bitfield.hh revision 4259
1/* 2 * Copyright (c) 2003-2005 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * Authors: Steve Reinhardt 29 * Nathan Binkert 30 */ 31 32#ifndef __BASE_BITFIELD_HH__ 33#define __BASE_BITFIELD_HH__ 34 35#include <inttypes.h> 36 37/** 38 * Generate a 64-bit mask of 'nbits' 1s, right justified. 39 */ 40inline uint64_t 41mask(int nbits) 42{ 43 return (nbits == 64) ? (uint64_t)-1LL : (1ULL << nbits) - 1; 44} 45 46 47 48/** 49 * Extract the bitfield from position 'first' to 'last' (inclusive) 50 * from 'val' and right justify it. MSB is numbered 63, LSB is 0. 51 */ 52template <class T> 53inline 54T 55bits(T val, int first, int last) 56{ 57 int nbits = first - last + 1; 58 return (val >> last) & mask(nbits); 59} 60 61/** 62 * Mask off the given bits in place like bits() but without shifting. 63 * msb = 63, lsb = 0 64 */ 65template <class T> 66inline 67T 68mbits(T val, int first, int last) 69{ 70 return val & (mask(first+1) & ~mask(last)); 71} 72 73inline uint64_t 74mask(int first, int last) 75{ 76 return mbits((uint64_t)-1LL, first, last); 77} 78 79/** 80 * Sign-extend an N-bit value to 64 bits. 81 */ 82template <int N> 83inline 84int64_t 85sext(uint64_t val) 86{ 87 int sign_bit = bits(val, N-1, N-1); 88 return sign_bit ? (val | ~mask(N)) : val; 89} 90 91/** 92 * Return val with bits first to last set to bit_val 93 */ 94template <class T, class B> 95inline 96T 97insertBits(T val, int first, int last, B bit_val) 98{ 99 T bmask = mask(first - last + 1) << last; 100 return ((bit_val << last) & bmask) | (val & ~bmask); 101} 102 103/** 104 * A convenience function to replace bits first to last of val with bit_val 105 * in place. 106 */ 107template <class T, class B> 108inline 109void 110replaceBits(T& val, int first, int last, B bit_val) 111{ 112 val = insertBits(val, first, last, bit_val); 113} 114 115/** 116 * Returns the bit position of the MSB that is set in the input 117 */ 118inline 119int 120findMsbSet(uint64_t val) { 121 int msb = 0; 122 if (!val) 123 return 0; 124 if (bits(val, 63,32)) { msb += 32; val >>= 32; } 125 if (bits(val, 31,16)) { msb += 16; val >>= 16; } 126 if (bits(val, 15,8)) { msb += 8; val >>= 8; } 127 if (bits(val, 7,4)) { msb += 4; val >>= 4; } 128 if (bits(val, 3,2)) { msb += 2; val >>= 2; } 129 if (bits(val, 1,1)) { msb += 1; } 130 return msb; 131} 132 133// The following implements the BitUnion system of defining bitfields 134//on top of an underlying class. This is done through the extensive use of 135//both named and unnamed unions which all contain the same actual storage. 136//Since they're unioned with each other, all of these storage locations 137//overlap. This allows all of the bitfields to manipulate the same data 138//without having to know about each other. More details are provided with the 139//individual components. 140 141//This namespace is for classes which implement the backend of the BitUnion 142//stuff. Don't use any of this directly! Use the macros at the end instead. 143namespace BitfieldBackend 144{ 145 //A base class for all bitfields. It instantiates the actual storage, 146 //and provides getBits and setBits functions for manipulating it. The 147 //Data template parameter is type of the underlying storage. 148 template<class Data> 149 class BitfieldBase 150 { 151 protected: 152 Data __data; 153 154 //This function returns a range of bits from the underlying storage. 155 //It relies on the "bits" function above. It's the user's 156 //responsibility to make sure that there is a properly overloaded 157 //version of this function for whatever type they want to overlay. 158 inline uint64_t 159 getBits(int first, int last) 160 { 161 return bits(__data, first, last); 162 } 163 164 //Similar to the above, but for settings bits with replaceBits. 165 inline void 166 setBits(int first, int last, uint64_t val) 167 { 168 replaceBits(__data, first, last, val); 169 } 170 }; 171 172 //A class which specializes a given base so that it can only be read 173 //from. This is accomplished by only passing through the conversion 174 //operator. 175 template<class Type, class Base> 176 class _BitfieldRO : public Base 177 { 178 public: 179 operator const Type () 180 { 181 return *((Base *)this); 182 } 183 }; 184 185 //Similar to the above, but only allows writing. 186 template<class Type, class Base> 187 class _BitfieldWO : public Base 188 { 189 public: 190 const Type operator = (const Type & _data) 191 { 192 *((Base *)this) = _data; 193 return _data; 194 } 195 }; 196 197 //This class implements ordinary bitfields, that is a span of bits 198 //who's msb is "first", and who's lsb is "last". 199 template<class Data, int first, int last=first> 200 class _Bitfield : public BitfieldBase<Data> 201 { 202 public: 203 operator const Data () 204 { 205 return this->getBits(first, last); 206 } 207 208 const Data 209 operator = (const Data & _data) 210 { 211 this->setBits(first, last, _data); 212 return _data; 213 } 214 }; 215 216 //When a BitUnion is set up, an underlying class is created which holds 217 //the actual union. This class then inherits from it, and provids the 218 //implementations for various operators. Setting things up this way 219 //prevents having to redefine these functions in every different BitUnion 220 //type. More operators could be implemented in the future, as the need 221 //arises. 222 template <class Type, class Base> 223 class BitUnionOperators : public Base 224 { 225 public: 226 operator const Type () 227 { 228 return Base::__data; 229 } 230 231 const Type 232 operator = (const Type & _data) 233 { 234 Base::__data = _data; 235 } 236 237 bool 238 operator < (const Base & base) 239 { 240 return Base::__data < base.__data; 241 } 242 243 bool 244 operator == (const Base & base) 245 { 246 return Base::__data == base.__data; 247 } 248 }; 249} 250 251//This macro is a backend for other macros that specialize it slightly. 252//First, it creates/extends a namespace "BitfieldUnderlyingClasses" and 253//sticks the class which has the actual union in it, which 254//BitfieldOperators above inherits from. Putting these classes in a special 255//namespace ensures that there will be no collisions with other names as long 256//as the BitUnion names themselves are all distinct and nothing else uses 257//the BitfieldUnderlyingClasses namespace, which is unlikely. The class itself 258//creates a typedef of the "type" parameter called __DataType. This allows 259//the type to propagate outside of the macro itself in a controlled way. 260//Finally, the base storage is defined which BitfieldOperators will refer to 261//in the operators it defines. This macro is intended to be followed by 262//bitfield definitions which will end up inside it's union. As explained 263//above, these is overlayed the __data member in its entirety by each of the 264//bitfields which are defined in the union, creating shared storage with no 265//overhead. 266#define __BitUnion(type, name) \ 267 namespace BitfieldUnderlyingClasses \ 268 { \ 269 class name; \ 270 } \ 271 class BitfieldUnderlyingClasses::name { \ 272 public: \ 273 typedef type __DataType; \ 274 union { \ 275 type __data;\ 276 277//This closes off the class and union started by the above macro. It is 278//followed by a typedef which makes "name" refer to a BitfieldOperator 279//class inheriting from the class and union just defined, which completes 280//building up the type for the user. 281#define EndBitUnion(name) \ 282 }; \ 283 }; \ 284 typedef BitfieldBackend::BitUnionOperators< \ 285 BitfieldUnderlyingClasses::name::__DataType, \ 286 BitfieldUnderlyingClasses::name> name; 287 288//This sets up a bitfield which has other bitfields nested inside of it. The 289//__data member functions like the "underlying storage" of the top level 290//BitUnion. Like everything else, it overlays with the top level storage, so 291//making it a regular bitfield type makes the entire thing function as a 292//regular bitfield when referred to by itself. The operators are defined in 293//the macro itself instead of a class for technical reasons. If someone 294//determines a way to move them to one, please do so. 295#define __SubBitUnion(type, name) \ 296 union { \ 297 type __data; \ 298 inline operator const __DataType () \ 299 { return __data; } \ 300 \ 301 inline const __DataType operator = (const __DataType & _data) \ 302 { __data = _data; } 303 304//This closes off the union created above and gives it a name. Unlike the top 305//level BitUnion, we're interested in creating an object instead of a type. 306#define EndSubBitUnion(name) } name; 307 308//The preprocessor will treat everything inside of parenthesis as a single 309//argument even if it has commas in it. This is used to pass in templated 310//classes which typically have commas to seperate their parameters. 311#define wrap(guts) guts 312 313//Read only bitfields 314//This wraps another bitfield class inside a _BitfieldRO class using 315//inheritance. As explained above, the _BitfieldRO class only passes through 316//the conversion operator, so the underlying bitfield can then only be read 317//from. 318#define __BitfieldRO(base) \ 319 BitfieldBackend::_BitfieldRO<__DataType, base> 320#define __SubBitUnionRO(name, base) \ 321 __SubBitUnion(wrap(_BitfieldRO<__DataType, base>), name) 322 323//Write only bitfields 324//Similar to above, but for making write only versions of bitfields with 325//_BitfieldWO. 326#define __BitfieldWO(base) \ 327 BitfieldBackend::_BitfieldWO<__DataType, base> 328#define __SubBitUnionWO(name, base) \ 329 __SubBitUnion(wrap(_BitfieldWO<__DataType, base>), name) 330 331//Regular bitfields 332//This uses all of the above to define macros for read/write, read only, and 333//write only versions of regular bitfields. 334#define Bitfield(first, last) \ 335 BitfieldBackend::_Bitfield<__DataType, first, last> 336#define SubBitUnion(name, first, last) \ 337 __SubBitUnion(Bitfield(first, last), name) 338#define BitfieldRO(first, last) __BitfieldRO(Bitfield(first, last)) 339#define SubBitUnionRO(name, first, last) \ 340 __SubBitUnionRO(Bitfield(first, last), name) 341#define BitfieldWO(first, last) __BitfieldWO(Bitfield(first, last)) 342#define SubBitUnionWO(name, first, last) \ 343 __SubBitUnionWO(Bitfield(first, last), name) 344 345//Use this to define an arbitrary type overlayed with bitfields. 346#define BitUnion(type, name) __BitUnion(type, name) 347 348//Use this to define conveniently sized values overlayed with bitfields. 349#define BitUnion64(name) __BitUnion(uint64_t, name) 350#define BitUnion32(name) __BitUnion(uint32_t, name) 351#define BitUnion16(name) __BitUnion(uint16_t, name) 352#define BitUnion8(name) __BitUnion(uint8_t, name) 353 354#endif // __BASE_BITFIELD_HH__ 355