bitfield.hh revision 4274
1/* 2 * Copyright (c) 2003-2005 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * Authors: Steve Reinhardt 29 * Nathan Binkert 30 */ 31 32#ifndef __BASE_BITFIELD_HH__ 33#define __BASE_BITFIELD_HH__ 34 35#include <inttypes.h> 36 37/** 38 * Generate a 64-bit mask of 'nbits' 1s, right justified. 39 */ 40inline uint64_t 41mask(int nbits) 42{ 43 return (nbits == 64) ? (uint64_t)-1LL : (1ULL << nbits) - 1; 44} 45 46 47 48/** 49 * Extract the bitfield from position 'first' to 'last' (inclusive) 50 * from 'val' and right justify it. MSB is numbered 63, LSB is 0. 51 */ 52template <class T> 53inline 54T 55bits(T val, int first, int last) 56{ 57 int nbits = first - last + 1; 58 return (val >> last) & mask(nbits); 59} 60 61/** 62 * Mask off the given bits in place like bits() but without shifting. 63 * msb = 63, lsb = 0 64 */ 65template <class T> 66inline 67T 68mbits(T val, int first, int last) 69{ 70 return val & (mask(first+1) & ~mask(last)); 71} 72 73inline uint64_t 74mask(int first, int last) 75{ 76 return mbits((uint64_t)-1LL, first, last); 77} 78 79/** 80 * Sign-extend an N-bit value to 64 bits. 81 */ 82template <int N> 83inline 84int64_t 85sext(uint64_t val) 86{ 87 int sign_bit = bits(val, N-1, N-1); 88 return sign_bit ? (val | ~mask(N)) : val; 89} 90 91/** 92 * Return val with bits first to last set to bit_val 93 */ 94template <class T, class B> 95inline 96T 97insertBits(T val, int first, int last, B bit_val) 98{ 99 T bmask = mask(first - last + 1) << last; 100 return ((bit_val << last) & bmask) | (val & ~bmask); 101} 102 103/** 104 * A convenience function to replace bits first to last of val with bit_val 105 * in place. 106 */ 107template <class T, class B> 108inline 109void 110replaceBits(T& val, int first, int last, B bit_val) 111{ 112 val = insertBits(val, first, last, bit_val); 113} 114 115/** 116 * Returns the bit position of the MSB that is set in the input 117 */ 118inline 119int 120findMsbSet(uint64_t val) { 121 int msb = 0; 122 if (!val) 123 return 0; 124 if (bits(val, 63,32)) { msb += 32; val >>= 32; } 125 if (bits(val, 31,16)) { msb += 16; val >>= 16; } 126 if (bits(val, 15,8)) { msb += 8; val >>= 8; } 127 if (bits(val, 7,4)) { msb += 4; val >>= 4; } 128 if (bits(val, 3,2)) { msb += 2; val >>= 2; } 129 if (bits(val, 1,1)) { msb += 1; } 130 return msb; 131} 132 133// The following implements the BitUnion system of defining bitfields 134//on top of an underlying class. This is done through the pervasive use of 135//both named and unnamed unions which all contain the same actual storage. 136//Since they're unioned with each other, all of these storage locations 137//overlap. This allows all of the bitfields to manipulate the same data 138//without having to have access to each other. More details are provided with the 139//individual components. 140 141//This namespace is for classes which implement the backend of the BitUnion 142//stuff. Don't use any of these directly, except for the Bitfield classes in 143//the *BitfieldTypes class(es). 144namespace BitfieldBackend 145{ 146 //A base class for all bitfields. It instantiates the actual storage, 147 //and provides getBits and setBits functions for manipulating it. The 148 //Data template parameter is type of the underlying storage. 149 template<class Data> 150 class BitfieldBase 151 { 152 protected: 153 Data __data; 154 155 //This function returns a range of bits from the underlying storage. 156 //It relies on the "bits" function above. It's the user's 157 //responsibility to make sure that there is a properly overloaded 158 //version of this function for whatever type they want to overlay. 159 inline uint64_t 160 getBits(int first, int last) 161 { 162 return bits(__data, first, last); 163 } 164 165 //Similar to the above, but for settings bits with replaceBits. 166 inline void 167 setBits(int first, int last, uint64_t val) 168 { 169 replaceBits(__data, first, last, val); 170 } 171 }; 172 173 //This class contains all the "regular" bitfield classes. It is inherited 174 //by all BitUnions which give them access to those types. 175 template<class Type> 176 class RegularBitfieldTypes 177 { 178 protected: 179 //This class implements ordinary bitfields, that is a span of bits 180 //who's msb is "first", and who's lsb is "last". 181 template<int first, int last=first> 182 class Bitfield : public BitfieldBase<Type> 183 { 184 public: 185 operator uint64_t () const 186 { 187 return this->getBits(first, last); 188 } 189 190 uint64_t 191 operator=(const uint64_t _data) 192 { 193 this->setBits(first, last, _data); 194 return _data; 195 } 196 }; 197 198 //A class which specializes the above so that it can only be read 199 //from. This is accomplished explicitly making sure the assignment 200 //operator is blocked. The conversion operator is carried through 201 //inheritance. This will unfortunately need to be copied into each 202 //bitfield type due to limitations with how templates work 203 template<int first, int last=first> 204 class BitfieldRO : public Bitfield<first, last> 205 { 206 private: 207 uint64_t 208 operator=(const uint64_t _data); 209 }; 210 211 //Similar to the above, but only allows writing. 212 template<int first, int last=first> 213 class BitfieldWO : public Bitfield<first, last> 214 { 215 private: 216 operator uint64_t () const; 217 218 public: 219 using Bitfield<first, last>::operator=; 220 }; 221 }; 222 223 //This class contains all the "regular" bitfield classes. It is inherited 224 //by all BitUnions which give them access to those types. 225 template<class Type> 226 class SignedBitfieldTypes 227 { 228 protected: 229 //This class implements ordinary bitfields, that is a span of bits 230 //who's msb is "first", and who's lsb is "last". 231 template<int first, int last=first> 232 class SignedBitfield : public BitfieldBase<Type> 233 { 234 public: 235 operator int64_t () const 236 { 237 return sext<first - last + 1>(this->getBits(first, last)); 238 } 239 240 int64_t 241 operator=(const int64_t _data) 242 { 243 this->setBits(first, last, _data); 244 return _data; 245 } 246 }; 247 248 //A class which specializes the above so that it can only be read 249 //from. This is accomplished explicitly making sure the assignment 250 //operator is blocked. The conversion operator is carried through 251 //inheritance. This will unfortunately need to be copied into each 252 //bitfield type due to limitations with how templates work 253 template<int first, int last=first> 254 class SignedBitfieldRO : public SignedBitfield<first, last> 255 { 256 private: 257 int64_t 258 operator=(const int64_t _data); 259 }; 260 261 //Similar to the above, but only allows writing. 262 template<int first, int last=first> 263 class SignedBitfieldWO : public SignedBitfield<first, last> 264 { 265 private: 266 operator int64_t () const; 267 268 public: 269 int64_t operator=(const int64_t _data) 270 { 271 *((SignedBitfield<first, last> *)this) = _data; 272 return _data; 273 } 274 }; 275 }; 276 277 template<class Type> 278 class BitfieldTypes : public RegularBitfieldTypes<Type>, 279 public SignedBitfieldTypes<Type> 280 {}; 281 282 //When a BitUnion is set up, an underlying class is created which holds 283 //the actual union. This class then inherits from it, and provids the 284 //implementations for various operators. Setting things up this way 285 //prevents having to redefine these functions in every different BitUnion 286 //type. More operators could be implemented in the future, as the need 287 //arises. 288 template <class Type, class Base> 289 class BitUnionOperators : public Base 290 { 291 public: 292 operator Type () const 293 { 294 return Base::__data; 295 } 296 297 Type 298 operator=(const Type & _data) 299 { 300 Base::__data = _data; 301 return _data; 302 } 303 304 bool 305 operator<(const Base & base) const 306 { 307 return Base::__data < base.__data; 308 } 309 310 bool 311 operator==(const Base & base) const 312 { 313 return Base::__data == base.__data; 314 } 315 }; 316} 317 318//This macro is a backend for other macros that specialize it slightly. 319//First, it creates/extends a namespace "BitfieldUnderlyingClasses" and 320//sticks the class which has the actual union in it, which 321//BitfieldOperators above inherits from. Putting these classes in a special 322//namespace ensures that there will be no collisions with other names as long 323//as the BitUnion names themselves are all distinct and nothing else uses 324//the BitfieldUnderlyingClasses namespace, which is unlikely. The class itself 325//creates a typedef of the "type" parameter called __DataType. This allows 326//the type to propagate outside of the macro itself in a controlled way. 327//Finally, the base storage is defined which BitfieldOperators will refer to 328//in the operators it defines. This macro is intended to be followed by 329//bitfield definitions which will end up inside it's union. As explained 330//above, these is overlayed the __data member in its entirety by each of the 331//bitfields which are defined in the union, creating shared storage with no 332//overhead. 333#define __BitUnion(type, name) \ 334 namespace BitfieldUnderlyingClasses \ 335 { \ 336 class name; \ 337 } \ 338 class BitfieldUnderlyingClasses::name : \ 339 public BitfieldBackend::BitfieldTypes<type> \ 340 { \ 341 public: \ 342 typedef type __DataType; \ 343 union { \ 344 type __data;\ 345 346//This closes off the class and union started by the above macro. It is 347//followed by a typedef which makes "name" refer to a BitfieldOperator 348//class inheriting from the class and union just defined, which completes 349//building up the type for the user. 350#define EndBitUnion(name) \ 351 }; \ 352 }; \ 353 typedef BitfieldBackend::BitUnionOperators< \ 354 BitfieldUnderlyingClasses::name::__DataType, \ 355 BitfieldUnderlyingClasses::name> name; 356 357//This sets up a bitfield which has other bitfields nested inside of it. The 358//__data member functions like the "underlying storage" of the top level 359//BitUnion. Like everything else, it overlays with the top level storage, so 360//making it a regular bitfield type makes the entire thing function as a 361//regular bitfield when referred to by itself. 362#define __SubBitUnion(fieldType, first, last, name) \ 363 class : public BitfieldBackend::BitfieldTypes<__DataType> \ 364 { \ 365 public: \ 366 union { \ 367 fieldType<first, last> __data; 368 369//This closes off the union created above and gives it a name. Unlike the top 370//level BitUnion, we're interested in creating an object instead of a type. 371//The operators are defined in the macro itself instead of a class for 372//technical reasons. If someone determines a way to move them to one, please 373//do so. 374#define EndSubBitUnion(name) \ 375 }; \ 376 inline operator const __DataType () \ 377 { return __data; } \ 378 \ 379 inline const __DataType operator = (const __DataType & _data) \ 380 { __data = _data; } \ 381 } name; 382 383//Regular bitfields 384//These define macros for read/write regular bitfield based subbitfields. 385#define SubBitUnion(name, first, last) \ 386 __SubBitUnion(Bitfield, first, last, name) 387 388//Regular bitfields 389//These define macros for read/write regular bitfield based subbitfields. 390#define SignedSubBitUnion(name, first, last) \ 391 __SubBitUnion(SignedBitfield, first, last, name) 392 393//Use this to define an arbitrary type overlayed with bitfields. 394#define BitUnion(type, name) __BitUnion(type, name) 395 396//Use this to define conveniently sized values overlayed with bitfields. 397#define BitUnion64(name) __BitUnion(uint64_t, name) 398#define BitUnion32(name) __BitUnion(uint32_t, name) 399#define BitUnion16(name) __BitUnion(uint16_t, name) 400#define BitUnion8(name) __BitUnion(uint8_t, name) 401 402#endif // __BASE_BITFIELD_HH__ 403