1/* 2 tests/test_virtual_functions.cpp -- overriding virtual functions from Python 3 4 Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch> 5 6 All rights reserved. Use of this source code is governed by a 7 BSD-style license that can be found in the LICENSE file. 8*/ 9 10#include "pybind11_tests.h" 11#include "constructor_stats.h" 12#include <pybind11/functional.h> 13#include <thread> 14 15/* This is an example class that we'll want to be able to extend from Python */ 16class ExampleVirt { 17public: 18 ExampleVirt(int state) : state(state) { print_created(this, state); } 19 ExampleVirt(const ExampleVirt &e) : state(e.state) { print_copy_created(this); } 20 ExampleVirt(ExampleVirt &&e) : state(e.state) { print_move_created(this); e.state = 0; } 21 virtual ~ExampleVirt() { print_destroyed(this); } 22 23 virtual int run(int value) { 24 py::print("Original implementation of " 25 "ExampleVirt::run(state={}, value={}, str1={}, str2={})"_s.format(state, value, get_string1(), *get_string2())); 26 return state + value; 27 } 28 29 virtual bool run_bool() = 0; 30 virtual void pure_virtual() = 0; 31 32 // Returning a reference/pointer to a type converted from python (numbers, strings, etc.) is a 33 // bit trickier, because the actual int& or std::string& or whatever only exists temporarily, so 34 // we have to handle it specially in the trampoline class (see below). 35 virtual const std::string &get_string1() { return str1; } 36 virtual const std::string *get_string2() { return &str2; } 37 38private: 39 int state; 40 const std::string str1{"default1"}, str2{"default2"}; 41}; 42 43/* This is a wrapper class that must be generated */ 44class PyExampleVirt : public ExampleVirt { 45public: 46 using ExampleVirt::ExampleVirt; /* Inherit constructors */ 47 48 int run(int value) override { 49 /* Generate wrapping code that enables native function overloading */ 50 PYBIND11_OVERLOAD( 51 int, /* Return type */ 52 ExampleVirt, /* Parent class */ 53 run, /* Name of function */ 54 value /* Argument(s) */ 55 ); 56 } 57 58 bool run_bool() override { 59 PYBIND11_OVERLOAD_PURE( 60 bool, /* Return type */ 61 ExampleVirt, /* Parent class */ 62 run_bool, /* Name of function */ 63 /* This function has no arguments. The trailing comma 64 in the previous line is needed for some compilers */ 65 ); 66 } 67 68 void pure_virtual() override { 69 PYBIND11_OVERLOAD_PURE( 70 void, /* Return type */ 71 ExampleVirt, /* Parent class */ 72 pure_virtual, /* Name of function */ 73 /* This function has no arguments. The trailing comma 74 in the previous line is needed for some compilers */ 75 ); 76 } 77 78 // We can return reference types for compatibility with C++ virtual interfaces that do so, but 79 // note they have some significant limitations (see the documentation). 80 const std::string &get_string1() override { 81 PYBIND11_OVERLOAD( 82 const std::string &, /* Return type */ 83 ExampleVirt, /* Parent class */ 84 get_string1, /* Name of function */ 85 /* (no arguments) */ 86 ); 87 } 88 89 const std::string *get_string2() override { 90 PYBIND11_OVERLOAD( 91 const std::string *, /* Return type */ 92 ExampleVirt, /* Parent class */ 93 get_string2, /* Name of function */ 94 /* (no arguments) */ 95 ); 96 } 97 98}; 99 100class NonCopyable { 101public: 102 NonCopyable(int a, int b) : value{new int(a*b)} { print_created(this, a, b); } 103 NonCopyable(NonCopyable &&o) { value = std::move(o.value); print_move_created(this); } 104 NonCopyable(const NonCopyable &) = delete; 105 NonCopyable() = delete; 106 void operator=(const NonCopyable &) = delete; 107 void operator=(NonCopyable &&) = delete; 108 std::string get_value() const { 109 if (value) return std::to_string(*value); else return "(null)"; 110 } 111 ~NonCopyable() { print_destroyed(this); } 112 113private: 114 std::unique_ptr<int> value; 115}; 116 117// This is like the above, but is both copy and movable. In effect this means it should get moved 118// when it is not referenced elsewhere, but copied if it is still referenced. 119class Movable { 120public: 121 Movable(int a, int b) : value{a+b} { print_created(this, a, b); } 122 Movable(const Movable &m) { value = m.value; print_copy_created(this); } 123 Movable(Movable &&m) { value = std::move(m.value); print_move_created(this); } 124 std::string get_value() const { return std::to_string(value); } 125 ~Movable() { print_destroyed(this); } 126private: 127 int value; 128}; 129 130class NCVirt { 131public: 132 virtual ~NCVirt() { } 133 virtual NonCopyable get_noncopyable(int a, int b) { return NonCopyable(a, b); } 134 virtual Movable get_movable(int a, int b) = 0; 135 136 std::string print_nc(int a, int b) { return get_noncopyable(a, b).get_value(); } 137 std::string print_movable(int a, int b) { return get_movable(a, b).get_value(); } 138}; 139class NCVirtTrampoline : public NCVirt { 140#if !defined(__INTEL_COMPILER) 141 NonCopyable get_noncopyable(int a, int b) override { 142 PYBIND11_OVERLOAD(NonCopyable, NCVirt, get_noncopyable, a, b); 143 } 144#endif 145 Movable get_movable(int a, int b) override { 146 PYBIND11_OVERLOAD_PURE(Movable, NCVirt, get_movable, a, b); 147 } 148}; 149 150struct Base { 151 /* for some reason MSVC2015 can't compile this if the function is pure virtual */ 152 virtual std::string dispatch() const { return {}; }; 153 virtual ~Base() = default; 154}; 155 156struct DispatchIssue : Base { 157 virtual std::string dispatch() const { 158 PYBIND11_OVERLOAD_PURE(std::string, Base, dispatch, /* no arguments */); 159 } 160}; 161 162static void test_gil() { 163 { 164 py::gil_scoped_acquire lock; 165 py::print("1st lock acquired"); 166 167 } 168 169 { 170 py::gil_scoped_acquire lock; 171 py::print("2nd lock acquired"); 172 } 173 174} 175 176static void test_gil_from_thread() { 177 py::gil_scoped_release release; 178 179 std::thread t(test_gil); 180 t.join(); 181} 182 183 184// Forward declaration (so that we can put the main tests here; the inherited virtual approaches are 185// rather long). 186void initialize_inherited_virtuals(py::module &m); 187 188TEST_SUBMODULE(virtual_functions, m) { 189 // test_override 190 py::class_<ExampleVirt, PyExampleVirt>(m, "ExampleVirt") 191 .def(py::init<int>()) 192 /* Reference original class in function definitions */ 193 .def("run", &ExampleVirt::run) 194 .def("run_bool", &ExampleVirt::run_bool) 195 .def("pure_virtual", &ExampleVirt::pure_virtual); 196 197 py::class_<NonCopyable>(m, "NonCopyable") 198 .def(py::init<int, int>()); 199 200 py::class_<Movable>(m, "Movable") 201 .def(py::init<int, int>()); 202 203 // test_move_support 204#if !defined(__INTEL_COMPILER) 205 py::class_<NCVirt, NCVirtTrampoline>(m, "NCVirt") 206 .def(py::init<>()) 207 .def("get_noncopyable", &NCVirt::get_noncopyable) 208 .def("get_movable", &NCVirt::get_movable) 209 .def("print_nc", &NCVirt::print_nc) 210 .def("print_movable", &NCVirt::print_movable); 211#endif 212 213 m.def("runExampleVirt", [](ExampleVirt *ex, int value) { return ex->run(value); }); 214 m.def("runExampleVirtBool", [](ExampleVirt* ex) { return ex->run_bool(); }); 215 m.def("runExampleVirtVirtual", [](ExampleVirt *ex) { ex->pure_virtual(); }); 216 217 m.def("cstats_debug", &ConstructorStats::get<ExampleVirt>); 218 initialize_inherited_virtuals(m); 219 220 // test_alias_delay_initialization1 221 // don't invoke Python dispatch classes by default when instantiating C++ classes 222 // that were not extended on the Python side 223 struct A { 224 virtual ~A() {} 225 virtual void f() { py::print("A.f()"); } 226 }; 227 228 struct PyA : A { 229 PyA() { py::print("PyA.PyA()"); } 230 ~PyA() { py::print("PyA.~PyA()"); } 231 232 void f() override { 233 py::print("PyA.f()"); 234 // This convolution just gives a `void`, but tests that PYBIND11_TYPE() works to protect 235 // a type containing a , 236 PYBIND11_OVERLOAD(PYBIND11_TYPE(typename std::enable_if<true, void>::type), A, f); 237 } 238 }; 239 240 py::class_<A, PyA>(m, "A") 241 .def(py::init<>()) 242 .def("f", &A::f); 243 244 m.def("call_f", [](A *a) { a->f(); }); 245 246 // test_alias_delay_initialization2 247 // ... unless we explicitly request it, as in this example: 248 struct A2 { 249 virtual ~A2() {} 250 virtual void f() { py::print("A2.f()"); } 251 }; 252 253 struct PyA2 : A2 { 254 PyA2() { py::print("PyA2.PyA2()"); } 255 ~PyA2() { py::print("PyA2.~PyA2()"); } 256 void f() override { 257 py::print("PyA2.f()"); 258 PYBIND11_OVERLOAD(void, A2, f); 259 } 260 }; 261 262 py::class_<A2, PyA2>(m, "A2") 263 .def(py::init_alias<>()) 264 .def(py::init([](int) { return new PyA2(); })) 265 .def("f", &A2::f); 266 267 m.def("call_f", [](A2 *a2) { a2->f(); }); 268 269 // test_dispatch_issue 270 // #159: virtual function dispatch has problems with similar-named functions 271 py::class_<Base, DispatchIssue>(m, "DispatchIssue") 272 .def(py::init<>()) 273 .def("dispatch", &Base::dispatch); 274 275 m.def("dispatch_issue_go", [](const Base * b) { return b->dispatch(); }); 276 277 // test_override_ref 278 // #392/397: overriding reference-returning functions 279 class OverrideTest { 280 public: 281 struct A { std::string value = "hi"; }; 282 std::string v; 283 A a; 284 explicit OverrideTest(const std::string &v) : v{v} {} 285 virtual std::string str_value() { return v; } 286 virtual std::string &str_ref() { return v; } 287 virtual A A_value() { return a; } 288 virtual A &A_ref() { return a; } 289 virtual ~OverrideTest() = default; 290 }; 291 292 class PyOverrideTest : public OverrideTest { 293 public: 294 using OverrideTest::OverrideTest; 295 std::string str_value() override { PYBIND11_OVERLOAD(std::string, OverrideTest, str_value); } 296 // Not allowed (uncommenting should hit a static_assert failure): we can't get a reference 297 // to a python numeric value, since we only copy values in the numeric type caster: 298// std::string &str_ref() override { PYBIND11_OVERLOAD(std::string &, OverrideTest, str_ref); } 299 // But we can work around it like this: 300 private: 301 std::string _tmp; 302 std::string str_ref_helper() { PYBIND11_OVERLOAD(std::string, OverrideTest, str_ref); } 303 public: 304 std::string &str_ref() override { return _tmp = str_ref_helper(); } 305 306 A A_value() override { PYBIND11_OVERLOAD(A, OverrideTest, A_value); } 307 A &A_ref() override { PYBIND11_OVERLOAD(A &, OverrideTest, A_ref); } 308 }; 309 310 py::class_<OverrideTest::A>(m, "OverrideTest_A") 311 .def_readwrite("value", &OverrideTest::A::value); 312 py::class_<OverrideTest, PyOverrideTest>(m, "OverrideTest") 313 .def(py::init<const std::string &>()) 314 .def("str_value", &OverrideTest::str_value) 315// .def("str_ref", &OverrideTest::str_ref) 316 .def("A_value", &OverrideTest::A_value) 317 .def("A_ref", &OverrideTest::A_ref); 318} 319 320 321// Inheriting virtual methods. We do two versions here: the repeat-everything version and the 322// templated trampoline versions mentioned in docs/advanced.rst. 323// 324// These base classes are exactly the same, but we technically need distinct 325// classes for this example code because we need to be able to bind them 326// properly (pybind11, sensibly, doesn't allow us to bind the same C++ class to 327// multiple python classes). 328class A_Repeat { 329#define A_METHODS \ 330public: \ 331 virtual int unlucky_number() = 0; \ 332 virtual std::string say_something(unsigned times) { \ 333 std::string s = ""; \ 334 for (unsigned i = 0; i < times; ++i) \ 335 s += "hi"; \ 336 return s; \ 337 } \ 338 std::string say_everything() { \ 339 return say_something(1) + " " + std::to_string(unlucky_number()); \ 340 } 341A_METHODS 342 virtual ~A_Repeat() = default; 343}; 344class B_Repeat : public A_Repeat { 345#define B_METHODS \ 346public: \ 347 int unlucky_number() override { return 13; } \ 348 std::string say_something(unsigned times) override { \ 349 return "B says hi " + std::to_string(times) + " times"; \ 350 } \ 351 virtual double lucky_number() { return 7.0; } 352B_METHODS 353}; 354class C_Repeat : public B_Repeat { 355#define C_METHODS \ 356public: \ 357 int unlucky_number() override { return 4444; } \ 358 double lucky_number() override { return 888; } 359C_METHODS 360}; 361class D_Repeat : public C_Repeat { 362#define D_METHODS // Nothing overridden. 363D_METHODS 364}; 365 366// Base classes for templated inheritance trampolines. Identical to the repeat-everything version: 367class A_Tpl { A_METHODS; virtual ~A_Tpl() = default; }; 368class B_Tpl : public A_Tpl { B_METHODS }; 369class C_Tpl : public B_Tpl { C_METHODS }; 370class D_Tpl : public C_Tpl { D_METHODS }; 371 372 373// Inheritance approach 1: each trampoline gets every virtual method (11 in total) 374class PyA_Repeat : public A_Repeat { 375public: 376 using A_Repeat::A_Repeat; 377 int unlucky_number() override { PYBIND11_OVERLOAD_PURE(int, A_Repeat, unlucky_number, ); } 378 std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, A_Repeat, say_something, times); } 379}; 380class PyB_Repeat : public B_Repeat { 381public: 382 using B_Repeat::B_Repeat; 383 int unlucky_number() override { PYBIND11_OVERLOAD(int, B_Repeat, unlucky_number, ); } 384 std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, B_Repeat, say_something, times); } 385 double lucky_number() override { PYBIND11_OVERLOAD(double, B_Repeat, lucky_number, ); } 386}; 387class PyC_Repeat : public C_Repeat { 388public: 389 using C_Repeat::C_Repeat; 390 int unlucky_number() override { PYBIND11_OVERLOAD(int, C_Repeat, unlucky_number, ); } 391 std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, C_Repeat, say_something, times); } 392 double lucky_number() override { PYBIND11_OVERLOAD(double, C_Repeat, lucky_number, ); } 393}; 394class PyD_Repeat : public D_Repeat { 395public: 396 using D_Repeat::D_Repeat; 397 int unlucky_number() override { PYBIND11_OVERLOAD(int, D_Repeat, unlucky_number, ); } 398 std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, D_Repeat, say_something, times); } 399 double lucky_number() override { PYBIND11_OVERLOAD(double, D_Repeat, lucky_number, ); } 400}; 401 402// Inheritance approach 2: templated trampoline classes. 403// 404// Advantages: 405// - we have only 2 (template) class and 4 method declarations (one per virtual method, plus one for 406// any override of a pure virtual method), versus 4 classes and 6 methods (MI) or 4 classes and 11 407// methods (repeat). 408// - Compared to MI, we also don't have to change the non-trampoline inheritance to virtual, and can 409// properly inherit constructors. 410// 411// Disadvantage: 412// - the compiler must still generate and compile 14 different methods (more, even, than the 11 413// required for the repeat approach) instead of the 6 required for MI. (If there was no pure 414// method (or no pure method override), the number would drop down to the same 11 as the repeat 415// approach). 416template <class Base = A_Tpl> 417class PyA_Tpl : public Base { 418public: 419 using Base::Base; // Inherit constructors 420 int unlucky_number() override { PYBIND11_OVERLOAD_PURE(int, Base, unlucky_number, ); } 421 std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, Base, say_something, times); } 422}; 423template <class Base = B_Tpl> 424class PyB_Tpl : public PyA_Tpl<Base> { 425public: 426 using PyA_Tpl<Base>::PyA_Tpl; // Inherit constructors (via PyA_Tpl's inherited constructors) 427 int unlucky_number() override { PYBIND11_OVERLOAD(int, Base, unlucky_number, ); } 428 double lucky_number() override { PYBIND11_OVERLOAD(double, Base, lucky_number, ); } 429}; 430// Since C_Tpl and D_Tpl don't declare any new virtual methods, we don't actually need these (we can 431// use PyB_Tpl<C_Tpl> and PyB_Tpl<D_Tpl> for the trampoline classes instead): 432/* 433template <class Base = C_Tpl> class PyC_Tpl : public PyB_Tpl<Base> { 434public: 435 using PyB_Tpl<Base>::PyB_Tpl; 436}; 437template <class Base = D_Tpl> class PyD_Tpl : public PyC_Tpl<Base> { 438public: 439 using PyC_Tpl<Base>::PyC_Tpl; 440}; 441*/ 442 443void initialize_inherited_virtuals(py::module &m) { 444 // test_inherited_virtuals 445 446 // Method 1: repeat 447 py::class_<A_Repeat, PyA_Repeat>(m, "A_Repeat") 448 .def(py::init<>()) 449 .def("unlucky_number", &A_Repeat::unlucky_number) 450 .def("say_something", &A_Repeat::say_something) 451 .def("say_everything", &A_Repeat::say_everything); 452 py::class_<B_Repeat, A_Repeat, PyB_Repeat>(m, "B_Repeat") 453 .def(py::init<>()) 454 .def("lucky_number", &B_Repeat::lucky_number); 455 py::class_<C_Repeat, B_Repeat, PyC_Repeat>(m, "C_Repeat") 456 .def(py::init<>()); 457 py::class_<D_Repeat, C_Repeat, PyD_Repeat>(m, "D_Repeat") 458 .def(py::init<>()); 459 460 // test_ 461 // Method 2: Templated trampolines 462 py::class_<A_Tpl, PyA_Tpl<>>(m, "A_Tpl") 463 .def(py::init<>()) 464 .def("unlucky_number", &A_Tpl::unlucky_number) 465 .def("say_something", &A_Tpl::say_something) 466 .def("say_everything", &A_Tpl::say_everything); 467 py::class_<B_Tpl, A_Tpl, PyB_Tpl<>>(m, "B_Tpl") 468 .def(py::init<>()) 469 .def("lucky_number", &B_Tpl::lucky_number); 470 py::class_<C_Tpl, B_Tpl, PyB_Tpl<C_Tpl>>(m, "C_Tpl") 471 .def(py::init<>()); 472 py::class_<D_Tpl, C_Tpl, PyB_Tpl<D_Tpl>>(m, "D_Tpl") 473 .def(py::init<>()); 474 475 476 // Fix issue #1454 (crash when acquiring/releasing GIL on another thread in Python 2.7) 477 m.def("test_gil", &test_gil); 478 m.def("test_gil_from_thread", &test_gil_from_thread); 479}; 480