1# Copyright (c) 2012 Massachusetts Institute of Technology 2# 3# Permission is hereby granted, free of charge, to any person obtaining a copy 4# of this software and associated documentation files (the "Software"), to deal 5# in the Software without restriction, including without limitation the rights 6# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 7# copies of the Software, and to permit persons to whom the Software is 8# furnished to do so, subject to the following conditions: 9# 10# The above copyright notice and this permission notice shall be included in 11# all copies or substantial portions of the Software. 12# 13# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 16# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 17# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 18# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 19# THE SOFTWARE. 20 21# WARNING: Most commercial fabs will not be happy if you release their exact 22# process information! If you derive these numbers through SPICE models, 23# the process design kit, or any other confidential material, please round-off 24# the values and leave the process name unidentifiable by fab (i.e. call it 25# Bulk90LVT instead of TSMC90LVT) if you release parameters publicly. This 26# rule may not apply for open processes, but you may want to check. 27 28# All units are in SI, (volts, meters, kelvin, farads, ohms, amps, etc.) 29 30# This file contains the model for a bulk 32nm LVT process 31Name = Bulk32LVT 32 33# Supply voltage used in the circuit and for characterizations (V) 34Vdd = 0.9 35# Temperature (K) 36Temperature = 340 37 38# ============================================================================= 39# Parameters for transistors 40# ============================================================================= 41 42# Contacted gate pitch (m) 43Gate->PitchContacted = 0.160e-6 44 45# Min gate width (m) 46Gate->MinWidth = 0.120e-6 47 48# Gate cap per unit width (F/m) 49Gate->CapPerWidth = 0.950e-9 50# Source/Drain cap per unit width (F/m) 51Drain->CapPerWidth = 0.640e-9 52 53# Parameters characterization temperature (K) 54Nmos->CharacterizedTemperature = 300.0 55Pmos->CharacterizedTemperature = 300.0 56 57#------------------------------------------------------------------------------ 58# I_Eff definition in Na, IEDM 2002 59# I_EFF = (I(VG = 0.5, VD = 1.0) + I(VG = 1.0, VD = 0.5))/2 60# R_EFF = VDD / I_EFF * 1 / (2 ln(2)) 61# This is generally accurate for when input and output transition times 62# are similar, which is a reasonable case after timing optimization 63#------------------------------------------------------------------------------ 64# Effective resistance (Ohm-m) 65Nmos->EffResWidth = 0.890e-3 66Pmos->EffResWidth = 1.270e-3 67 68#------------------------------------------------------------------------------ 69# The ratio of extra effective resistance with each additional stacked 70# transistor 71# EffResStackRatio = (R_EFF_NAND2 - R_EFF_INV) / R_EFF_INV) 72# For example, inverter has an normalized effective drive resistance of 1.0. 73# A NAND2 (2-stack) will have an effective drive of 1.0 + 0.7, a NAND3 (3-stack) 74# will have an effective drive of 1.0 + 2 * 0.7. Use NORs for Pmos. This fit 75# works relatively well up to 4 stacks. This value will change depending on the 76# VDD used. 77#------------------------------------------------------------------------------ 78# Effective resistance stack ratio 79Nmos->EffResStackRatio = 0.78 80Pmos->EffResStackRatio = 0.66 81 82#------------------------------------------------------------------------------ 83# I_OFF defined as |I_DS| for |V_DS| = V_DD and |V_GS| = 0.0 84# Minimum off current is used as a second fit point, since I_OFF often 85# stops scaling with transistor width below some threshold 86#------------------------------------------------------------------------------ 87# Off current per width (A/m) 88Nmos->OffCurrent = 100e-3 89Pmos->OffCurrent = 100e-3 90 91# Minimum off current (A) 92Nmos->MinOffCurrent = 100e-9 93Pmos->MinOffCurrent = 20e-9 94 95# Subthreshold swing (V/dec) 96Nmos->SubthresholdSwing = 0.100 97Pmos->SubthresholdSwing = 0.100 98 99# DIBL factor (V/V) 100Nmos->DIBL = 0.150 101Pmos->DIBL = 0.150 102 103# Subthreshold leakage temperature swing (K/dec) 104Nmos->SubthresholdTempSwing = 100 105Pmos->SubthresholdTempSwing = 100 106#------------------------------------------------------------------------------ 107 108# ============================================================================= 109# Parameters for interconnect 110# ============================================================================= 111 112Wire->AvailableLayers = [Metal1,Local,Intermediate,Global] 113 114# Metal 1 Wire (used for std cell routing only) 115# Min width (m) 116Wire->Metal1->MinWidth = 55e-9 117# Min spacing (m) 118Wire->Metal1->MinSpacing = 55e-9 119# Resistivity (Ohm-m) 120Wire->Metal1->Resistivity = 4.00e-8 121# Metal thickness (m) 122Wire->Metal1->MetalThickness = 100.0e-9 123# Dielectric thickness (m) 124Wire->Metal1->DielectricThickness = 100.0e-9 125# Dielectric constant 126Wire->Metal1->DielectricConstant = 3.2 127 128# Local wire, 1.0X of the M1 pitch 129# Min width (m) 130Wire->Local->MinWidth = 55e-9 131# Min spacing (m) 132Wire->Local->MinSpacing = 55e-9 133# Resistivity (Ohm-m) 134Wire->Local->Resistivity = 4.00e-8 135# Metal thickness (m) 136Wire->Local->MetalThickness = 100.0e-9 137# Dielectric thickness (m) 138Wire->Local->DielectricThickness = 100.0e-9 139# Dielectric constant 140Wire->Local->DielectricConstant = 3.2 141 142# Intermediate wire, 2.0X the M1 pitch 143# Min width (m) 144Wire->Intermediate->MinWidth = 110e-9 145# Min spacing (m) 146Wire->Intermediate->MinSpacing = 110e-9 147# Resistivity (Ohm-m) 148Wire->Intermediate->Resistivity = 2.60e-8 149# Metal thickness (m) 150Wire->Intermediate->MetalThickness = 200e-9 151# Dielectric thickness (m) 152Wire->Intermediate->DielectricThickness = 170e-9 153# Dielectric constant 154Wire->Intermediate->DielectricConstant = 3.00 155 156# Global wire, 3.0X the M1 pitch 157# Min width (m) 158Wire->Global->MinWidth = 160e-9 159# Min spacing (m) 160Wire->Global->MinSpacing = 160e-9 161# Resistivity (Ohm-m) 162Wire->Global->Resistivity = 2.30e-8 163# Metal thickness (m) 164Wire->Global->MetalThickness = 280e-9 165# Dielectric thickness (m) 166Wire->Global->DielectricThickness = 250e-9 167# Dielectric constant 168Wire->Global->DielectricConstant = 2.80 169 170# ============================================================================= 171# Parameters for Standard Cells 172# ============================================================================= 173 174# The height of the standard cell is usually a multiple of the vertical 175# M1 pitch (tracks). By definition, an X1 size cell has transistors 176# that fit exactly in the given cell height without folding, or leaving 177# any wasted vertical area 178 179# Reasonable values for the number of M1 tracks that we have seen are 8-14 180StdCell->Tracks = 11 181# Height overhead due to supply rails, well spacing, etc. Note that this will grow 182# if the height of the standard cell decreases! 183StdCell->HeightOverheadFactor = 1.400 184 185# Sets the available sizes of each standard cell. Keep in mind that 186# 1.0 is the biggest cell without any transistor folding 187StdCell->AvailableSizes = [1.0, 1.4, 2.0, 3.0, 4.0, 6.0, 8.0, 10.0, 12.0, 16.0] 188 189