isMicroop() const { return staticInst->isMicroop(); }
548    bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
549    bool isLastMicroop() const { return staticInst->isLastMicroop(); }
550    bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
551    bool isMicroBranch() const { return staticInst->isMicroBranch(); }
552
553    /** Temporarily sets this instruction as a serialize before instruction. */
554    void setSerializeBefore() { status.set(SerializeBefore); }
555
556    /** Clears the serializeBefore part of this instruction. */
557    void clearSerializeBefore() { status.reset(SerializeBefore); }
558
559    /** Checks if this serializeBefore is only temporarily set. */
560    bool isTempSerializeBefore() { return status[SerializeBefore]; }
561
562    /** Temporarily sets this instruction as a serialize after instruction. */
563    void setSerializeAfter() { status.set(SerializeAfter); }
564
565    /** Clears the serializeAfter part of this instruction.*/
566    void clearSerializeAfter() { status.reset(SerializeAfter); }
567
568    /** Checks if this serializeAfter is only temporarily set. */
569    bool isTempSerializeAfter() { return status[SerializeAfter]; }
570
571    /** Sets the serialization part of this instruction as handled. */
572    void setSerializeHandled() { status.set(SerializeHandled); }
573
574    /** Checks if the serialization part of this instruction has been
575     *  handled.  This does not apply to the temporary serializing
576     *  state; it only applies to this instruction's own permanent
577     *  serializing state.
578     */
579    bool isSerializeHandled() { return status[SerializeHandled]; }
580
581    /** Returns the opclass of this instruction. */
582    OpClass opClass() const { return staticInst->opClass(); }
583
584    /** Returns the branch target address. */
585    TheISA::PCState branchTarget() const
586    { return staticInst->branchTarget(pc); }
587
588    /** Returns the number of source registers. */
589    int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
590
591    /** Returns the number of destination registers. */
592    int8_t numDestRegs() const { return staticInst->numDestRegs(); }
593
594    // the following are used to track physical register usage
595    // for machines with separate int & FP reg files
596    int8_t numFPDestRegs()  const { return staticInst->numFPDestRegs(); }
597    int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
598
599    /** Returns the logical register index of the i'th destination register. */
600    RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
601
602    /** Returns the logical register index of the i'th source register. */
603    RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
604
605    /** Pops a result off the instResult queue */
606    template <class T>
607    void popResult(T& t)
608    {
609        if (!instResult.empty()) {
610            instResult.front().get(t);
611            instResult.pop();
612        }
613    }
614
615    /** Read the most recent result stored by this instruction */
616    template <class T>
617    void readResult(T& t)
618    {
619        instResult.back().get(t);
620    }
621
622    /** Pushes a result onto the instResult queue */
623    template <class T>
624    void setResult(T t)
625    {
626        if (instFlags[RecordResult]) {
627            Result instRes;
628            instRes.set(t);
629            instResult.push(instRes);
630        }
631    }
632
633    /** Records an integer register being set to a value. */
634    void setIntRegOperand(const StaticInst *si, int idx, IntReg val)
635    {
636        setResult<uint64_t>(val);
637    }
638
639    /** Records a CC register being set to a value. */
640    void setCCRegOperand(const StaticInst *si, int idx, CCReg val)
641    {
642        setResult<uint64_t>(val);
643    }
644
645    /** Records an fp register being set to a value. */
646    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
647    {
648        setResult<double>(val);
649    }
650
651    /** Records an fp register being set to an integer value. */
652    void setFloatRegOperandBits(const StaticInst *si, int idx, FloatRegBits val)
653    {
654        setResult<uint64_t>(val);
655    }
656
657    /** Records that one of the source registers is ready. */
658    void markSrcRegReady();
659
660    /** Marks a specific register as ready. */
661    void markSrcRegReady(RegIndex src_idx);
662
663    /** Returns if a source register is ready. */
664    bool isReadySrcRegIdx(int idx) const
665    {
666        return this->_readySrcRegIdx[idx];
667    }
668
669    /** Sets this instruction as completed. */
670    void setCompleted() { status.set(Completed); }
671
672    /** Returns whether or not this instruction is completed. */
673    bool isCompleted() const { return status[Completed]; }
674
675    /** Marks the result as ready. */
676    void setResultReady() { status.set(ResultReady); }
677
678    /** Returns whether or not the result is ready. */
679    bool isResultReady() const { return status[ResultReady]; }
680
681    /** Sets this instruction as ready to issue. */
682    void setCanIssue() { status.set(CanIssue); }
683
684    /** Returns whether or not this instruction is ready to issue. */
685    bool readyToIssue() const { return status[CanIssue]; }
686
687    /** Clears this instruction being able to issue. */
688    void clearCanIssue() { status.reset(CanIssue); }
689
690    /** Sets this instruction as issued from the IQ. */
691    void setIssued() { status.set(Issued); }
692
693    /** Returns whether or not this instruction has issued. */
694    bool isIssued() const { return status[Issued]; }
695
696    /** Clears this instruction as being issued. */
697    void clearIssued() { status.reset(Issued); }
698
699    /** Sets this instruction as executed. */
700    void setExecuted() { status.set(Executed); }
701
702    /** Returns whether or not this instruction has executed. */
703    bool isExecuted() const { return status[Executed]; }
704
705    /** Sets this instruction as ready to commit. */
706    void setCanCommit() { status.set(CanCommit); }
707
708    /** Clears this instruction as being ready to commit. */
709    void clearCanCommit() { status.reset(CanCommit); }
710
711    /** Returns whether or not this instruction is ready to commit. */
712    bool readyToCommit() const { return status[CanCommit]; }
713
714    void setAtCommit() { status.set(AtCommit); }
715
716    bool isAtCommit() { return status[AtCommit]; }
717
718    /** Sets this instruction as committed. */
719    void setCommitted() { status.set(Committed); }
720
721    /** Returns whether or not this instruction is committed. */
722    bool isCommitted() const { return status[Committed]; }
723
724    /** Sets this instruction as squashed. */
725    void setSquashed() { status.set(Squashed); }
726
727    /** Returns whether or not this instruction is squashed. */
728    bool isSquashed() const { return status[Squashed]; }
729
730    //Instruction Queue Entry
731    //-----------------------
732    /** Sets this instruction as a entry the IQ. */
733    void setInIQ() { status.set(IqEntry); }
734
735    /** Sets this instruction as a entry the IQ. */
736    void clearInIQ() { status.reset(IqEntry); }
737
738    /** Returns whether or not this instruction has issued. */
739    bool isInIQ() const { return status[IqEntry]; }
740
741    /** Sets this instruction as squashed in the IQ. */
742    void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
743
744    /** Returns whether or not this instruction is squashed in the IQ. */
745    bool isSquashedInIQ() const { return status[SquashedInIQ]; }
746
747
748    //Load / Store Queue Functions
749    //-----------------------
750    /** Sets this instruction as a entry the LSQ. */
751    void setInLSQ() { status.set(LsqEntry); }
752
753    /** Sets this instruction as a entry the LSQ. */
754    void removeInLSQ() { status.reset(LsqEntry); }
755
756    /** Returns whether or not this instruction is in the LSQ. */
757    bool isInLSQ() const { return status[LsqEntry]; }
758
759    /** Sets this instruction as squashed in the LSQ. */
760    void setSquashedInLSQ() { status.set(SquashedInLSQ);}
761
762    /** Returns whether or not this instruction is squashed in the LSQ. */
763    bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
764
765
766    //Reorder Buffer Functions
767    //-----------------------
768    /** Sets this instruction as a entry the ROB. */
769    void setInROB() { status.set(RobEntry); }
770
771    /** Sets this instruction as a entry the ROB. */
772    void clearInROB() { status.reset(RobEntry); }
773
774    /** Returns whether or not this instruction is in the ROB. */
775    bool isInROB() const { return status[RobEntry]; }
776
777    /** Sets this instruction as squashed in the ROB. */
778    void setSquashedInROB() { status.set(SquashedInROB); }
779
780    /** Returns whether or not this instruction is squashed in the ROB. */
781    bool isSquashedInROB() const { return status[SquashedInROB]; }
782
783    /** Read the PC state of this instruction. */
784    TheISA::PCState pcState() const { return pc; }
785
786    /** Set the PC state of this instruction. */
787    void pcState(const TheISA::PCState &val) { pc = val; }
788
789    /** Read the PC of this instruction. */
790    const Addr instAddr() const { return pc.instAddr(); }
791
792    /** Read the PC of the next instruction. */
793    const Addr nextInstAddr() const { return pc.nextInstAddr(); }
794
795    /**Read the micro PC of this instruction. */
796    const Addr microPC() const { return pc.microPC(); }
797
798    bool readPredicate()
799    {
800        return instFlags[Predicate];
801    }
802
803    void setPredicate(bool val)
804    {
805        instFlags[Predicate] = val;
806
807        if (traceData) {
808            traceData->setPredicate(val);
809        }
810    }
811
812    /** Sets the ASID. */
813    void setASID(short addr_space_id) { asid = addr_space_id; }
814
815    /** Sets the thread id. */
816    void setTid(ThreadID tid) { threadNumber = tid; }
817
818    /** Sets the pointer to the thread state. */
819    void setThreadState(ImplState *state) { thread = state; }
820
821    /** Returns the thread context. */
822    ThreadContext *tcBase() { return thread->getTC(); }
823
824  public:
825    /** Sets the effective address. */
826    void setEA(Addr ea) { instEffAddr = ea; instFlags[EACalcDone] = true; }
827
828    /** Returns the effective address. */
829    Addr getEA() const { return instEffAddr; }
830
831    /** Returns whether or not the eff. addr. calculation has been completed. */
832    bool doneEACalc() { return instFlags[EACalcDone]; }
833
834    /** Returns whether or not the eff. addr. source registers are ready. */
835    bool eaSrcsReady();
836
837    /** Is this instruction's memory access uncacheable. */
838    bool uncacheable() { return instFlags[IsUncacheable]; }
839
840    /** Has this instruction generated a memory request. */
841    bool hasRequest() { return instFlags[ReqMade]; }
842
843    /** Returns iterator to this instruction in the list of all insts. */
844    ListIt &getInstListIt() { return instListIt; }
845
846    /** Sets iterator for this instruction in the list of all insts. */
847    void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
848
849  public:
850    /** Returns the number of consecutive store conditional failures. */
851    unsigned int readStCondFailures() const
852    { return thread->storeCondFailures; }
853
854    /** Sets the number of consecutive store conditional failures. */
855    void setStCondFailures(unsigned int sc_failures)
856    { thread->storeCondFailures = sc_failures; }
857};
858
859template<class Impl>
860Fault
861BaseDynInst<Impl>::readMem(Addr addr, uint8_t *data,
862                           unsigned size, unsigned flags)
863{
864    instFlags[ReqMade] = true;
865    Request *req = NULL;
866    Request *sreqLow = NULL;
867    Request *sreqHigh = NULL;
868
869    if (instFlags[ReqMade] && translationStarted()) {
870        req = savedReq;
871        sreqLow = savedSreqLow;
872        sreqHigh = savedSreqHigh;
873    } else {
874        req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(),
875                          thread->contextId(), threadNumber);
876
877        req->taskId(cpu->taskId());
878
879        // Only split the request if the ISA supports unaligned accesses.
880        if (TheISA::HasUnalignedMemAcc) {
881            splitRequest(req, sreqLow, sreqHigh);
882        }
883        initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
884    }
885
886    if (translationCompleted()) {
887        if (fault == NoFault) {
888            effAddr = req->getVaddr();
889            effSize = size;
890            instFlags[EffAddrValid] = true;
891
892            if (cpu->checker) {
893                if (reqToVerify != NULL) {
894                    delete reqToVerify;
895                }
896                reqToVerify = new Request(*req);
897            }
898            fault = cpu->read(req, sreqLow, sreqHigh, data, lqIdx);
899        } else {
900            // Commit will have to clean up whatever happened.  Set this
901            // instruction as executed.
902            this->setExecuted();
903        }
904
905        if (fault != NoFault) {
906            // Return a fixed value to keep simulation deterministic even
907            // along misspeculated paths.
908            if (data)
909                bzero(data, size);
910        }
911    }
912
913    if (traceData) {
914        traceData->setAddr(addr);
915    }
916
917    return fault;
918}
919
920template<class Impl>
921Fault
922BaseDynInst<Impl>::writeMem(uint8_t *data, unsigned size,
923                            Addr addr, unsigned flags, uint64_t *res)
924{
925    if (traceData) {
926        traceData->setAddr(addr);
927    }
928
929    instFlags[ReqMade] = true;
930    Request *req = NULL;
931    Request *sreqLow = NULL;
932    Request *sreqHigh = NULL;
933
934    if (instFlags[ReqMade] && translationStarted()) {
935        req = savedReq;
936        sreqLow = savedSreqLow;
937        sreqHigh = savedSreqHigh;
938    } else {
939        req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(),
940                          thread->contextId(), threadNumber);
941
942        req->taskId(cpu->taskId());
943
944        // Only split the request if the ISA supports unaligned accesses.
945        if (TheISA::HasUnalignedMemAcc) {
946            splitRequest(req, sreqLow, sreqHigh);
947        }
948        initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
949    }
950
951    if (fault == NoFault && translationCompleted()) {
952        effAddr = req->getVaddr();
953        effSize = size;
954        instFlags[EffAddrValid] = true;
955
956        if (cpu->checker) {
957            if (reqToVerify != NULL) {
958                delete reqToVerify;
959            }
960            reqToVerify = new Request(*req);
961        }
962        fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
963    }
964
965    return fault;
966}
967
968template<class Impl>
969inline void
970BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow,
971                                RequestPtr &sreqHigh)
972{
973    // Check to see if the request crosses the next level block boundary.
974    unsigned block_size = cpu->cacheLineSize();
975    Addr addr = req->getVaddr();
976    Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
977    assert(split_addr <= addr || split_addr - addr < block_size);
978
979    // Spans two blocks.
980    if (split_addr > addr) {
981        req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
982    }
983}
984
985template<class Impl>
986inline void
987BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow,
988                                       RequestPtr sreqHigh, uint64_t *res,
989                                       BaseTLB::Mode mode)
990{
991    translationStarted(true);
992
993    if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
994        WholeTranslationState *state =
995            new WholeTranslationState(req, NULL, res, mode);
996
997        // One translation if the request isn't split.
998        DataTranslation<BaseDynInstPtr> *trans =
999            new DataTranslation<BaseDynInstPtr>(this, state);
1000
1001        cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
1002
1003        if (!translationCompleted()) {
1004            // The translation isn't yet complete, so we can't possibly have a
1005            // fault. Overwrite any existing fault we might have from a previous
1006            // execution of this instruction (e.g. an uncachable load that
1007            // couldn't execute because it wasn't at the head of the ROB).
1008            fault = NoFault;
1009
1010            // Save memory requests.
1011            savedReq = state->mainReq;
1012            savedSreqLow = state->sreqLow;
1013            savedSreqHigh = state->sreqHigh;
1014        }
1015    } else {
1016        WholeTranslationState *state =
1017            new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);
1018
1019        // Two translations when the request is split.
1020        DataTranslation<BaseDynInstPtr> *stransLow =
1021            new DataTranslation<BaseDynInstPtr>(this, state, 0);
1022        DataTranslation<BaseDynInstPtr> *stransHigh =
1023            new DataTranslation<BaseDynInstPtr>(this, state, 1);
1024
1025        cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
1026        cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);
1027
1028        if (!translationCompleted()) {
1029            // The translation isn't yet complete, so we can't possibly have a
1030            // fault. Overwrite any existing fault we might have from a previous
1031            // execution of this instruction (e.g. an uncachable load that
1032            // couldn't execute because it wasn't at the head of the ROB).
1033            fault = NoFault;
1034
1035            // Save memory requests.
1036            savedReq = state->mainReq;
1037            savedSreqLow = state->sreqLow;
1038            savedSreqHigh = state->sreqHigh;
1039        }
1040    }
1041}
1042
1043template<class Impl>
1044inline void
1045BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state)
1046{
1047    fault = state->getFault();
1048
1049    instFlags[IsUncacheable] = state->isUncacheable();
1050
1051    if (fault == NoFault) {
1052        physEffAddr = state->getPaddr();
1053        memReqFlags = state->getFlags();
1054
1055        if (state->mainReq->isCondSwap()) {
1056            assert(state->res);
1057            state->mainReq->setExtraData(*state->res);
1058        }
1059
1060    } else {
1061        state->deleteReqs();
1062    }
1063    delete state;
1064
1065    translationCompleted(true);
1066}
1067
1068#endif // __CPU_BASE_DYN_INST_HH__
1069