specialize.isa revision 8250:de679a068dd8
1// -*- mode:c++ -*- 2 3// Copyright (c) 2007 The Hewlett-Packard Development Company 4// All rights reserved. 5// 6// The license below extends only to copyright in the software and shall 7// not be construed as granting a license to any other intellectual 8// property including but not limited to intellectual property relating 9// to a hardware implementation of the functionality of the software 10// licensed hereunder. You may use the software subject to the license 11// terms below provided that you ensure that this notice is replicated 12// unmodified and in its entirety in all distributions of the software, 13// modified or unmodified, in source code or in binary form. 14// 15// Redistribution and use in source and binary forms, with or without 16// modification, are permitted provided that the following conditions are 17// met: redistributions of source code must retain the above copyright 18// notice, this list of conditions and the following disclaimer; 19// redistributions in binary form must reproduce the above copyright 20// notice, this list of conditions and the following disclaimer in the 21// documentation and/or other materials provided with the distribution; 22// neither the name of the copyright holders nor the names of its 23// contributors may be used to endorse or promote products derived from 24// this software without specific prior written permission. 25// 26// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 27// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 28// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 29// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 30// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 31// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 32// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 33// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 34// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 35// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 36// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 37// 38// Authors: Gabe Black 39 40//////////////////////////////////////////////////////////////////// 41// 42// Code to "specialize" a microcode sequence to use a particular 43// variety of operands 44// 45 46let {{ 47 # This code builds up a decode block which decodes based on switchval. 48 # vals is a dict which matches case values with what should be decoded to. 49 # Each element of the dict is a list containing a function and then the 50 # arguments to pass to it. 51 def doSplitDecode(switchVal, vals, default = None): 52 blocks = OutputBlocks() 53 blocks.decode_block = 'switch(%s) {\n' % switchVal 54 for (val, todo) in vals.items(): 55 new_blocks = todo[0](*todo[1:]) 56 new_blocks.decode_block = \ 57 '\tcase %s: %s\n' % (val, new_blocks.decode_block) 58 blocks.append(new_blocks) 59 if default: 60 new_blocks = default[0](*default[1:]) 61 new_blocks.decode_block = \ 62 '\tdefault: %s\n' % new_blocks.decode_block 63 blocks.append(new_blocks) 64 blocks.decode_block += '}\n' 65 return blocks 66}}; 67 68let {{ 69 def doRipRelativeDecode(Name, opTypes, env): 70 # print "RIPing %s with opTypes %s" % (Name, opTypes) 71 env.memoryInst = True 72 normEnv = copy.copy(env) 73 normEnv.addToDisassembly( 74 '''printMem(out, env.seg, env.scale, env.index, env.base, 75 machInst.displacement, env.addressSize, false);''') 76 normBlocks = specializeInst(Name + "_M", copy.copy(opTypes), normEnv) 77 ripEnv = copy.copy(env) 78 ripEnv.addToDisassembly( 79 '''printMem(out, env.seg, 1, 0, 0, 80 machInst.displacement, env.addressSize, true);''') 81 ripBlocks = specializeInst(Name + "_P", copy.copy(opTypes), ripEnv) 82 83 blocks = OutputBlocks() 84 blocks.append(normBlocks) 85 blocks.append(ripBlocks) 86 87 blocks.decode_block = ''' 88 if(machInst.modRM.mod == 0 && 89 machInst.modRM.rm == 5 && 90 machInst.mode.submode == SixtyFourBitMode) 91 { %s } 92 else 93 { %s }''' % \ 94 (ripBlocks.decode_block, normBlocks.decode_block) 95 return blocks 96}}; 97 98let {{ 99 def doBadInstDecode(): 100 blocks = OutputBlocks() 101 blocks.decode_block = ''' 102 return new Unknown(machInst); 103 ''' 104 return blocks 105}}; 106 107let {{ 108 class OpType(object): 109 parser = re.compile(r"(?P<tag>[A-Z]+)(?P<size>[a-z]*)|(r(?P<reg>[A-Z0-9]+)(?P<rsize>[a-z]*))") 110 def __init__(self, opTypeString): 111 match = OpType.parser.search(opTypeString) 112 if match == None: 113 raise Exception, "Problem parsing operand type %s" % opTypeString 114 self.reg = match.group("reg") 115 self.tag = match.group("tag") 116 self.size = match.group("size") 117 if not self.size: 118 self.size = match.group("rsize") 119 120 ModRMRegIndex = "(MODRM_REG | (REX_R << 3))" 121 ModRMRMIndex = "(MODRM_RM | (REX_B << 3))" 122 InstRegIndex = "(OPCODE_OP_BOTTOM3 | (REX_B << 3))" 123 124 # This function specializes the given piece of code to use a particular 125 # set of argument types described by "opTypes". 126 def specializeInst(Name, opTypes, env): 127 # print "Specializing %s with opTypes %s" % (Name, opTypes) 128 while len(opTypes): 129 # Parse the operand type string we're working with 130 opType = OpType(opTypes[0]) 131 opTypes.pop(0) 132 133 if opType.tag not in ("I", "J", "P", "PR", "Q", "V", "VR", "W"): 134 if opType.size: 135 env.setSize(opType.size) 136 137 if opType.reg: 138 #Figure out what to do with fixed register operands 139 #This is the index to use, so we should stick it some place. 140 if opType.reg in ("A", "B", "C", "D"): 141 regString = "INTREG_R%sX" % opType.reg 142 else: 143 regString = "INTREG_R%s" % opType.reg 144 env.addReg(regString) 145 env.addToDisassembly( 146 "printReg(out, %s, regSize);\n" % regString) 147 Name += "_R" 148 elif opType.tag == "B": 149 # This refers to registers whose index is encoded as part of the opcode 150 env.addToDisassembly( 151 "printReg(out, %s, regSize);\n" % InstRegIndex) 152 Name += "_R" 153 env.addReg(InstRegIndex) 154 elif opType.tag == "M": 155 # This refers to memory. The macroop constructor sets up modrm 156 # addressing. Non memory modrm settings should cause an error. 157 env.doModRM = True 158 return doSplitDecode("MODRM_MOD", 159 {"3" : (doBadInstDecode,) }, 160 (doRipRelativeDecode, Name, opTypes, env)) 161 elif opType.tag == None or opType.size == None: 162 raise Exception, "Problem parsing operand tag: %s" % opType.tag 163 elif opType.tag == "C": 164 # A control register indexed by the "reg" field 165 env.addReg(ModRMRegIndex) 166 env.addToDisassembly( 167 "ccprintf(out, \"CR%%d\", %s);\n" % ModRMRegIndex) 168 Name += "_C" 169 elif opType.tag == "D": 170 # A debug register indexed by the "reg" field 171 env.addReg(ModRMRegIndex) 172 env.addToDisassembly( 173 "ccprintf(out, \"DR%%d\", %s);\n" % ModRMRegIndex) 174 Name += "_D" 175 elif opType.tag == "S": 176 # A segment selector register indexed by the "reg" field 177 env.addReg(ModRMRegIndex) 178 env.addToDisassembly( 179 "printSegment(out, %s);\n" % ModRMRegIndex) 180 Name += "_S" 181 elif opType.tag in ("G", "P", "T", "V"): 182 # Use the "reg" field of the ModRM byte to select the register 183 env.addReg(ModRMRegIndex) 184 env.addToDisassembly( 185 "printReg(out, %s, regSize);\n" % ModRMRegIndex) 186 if opType.tag == "P": 187 Name += "_MMX" 188 elif opType.tag == "V": 189 Name += "_XMM" 190 else: 191 Name += "_R" 192 elif opType.tag in ("E", "Q", "W"): 193 # This might refer to memory or to a register. We need to 194 # divide it up farther. 195 regEnv = copy.copy(env) 196 regEnv.addReg(ModRMRMIndex) 197 regEnv.addToDisassembly( 198 "printReg(out, %s, regSize);\n" % ModRMRMIndex) 199 # This refers to memory. The macroop constructor should set up 200 # modrm addressing. 201 memEnv = copy.copy(env) 202 memEnv.doModRM = True 203 regSuffix = "_R" 204 if opType.tag == "Q": 205 regSuffix = "_MMX" 206 elif opType.tag == "W": 207 regSuffix = "_XMM" 208 return doSplitDecode("MODRM_MOD", 209 {"3" : (specializeInst, Name + regSuffix, 210 copy.copy(opTypes), regEnv)}, 211 (doRipRelativeDecode, Name, 212 copy.copy(opTypes), memEnv)) 213 elif opType.tag in ("I", "J"): 214 # Immediates 215 env.addToDisassembly( 216 "ccprintf(out, \"%#x\", machInst.immediate);\n") 217 Name += "_I" 218 elif opType.tag == "O": 219 # Immediate containing a memory offset 220 Name += "_MI" 221 elif opType.tag in ("PR", "R", "VR"): 222 # Non register modrm settings should cause an error 223 env.addReg(ModRMRMIndex) 224 env.addToDisassembly( 225 "printReg(out, %s, regSize);\n" % ModRMRMIndex) 226 if opType.tag == "PR": 227 Name += "_MMX" 228 elif opType.tag == "VR": 229 Name += "_XMM" 230 else: 231 Name += "_R" 232 elif opType.tag in ("X", "Y"): 233 # This type of memory addressing is for string instructions. 234 # They'll use the right index and segment internally. 235 if opType.tag == "X": 236 env.addToDisassembly( 237 '''printMem(out, env.seg, 238 1, X86ISA::ZeroReg, X86ISA::INTREG_RSI, 0, 239 env.addressSize, false);''') 240 else: 241 env.addToDisassembly( 242 '''printMem(out, SEGMENT_REG_ES, 243 1, X86ISA::ZeroReg, X86ISA::INTREG_RDI, 0, 244 env.addressSize, false);''') 245 Name += "_M" 246 else: 247 raise Exception, "Unrecognized tag %s." % opType.tag 248 249 # Generate code to return a macroop of the given name which will 250 # operate in the "emulation environment" env 251 return genMacroop(Name, env) 252}}; 253