bitfield.hh revision 4425:e94d396daad9
1/*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 *          Nathan Binkert
30 */
31
32#ifndef __BASE_BITFIELD_HH__
33#define __BASE_BITFIELD_HH__
34
35#include <inttypes.h>
36
37/**
38 * Generate a 64-bit mask of 'nbits' 1s, right justified.
39 */
40inline uint64_t
41mask(int nbits)
42{
43    return (nbits == 64) ? (uint64_t)-1LL : (1ULL << nbits) - 1;
44}
45
46
47
48/**
49 * Extract the bitfield from position 'first' to 'last' (inclusive)
50 * from 'val' and right justify it.  MSB is numbered 63, LSB is 0.
51 */
52template <class T>
53inline
54T
55bits(T val, int first, int last)
56{
57    int nbits = first - last + 1;
58    return (val >> last) & mask(nbits);
59}
60
61/**
62 * Mask off the given bits in place like bits() but without shifting.
63 * msb = 63, lsb = 0
64 */
65template <class T>
66inline
67T
68mbits(T val, int first, int last)
69{
70    return val & (mask(first+1) & ~mask(last));
71}
72
73inline uint64_t
74mask(int first, int last)
75{
76    return mbits((uint64_t)-1LL, first, last);
77}
78
79/**
80 * Sign-extend an N-bit value to 64 bits.
81 */
82template <int N>
83inline
84int64_t
85sext(uint64_t val)
86{
87    int sign_bit = bits(val, N-1, N-1);
88    return sign_bit ? (val | ~mask(N)) : val;
89}
90
91/**
92 * Return val with bits first to last set to bit_val
93 */
94template <class T, class B>
95inline
96T
97insertBits(T val, int first, int last, B bit_val)
98{
99    T t_bit_val = bit_val;
100    T bmask = mask(first - last + 1) << last;
101    return ((t_bit_val << last) & bmask) | (val & ~bmask);
102}
103
104/**
105 * A convenience function to replace bits first to last of val with bit_val
106 * in place.
107 */
108template <class T, class B>
109inline
110void
111replaceBits(T& val, int first, int last, B bit_val)
112{
113    val = insertBits(val, first, last, bit_val);
114}
115
116/**
117 * Returns the bit position of the MSB that is set in the input
118 */
119inline
120int
121findMsbSet(uint64_t val) {
122    int msb = 0;
123    if (!val)
124        return 0;
125    if (bits(val, 63,32)) { msb += 32; val >>= 32; }
126    if (bits(val, 31,16)) { msb += 16; val >>= 16; }
127    if (bits(val, 15,8))  { msb += 8;  val >>= 8;  }
128    if (bits(val, 7,4))   { msb += 4;  val >>= 4;  }
129    if (bits(val, 3,2))   { msb += 2;  val >>= 2;  }
130    if (bits(val, 1,1))   { msb += 1; }
131    return msb;
132}
133
134//	The following implements the BitUnion system of defining bitfields
135//on top of an underlying class. This is done through the pervasive use of
136//both named and unnamed unions which all contain the same actual storage.
137//Since they're unioned with each other, all of these storage locations
138//overlap. This allows all of the bitfields to manipulate the same data
139//without having to have access to each other. More details are provided with the
140//individual components.
141
142//This namespace is for classes which implement the backend of the BitUnion
143//stuff. Don't use any of these directly, except for the Bitfield classes in
144//the *BitfieldTypes class(es).
145namespace BitfieldBackend
146{
147    //A base class for all bitfields. It instantiates the actual storage,
148    //and provides getBits and setBits functions for manipulating it. The
149    //Data template parameter is type of the underlying storage.
150    template<class Data>
151    class BitfieldBase
152    {
153      protected:
154        Data __data;
155
156        //This function returns a range of bits from the underlying storage.
157        //It relies on the "bits" function above. It's the user's
158        //responsibility to make sure that there is a properly overloaded
159        //version of this function for whatever type they want to overlay.
160        inline uint64_t
161        getBits(int first, int last) const
162        {
163            return bits(__data, first, last);
164        }
165
166        //Similar to the above, but for settings bits with replaceBits.
167        inline void
168        setBits(int first, int last, uint64_t val)
169        {
170            replaceBits(__data, first, last, val);
171        }
172    };
173
174    //This class contains all the "regular" bitfield classes. It is inherited
175    //by all BitUnions which give them access to those types.
176    template<class Type>
177    class RegularBitfieldTypes
178    {
179      protected:
180        //This class implements ordinary bitfields, that is a span of bits
181        //who's msb is "first", and who's lsb is "last".
182        template<int first, int last=first>
183        class Bitfield : public BitfieldBase<Type>
184        {
185          public:
186            operator uint64_t () const
187            {
188                return this->getBits(first, last);
189            }
190
191            uint64_t
192            operator=(const uint64_t _data)
193            {
194                this->setBits(first, last, _data);
195                return _data;
196            }
197        };
198
199        //A class which specializes the above so that it can only be read
200        //from. This is accomplished explicitly making sure the assignment
201        //operator is blocked. The conversion operator is carried through
202        //inheritance. This will unfortunately need to be copied into each
203        //bitfield type due to limitations with how templates work
204        template<int first, int last=first>
205        class BitfieldRO : public Bitfield<first, last>
206        {
207          private:
208            uint64_t
209            operator=(const uint64_t _data);
210        };
211
212        //Similar to the above, but only allows writing.
213        template<int first, int last=first>
214        class BitfieldWO : public Bitfield<first, last>
215        {
216          private:
217            operator uint64_t () const;
218
219          public:
220            using Bitfield<first, last>::operator=;
221        };
222    };
223
224    //This class contains all the "regular" bitfield classes. It is inherited
225    //by all BitUnions which give them access to those types.
226    template<class Type>
227    class SignedBitfieldTypes
228    {
229      protected:
230        //This class implements ordinary bitfields, that is a span of bits
231        //who's msb is "first", and who's lsb is "last".
232        template<int first, int last=first>
233        class SignedBitfield : public BitfieldBase<Type>
234        {
235          public:
236            operator int64_t () const
237            {
238                return sext<first - last + 1>(this->getBits(first, last));
239            }
240
241            int64_t
242            operator=(const int64_t _data)
243            {
244                this->setBits(first, last, _data);
245                return _data;
246            }
247        };
248
249        //A class which specializes the above so that it can only be read
250        //from. This is accomplished explicitly making sure the assignment
251        //operator is blocked. The conversion operator is carried through
252        //inheritance. This will unfortunately need to be copied into each
253        //bitfield type due to limitations with how templates work
254        template<int first, int last=first>
255        class SignedBitfieldRO : public SignedBitfield<first, last>
256        {
257          private:
258            int64_t
259            operator=(const int64_t _data);
260        };
261
262        //Similar to the above, but only allows writing.
263        template<int first, int last=first>
264        class SignedBitfieldWO : public SignedBitfield<first, last>
265        {
266          private:
267            operator int64_t () const;
268
269          public:
270            int64_t operator=(const int64_t _data)
271            {
272                *((SignedBitfield<first, last> *)this) = _data;
273                return _data;
274            }
275        };
276    };
277
278    template<class Type>
279    class BitfieldTypes : public RegularBitfieldTypes<Type>,
280                          public SignedBitfieldTypes<Type>
281    {};
282
283    //When a BitUnion is set up, an underlying class is created which holds
284    //the actual union. This class then inherits from it, and provids the
285    //implementations for various operators. Setting things up this way
286    //prevents having to redefine these functions in every different BitUnion
287    //type. More operators could be implemented in the future, as the need
288    //arises.
289    template <class Type, class Base>
290    class BitUnionOperators : public Base
291    {
292      public:
293        operator Type () const
294        {
295            return Base::__data;
296        }
297
298        Type
299        operator=(const Type & _data)
300        {
301            Base::__data = _data;
302            return _data;
303        }
304
305        bool
306        operator<(const Base & base) const
307        {
308            return Base::__data < base.__data;
309        }
310
311        bool
312        operator==(const Base & base) const
313        {
314            return Base::__data == base.__data;
315        }
316    };
317}
318
319//This macro is a backend for other macros that specialize it slightly.
320//First, it creates/extends a namespace "BitfieldUnderlyingClasses" and
321//sticks the class which has the actual union in it, which
322//BitfieldOperators above inherits from. Putting these classes in a special
323//namespace ensures that there will be no collisions with other names as long
324//as the BitUnion names themselves are all distinct and nothing else uses
325//the BitfieldUnderlyingClasses namespace, which is unlikely. The class itself
326//creates a typedef of the "type" parameter called __DataType. This allows
327//the type to propagate outside of the macro itself in a controlled way.
328//Finally, the base storage is defined which BitfieldOperators will refer to
329//in the operators it defines. This macro is intended to be followed by
330//bitfield definitions which will end up inside it's union. As explained
331//above, these is overlayed the __data member in its entirety by each of the
332//bitfields which are defined in the union, creating shared storage with no
333//overhead.
334#define __BitUnion(type, name) \
335    namespace BitfieldUnderlyingClasses \
336    { \
337        class name; \
338    } \
339    class BitfieldUnderlyingClasses::name : \
340        public BitfieldBackend::BitfieldTypes<type> \
341    { \
342      public: \
343        typedef type __DataType; \
344        union { \
345            type __data;\
346
347//This closes off the class and union started by the above macro. It is
348//followed by a typedef which makes "name" refer to a BitfieldOperator
349//class inheriting from the class and union just defined, which completes
350//building up the type for the user.
351#define EndBitUnion(name) \
352        }; \
353    }; \
354    typedef BitfieldBackend::BitUnionOperators< \
355        BitfieldUnderlyingClasses::name::__DataType, \
356        BitfieldUnderlyingClasses::name> name;
357
358//This sets up a bitfield which has other bitfields nested inside of it. The
359//__data member functions like the "underlying storage" of the top level
360//BitUnion. Like everything else, it overlays with the top level storage, so
361//making it a regular bitfield type makes the entire thing function as a
362//regular bitfield when referred to by itself.
363#define __SubBitUnion(fieldType, first, last, name) \
364    class : public BitfieldBackend::BitfieldTypes<__DataType> \
365    { \
366      public: \
367        union { \
368            fieldType<first, last> __data;
369
370//This closes off the union created above and gives it a name. Unlike the top
371//level BitUnion, we're interested in creating an object instead of a type.
372//The operators are defined in the macro itself instead of a class for
373//technical reasons. If someone determines a way to move them to one, please
374//do so.
375#define EndSubBitUnion(name) \
376        }; \
377        inline operator const __DataType () \
378        { return __data; } \
379        \
380        inline const __DataType operator = (const __DataType & _data) \
381        { __data = _data; } \
382    } name;
383
384//Regular bitfields
385//These define macros for read/write regular bitfield based subbitfields.
386#define SubBitUnion(name, first, last) \
387    __SubBitUnion(Bitfield, first, last, name)
388
389//Regular bitfields
390//These define macros for read/write regular bitfield based subbitfields.
391#define SignedSubBitUnion(name, first, last) \
392    __SubBitUnion(SignedBitfield, first, last, name)
393
394//Use this to define an arbitrary type overlayed with bitfields.
395#define BitUnion(type, name) __BitUnion(type, name)
396
397//Use this to define conveniently sized values overlayed with bitfields.
398#define BitUnion64(name) __BitUnion(uint64_t, name)
399#define BitUnion32(name) __BitUnion(uint32_t, name)
400#define BitUnion16(name) __BitUnion(uint16_t, name)
401#define BitUnion8(name) __BitUnion(uint8_t, name)
402
403#endif // __BASE_BITFIELD_HH__
404