1.. _classes: 2 3Object-oriented code 4#################### 5 6Creating bindings for a custom type 7=================================== 8 9Let's now look at a more complex example where we'll create bindings for a 10custom C++ data structure named ``Pet``. Its definition is given below: 11 12.. code-block:: cpp 13 14 struct Pet { 15 Pet(const std::string &name) : name(name) { } 16 void setName(const std::string &name_) { name = name_; } 17 const std::string &getName() const { return name; } 18 19 std::string name; 20 }; 21 22The binding code for ``Pet`` looks as follows: 23 24.. code-block:: cpp 25 26 #include <pybind11/pybind11.h> 27 28 namespace py = pybind11; 29 30 PYBIND11_MODULE(example, m) { 31 py::class_<Pet>(m, "Pet") 32 .def(py::init<const std::string &>()) 33 .def("setName", &Pet::setName) 34 .def("getName", &Pet::getName); 35 } 36 37:class:`class_` creates bindings for a C++ *class* or *struct*-style data 38structure. :func:`init` is a convenience function that takes the types of a 39constructor's parameters as template arguments and wraps the corresponding 40constructor (see the :ref:`custom_constructors` section for details). An 41interactive Python session demonstrating this example is shown below: 42 43.. code-block:: pycon 44 45 % python 46 >>> import example 47 >>> p = example.Pet('Molly') 48 >>> print(p) 49 <example.Pet object at 0x10cd98060> 50 >>> p.getName() 51 u'Molly' 52 >>> p.setName('Charly') 53 >>> p.getName() 54 u'Charly' 55 56.. seealso:: 57 58 Static member functions can be bound in the same way using 59 :func:`class_::def_static`. 60 61Keyword and default arguments 62============================= 63It is possible to specify keyword and default arguments using the syntax 64discussed in the previous chapter. Refer to the sections :ref:`keyword_args` 65and :ref:`default_args` for details. 66 67Binding lambda functions 68======================== 69 70Note how ``print(p)`` produced a rather useless summary of our data structure in the example above: 71 72.. code-block:: pycon 73 74 >>> print(p) 75 <example.Pet object at 0x10cd98060> 76 77To address this, we could bind an utility function that returns a human-readable 78summary to the special method slot named ``__repr__``. Unfortunately, there is no 79suitable functionality in the ``Pet`` data structure, and it would be nice if 80we did not have to change it. This can easily be accomplished by binding a 81Lambda function instead: 82 83.. code-block:: cpp 84 85 py::class_<Pet>(m, "Pet") 86 .def(py::init<const std::string &>()) 87 .def("setName", &Pet::setName) 88 .def("getName", &Pet::getName) 89 .def("__repr__", 90 [](const Pet &a) { 91 return "<example.Pet named '" + a.name + "'>"; 92 } 93 ); 94 95Both stateless [#f1]_ and stateful lambda closures are supported by pybind11. 96With the above change, the same Python code now produces the following output: 97 98.. code-block:: pycon 99 100 >>> print(p) 101 <example.Pet named 'Molly'> 102 103.. [#f1] Stateless closures are those with an empty pair of brackets ``[]`` as the capture object. 104 105.. _properties: 106 107Instance and static fields 108========================== 109 110We can also directly expose the ``name`` field using the 111:func:`class_::def_readwrite` method. A similar :func:`class_::def_readonly` 112method also exists for ``const`` fields. 113 114.. code-block:: cpp 115 116 py::class_<Pet>(m, "Pet") 117 .def(py::init<const std::string &>()) 118 .def_readwrite("name", &Pet::name) 119 // ... remainder ... 120 121This makes it possible to write 122 123.. code-block:: pycon 124 125 >>> p = example.Pet('Molly') 126 >>> p.name 127 u'Molly' 128 >>> p.name = 'Charly' 129 >>> p.name 130 u'Charly' 131 132Now suppose that ``Pet::name`` was a private internal variable 133that can only be accessed via setters and getters. 134 135.. code-block:: cpp 136 137 class Pet { 138 public: 139 Pet(const std::string &name) : name(name) { } 140 void setName(const std::string &name_) { name = name_; } 141 const std::string &getName() const { return name; } 142 private: 143 std::string name; 144 }; 145 146In this case, the method :func:`class_::def_property` 147(:func:`class_::def_property_readonly` for read-only data) can be used to 148provide a field-like interface within Python that will transparently call 149the setter and getter functions: 150 151.. code-block:: cpp 152 153 py::class_<Pet>(m, "Pet") 154 .def(py::init<const std::string &>()) 155 .def_property("name", &Pet::getName, &Pet::setName) 156 // ... remainder ... 157 158Write only properties can be defined by passing ``nullptr`` as the 159input for the read function. 160 161.. seealso:: 162 163 Similar functions :func:`class_::def_readwrite_static`, 164 :func:`class_::def_readonly_static` :func:`class_::def_property_static`, 165 and :func:`class_::def_property_readonly_static` are provided for binding 166 static variables and properties. Please also see the section on 167 :ref:`static_properties` in the advanced part of the documentation. 168 169Dynamic attributes 170================== 171 172Native Python classes can pick up new attributes dynamically: 173 174.. code-block:: pycon 175 176 >>> class Pet: 177 ... name = 'Molly' 178 ... 179 >>> p = Pet() 180 >>> p.name = 'Charly' # overwrite existing 181 >>> p.age = 2 # dynamically add a new attribute 182 183By default, classes exported from C++ do not support this and the only writable 184attributes are the ones explicitly defined using :func:`class_::def_readwrite` 185or :func:`class_::def_property`. 186 187.. code-block:: cpp 188 189 py::class_<Pet>(m, "Pet") 190 .def(py::init<>()) 191 .def_readwrite("name", &Pet::name); 192 193Trying to set any other attribute results in an error: 194 195.. code-block:: pycon 196 197 >>> p = example.Pet() 198 >>> p.name = 'Charly' # OK, attribute defined in C++ 199 >>> p.age = 2 # fail 200 AttributeError: 'Pet' object has no attribute 'age' 201 202To enable dynamic attributes for C++ classes, the :class:`py::dynamic_attr` tag 203must be added to the :class:`py::class_` constructor: 204 205.. code-block:: cpp 206 207 py::class_<Pet>(m, "Pet", py::dynamic_attr()) 208 .def(py::init<>()) 209 .def_readwrite("name", &Pet::name); 210 211Now everything works as expected: 212 213.. code-block:: pycon 214 215 >>> p = example.Pet() 216 >>> p.name = 'Charly' # OK, overwrite value in C++ 217 >>> p.age = 2 # OK, dynamically add a new attribute 218 >>> p.__dict__ # just like a native Python class 219 {'age': 2} 220 221Note that there is a small runtime cost for a class with dynamic attributes. 222Not only because of the addition of a ``__dict__``, but also because of more 223expensive garbage collection tracking which must be activated to resolve 224possible circular references. Native Python classes incur this same cost by 225default, so this is not anything to worry about. By default, pybind11 classes 226are more efficient than native Python classes. Enabling dynamic attributes 227just brings them on par. 228 229.. _inheritance: 230 231Inheritance and automatic downcasting 232===================================== 233 234Suppose now that the example consists of two data structures with an 235inheritance relationship: 236 237.. code-block:: cpp 238 239 struct Pet { 240 Pet(const std::string &name) : name(name) { } 241 std::string name; 242 }; 243 244 struct Dog : Pet { 245 Dog(const std::string &name) : Pet(name) { } 246 std::string bark() const { return "woof!"; } 247 }; 248 249There are two different ways of indicating a hierarchical relationship to 250pybind11: the first specifies the C++ base class as an extra template 251parameter of the :class:`class_`: 252 253.. code-block:: cpp 254 255 py::class_<Pet>(m, "Pet") 256 .def(py::init<const std::string &>()) 257 .def_readwrite("name", &Pet::name); 258 259 // Method 1: template parameter: 260 py::class_<Dog, Pet /* <- specify C++ parent type */>(m, "Dog") 261 .def(py::init<const std::string &>()) 262 .def("bark", &Dog::bark); 263 264Alternatively, we can also assign a name to the previously bound ``Pet`` 265:class:`class_` object and reference it when binding the ``Dog`` class: 266 267.. code-block:: cpp 268 269 py::class_<Pet> pet(m, "Pet"); 270 pet.def(py::init<const std::string &>()) 271 .def_readwrite("name", &Pet::name); 272 273 // Method 2: pass parent class_ object: 274 py::class_<Dog>(m, "Dog", pet /* <- specify Python parent type */) 275 .def(py::init<const std::string &>()) 276 .def("bark", &Dog::bark); 277 278Functionality-wise, both approaches are equivalent. Afterwards, instances will 279expose fields and methods of both types: 280 281.. code-block:: pycon 282 283 >>> p = example.Dog('Molly') 284 >>> p.name 285 u'Molly' 286 >>> p.bark() 287 u'woof!' 288 289The C++ classes defined above are regular non-polymorphic types with an 290inheritance relationship. This is reflected in Python: 291 292.. code-block:: cpp 293 294 // Return a base pointer to a derived instance 295 m.def("pet_store", []() { return std::unique_ptr<Pet>(new Dog("Molly")); }); 296 297.. code-block:: pycon 298 299 >>> p = example.pet_store() 300 >>> type(p) # `Dog` instance behind `Pet` pointer 301 Pet # no pointer downcasting for regular non-polymorphic types 302 >>> p.bark() 303 AttributeError: 'Pet' object has no attribute 'bark' 304 305The function returned a ``Dog`` instance, but because it's a non-polymorphic 306type behind a base pointer, Python only sees a ``Pet``. In C++, a type is only 307considered polymorphic if it has at least one virtual function and pybind11 308will automatically recognize this: 309 310.. code-block:: cpp 311 312 struct PolymorphicPet { 313 virtual ~PolymorphicPet() = default; 314 }; 315 316 struct PolymorphicDog : PolymorphicPet { 317 std::string bark() const { return "woof!"; } 318 }; 319 320 // Same binding code 321 py::class_<PolymorphicPet>(m, "PolymorphicPet"); 322 py::class_<PolymorphicDog, PolymorphicPet>(m, "PolymorphicDog") 323 .def(py::init<>()) 324 .def("bark", &PolymorphicDog::bark); 325 326 // Again, return a base pointer to a derived instance 327 m.def("pet_store2", []() { return std::unique_ptr<PolymorphicPet>(new PolymorphicDog); }); 328 329.. code-block:: pycon 330 331 >>> p = example.pet_store2() 332 >>> type(p) 333 PolymorphicDog # automatically downcast 334 >>> p.bark() 335 u'woof!' 336 337Given a pointer to a polymorphic base, pybind11 performs automatic downcasting 338to the actual derived type. Note that this goes beyond the usual situation in 339C++: we don't just get access to the virtual functions of the base, we get the 340concrete derived type including functions and attributes that the base type may 341not even be aware of. 342 343.. seealso:: 344 345 For more information about polymorphic behavior see :ref:`overriding_virtuals`. 346 347 348Overloaded methods 349================== 350 351Sometimes there are several overloaded C++ methods with the same name taking 352different kinds of input arguments: 353 354.. code-block:: cpp 355 356 struct Pet { 357 Pet(const std::string &name, int age) : name(name), age(age) { } 358 359 void set(int age_) { age = age_; } 360 void set(const std::string &name_) { name = name_; } 361 362 std::string name; 363 int age; 364 }; 365 366Attempting to bind ``Pet::set`` will cause an error since the compiler does not 367know which method the user intended to select. We can disambiguate by casting 368them to function pointers. Binding multiple functions to the same Python name 369automatically creates a chain of function overloads that will be tried in 370sequence. 371 372.. code-block:: cpp 373 374 py::class_<Pet>(m, "Pet") 375 .def(py::init<const std::string &, int>()) 376 .def("set", (void (Pet::*)(int)) &Pet::set, "Set the pet's age") 377 .def("set", (void (Pet::*)(const std::string &)) &Pet::set, "Set the pet's name"); 378 379The overload signatures are also visible in the method's docstring: 380 381.. code-block:: pycon 382 383 >>> help(example.Pet) 384 385 class Pet(__builtin__.object) 386 | Methods defined here: 387 | 388 | __init__(...) 389 | Signature : (Pet, str, int) -> NoneType 390 | 391 | set(...) 392 | 1. Signature : (Pet, int) -> NoneType 393 | 394 | Set the pet's age 395 | 396 | 2. Signature : (Pet, str) -> NoneType 397 | 398 | Set the pet's name 399 400If you have a C++14 compatible compiler [#cpp14]_, you can use an alternative 401syntax to cast the overloaded function: 402 403.. code-block:: cpp 404 405 py::class_<Pet>(m, "Pet") 406 .def("set", py::overload_cast<int>(&Pet::set), "Set the pet's age") 407 .def("set", py::overload_cast<const std::string &>(&Pet::set), "Set the pet's name"); 408 409Here, ``py::overload_cast`` only requires the parameter types to be specified. 410The return type and class are deduced. This avoids the additional noise of 411``void (Pet::*)()`` as seen in the raw cast. If a function is overloaded based 412on constness, the ``py::const_`` tag should be used: 413 414.. code-block:: cpp 415 416 struct Widget { 417 int foo(int x, float y); 418 int foo(int x, float y) const; 419 }; 420 421 py::class_<Widget>(m, "Widget") 422 .def("foo_mutable", py::overload_cast<int, float>(&Widget::foo)) 423 .def("foo_const", py::overload_cast<int, float>(&Widget::foo, py::const_)); 424 425If you prefer the ``py::overload_cast`` syntax but have a C++11 compatible compiler only, 426you can use ``py::detail::overload_cast_impl`` with an additional set of parentheses: 427 428.. code-block:: cpp 429 430 template <typename... Args> 431 using overload_cast_ = pybind11::detail::overload_cast_impl<Args...>; 432 433 py::class_<Pet>(m, "Pet") 434 .def("set", overload_cast_<int>()(&Pet::set), "Set the pet's age") 435 .def("set", overload_cast_<const std::string &>()(&Pet::set), "Set the pet's name"); 436 437.. [#cpp14] A compiler which supports the ``-std=c++14`` flag 438 or Visual Studio 2015 Update 2 and newer. 439 440.. note:: 441 442 To define multiple overloaded constructors, simply declare one after the 443 other using the ``.def(py::init<...>())`` syntax. The existing machinery 444 for specifying keyword and default arguments also works. 445 446Enumerations and internal types 447=============================== 448 449Let's now suppose that the example class contains an internal enumeration type, 450e.g.: 451 452.. code-block:: cpp 453 454 struct Pet { 455 enum Kind { 456 Dog = 0, 457 Cat 458 }; 459 460 Pet(const std::string &name, Kind type) : name(name), type(type) { } 461 462 std::string name; 463 Kind type; 464 }; 465 466The binding code for this example looks as follows: 467 468.. code-block:: cpp 469 470 py::class_<Pet> pet(m, "Pet"); 471 472 pet.def(py::init<const std::string &, Pet::Kind>()) 473 .def_readwrite("name", &Pet::name) 474 .def_readwrite("type", &Pet::type); 475 476 py::enum_<Pet::Kind>(pet, "Kind") 477 .value("Dog", Pet::Kind::Dog) 478 .value("Cat", Pet::Kind::Cat) 479 .export_values(); 480 481To ensure that the ``Kind`` type is created within the scope of ``Pet``, the 482``pet`` :class:`class_` instance must be supplied to the :class:`enum_`. 483constructor. The :func:`enum_::export_values` function exports the enum entries 484into the parent scope, which should be skipped for newer C++11-style strongly 485typed enums. 486 487.. code-block:: pycon 488 489 >>> p = Pet('Lucy', Pet.Cat) 490 >>> p.type 491 Kind.Cat 492 >>> int(p.type) 493 1L 494 495The entries defined by the enumeration type are exposed in the ``__members__`` property: 496 497.. code-block:: pycon 498 499 >>> Pet.Kind.__members__ 500 {'Dog': Kind.Dog, 'Cat': Kind.Cat} 501 502The ``name`` property returns the name of the enum value as a unicode string. 503 504.. note:: 505 506 It is also possible to use ``str(enum)``, however these accomplish different 507 goals. The following shows how these two approaches differ. 508 509 .. code-block:: pycon 510 511 >>> p = Pet( "Lucy", Pet.Cat ) 512 >>> pet_type = p.type 513 >>> pet_type 514 Pet.Cat 515 >>> str(pet_type) 516 'Pet.Cat' 517 >>> pet_type.name 518 'Cat' 519 520.. note:: 521 522 When the special tag ``py::arithmetic()`` is specified to the ``enum_`` 523 constructor, pybind11 creates an enumeration that also supports rudimentary 524 arithmetic and bit-level operations like comparisons, and, or, xor, negation, 525 etc. 526 527 .. code-block:: cpp 528 529 py::enum_<Pet::Kind>(pet, "Kind", py::arithmetic()) 530 ... 531 532 By default, these are omitted to conserve space. 533