1/* Copyright (c) 2012 Massachusetts Institute of Technology 2 * 3 * Permission is hereby granted, free of charge, to any person obtaining a copy 4 * of this software and associated documentation files (the "Software"), to deal 5 * in the Software without restriction, including without limitation the rights 6 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 7 * copies of the Software, and to permit persons to whom the Software is 8 * furnished to do so, subject to the following conditions: 9 * 10 * The above copyright notice and this permission notice shall be included in 11 * all copies or substantial portions of the Software. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 16 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 17 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 18 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 19 * THE SOFTWARE. 20 */ 21 22#include "model/std_cells/NAND2.h" 23 24#include <cmath> 25 26#include "model/PortInfo.h" 27#include "model/TransitionInfo.h" 28#include "model/EventInfo.h" 29#include "model/std_cells/StdCellLib.h" 30#include "model/std_cells/CellMacros.h" 31#include "model/timing_graph/ElectricalNet.h" 32#include "model/timing_graph/ElectricalDriver.h" 33#include "model/timing_graph/ElectricalLoad.h" 34#include "model/timing_graph/ElectricalDelay.h" 35 36namespace DSENT 37{ 38 using std::ceil; 39 using std::max; 40 41 NAND2::NAND2(const String& instance_name_, const TechModel* tech_model_) 42 : StdCell(instance_name_, tech_model_) 43 { 44 initProperties(); 45 } 46 47 NAND2::~NAND2() 48 {} 49 50 void NAND2::initProperties() 51 { 52 return; 53 } 54 55 void NAND2::constructModel() 56 { 57 // All constructModel should do is create Area/NDDPower/Energy Results as 58 // well as instantiate any sub-instances using only the hard parameters 59 60 createInputPort("A"); 61 createInputPort("B"); 62 createOutputPort("Y"); 63 64 createLoad("A_Cap"); 65 createLoad("B_Cap"); 66 createDelay("A_to_Y_delay"); 67 createDelay("B_to_Y_delay"); 68 createDriver("Y_Ron", true); 69 70 ElectricalLoad* a_cap = getLoad("A_Cap"); 71 ElectricalLoad* b_cap = getLoad("A_Cap"); 72 ElectricalDelay* a_to_y_delay = getDelay("A_to_Y_delay"); 73 ElectricalDelay* b_to_y_delay = getDelay("B_to_Y_delay"); 74 ElectricalDriver* y_ron = getDriver("Y_Ron"); 75 76 getNet("A")->addDownstreamNode(a_cap); 77 getNet("B")->addDownstreamNode(b_cap); 78 a_cap->addDownstreamNode(a_to_y_delay); 79 b_cap->addDownstreamNode(b_to_y_delay); 80 a_to_y_delay->addDownstreamNode(y_ron); 81 b_to_y_delay->addDownstreamNode(y_ron); 82 y_ron->addDownstreamNode(getNet("Y")); 83 84 // Create Area result 85 // Create NDD Power result 86 createElectricalAtomicResults(); 87 // Create NAND Event Energy Result 88 createElectricalEventAtomicResult("NAND2"); 89 90 getEventInfo("Idle")->setStaticTransitionInfos(); 91 92 return; 93 } 94 95 void NAND2::updateModel() 96 { 97 // All updateModel should do is calculate numbers for the Area/NDDPower/Energy 98 // Results as anything else that needs to be done using either soft or hard parameters 99 100 // Get parameters 101 double drive_strength = getDrivingStrength(); 102 Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache(); 103 104 // Standard cell cache string 105 String cell_name = "NAND2_X" + (String) drive_strength; 106 107 // Get timing parameters 108 getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A")); 109 getLoad("B_Cap")->setLoadCap(cache->get(cell_name + "->Cap->B")); 110 getDelay("A_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_Y")); 111 getDelay("B_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_Y")); 112 getDriver("Y_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Y")); 113 114 // Set the cell area 115 getAreaResult("Active")->setValue(cache->get(cell_name + "->Area->Active")); 116 getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->Area->Active")); 117 118 return; 119 } 120 121 void NAND2::useModel() 122 { 123 // Get parameters 124 double drive_strength = getDrivingStrength(); 125 Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache(); 126 127 // Standard cell cache string 128 String cell_name = "NAND2_X" + (String) drive_strength; 129 130 // Propagate the transition info and get the 0->1 transtion count 131 propagateTransitionInfo(); 132 double P_A = getInputPort("A")->getTransitionInfo().getProbability1(); 133 double P_B = getInputPort("B")->getTransitionInfo().getProbability1(); 134 double Y_num_trans_01 = getOutputPort("Y")->getTransitionInfo().getNumberTransitions01(); 135 136 // Calculate leakage 137 double leakage = 0; 138 leakage += cache->get(cell_name + "->Leakage->!A!B") * (1 - P_A) * (1 - P_B); 139 leakage += cache->get(cell_name + "->Leakage->!AB") * (1 - P_A) * P_B; 140 leakage += cache->get(cell_name + "->Leakage->A!B") * P_A * (1 - P_B); 141 leakage += cache->get(cell_name + "->Leakage->AB") * P_A * P_B; 142 getNddPowerResult("Leakage")->setValue(leakage); 143 144 // Get capacitances 145 double y_cap = cache->get(cell_name + "->Cap->Y"); 146 double y_load_cap = getNet("Y")->getTotalDownstreamCap(); 147 148 // Get VDD 149 double vdd = getTechModel()->get("Vdd"); 150 151 // Calculate NAND2Event energy 152 double energy_per_trans_01 = (y_cap + y_load_cap) * vdd * vdd; 153 getEventResult("NAND2")->setValue(energy_per_trans_01 * Y_num_trans_01); 154 155 return; 156 } 157 158 void NAND2::propagateTransitionInfo() 159 { 160 // Get input signal transition info 161 const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo(); 162 const TransitionInfo& trans_B = getInputPort("B")->getTransitionInfo(); 163 164 double max_freq_mult = max(trans_A.getFrequencyMultiplier(), trans_B.getFrequencyMultiplier()); 165 const TransitionInfo& scaled_trans_A = trans_A.scaleFrequencyMultiplier(max_freq_mult); 166 const TransitionInfo& scaled_trans_B = trans_B.scaleFrequencyMultiplier(max_freq_mult); 167 168 double A_prob_00 = scaled_trans_A.getNumberTransitions00() / max_freq_mult; 169 double A_prob_01 = scaled_trans_A.getNumberTransitions01() / max_freq_mult; 170 double A_prob_10 = A_prob_01; 171 double A_prob_11 = scaled_trans_A.getNumberTransitions11() / max_freq_mult; 172 double B_prob_00 = scaled_trans_B.getNumberTransitions00() / max_freq_mult; 173 double B_prob_01 = scaled_trans_B.getNumberTransitions01() / max_freq_mult; 174 double B_prob_10 = B_prob_01; 175 double B_prob_11 = scaled_trans_B.getNumberTransitions11() / max_freq_mult; 176 177 // Set output transition info 178 double Y_prob_00 = A_prob_11 * B_prob_11; 179 double Y_prob_01 = A_prob_11 * B_prob_10 + 180 A_prob_10 * (B_prob_11 + B_prob_10); 181 double Y_prob_11 = A_prob_00 + 182 A_prob_01 * (B_prob_00 + B_prob_10) + 183 A_prob_10 * (B_prob_00 + B_prob_01) + 184 A_prob_11 * B_prob_00; 185 186 // Check that probabilities add up to 1.0 with some finite tolerance 187 ASSERT(LibUtil::Math::isEqual((Y_prob_00 + Y_prob_01 + Y_prob_01 + Y_prob_11), 1.0), 188 "[Error] " + getInstanceName() + "Output transition probabilities must add up to 1 (" + 189 (String) Y_prob_00 + ", " + (String) Y_prob_01 + ", " + (String) Y_prob_11 + ")!"); 190 191 // Turn probability of transitions per cycle into number of transitions per time unit 192 TransitionInfo trans_Y(Y_prob_00 * max_freq_mult, Y_prob_01 * max_freq_mult, Y_prob_11 * max_freq_mult); 193 getOutputPort("Y")->setTransitionInfo(trans_Y); 194 return; 195 } 196 197 void NAND2::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_) 198 { 199 // Standard cell cache string 200 String cell_name = "NAND2_X" + (String) drive_strength_; 201 202 Log::printLine("=== " + cell_name + " ==="); 203 204 // Get parameters 205 double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted"); 206 Map<double>* cache = cell_lib_->getStdCellCache(); 207 208 // Now actually build the full standard cell model 209 // Create the two input ports 210 createInputPort("A"); 211 createInputPort("B"); 212 createOutputPort("Y"); 213 214 // Adds macros 215 CellMacros::addNand2(this, "NAND", true, true, true, "A", "B", "Y"); 216 CellMacros::updateNand2(this, "NAND", drive_strength_); 217 218 // Cache area result 219 double area = gate_pitch * getTotalHeight() * (1 + getGenProperties()->get("NAND_GatePitches").toDouble()); 220 cache->set(cell_name + "->Area->Active", area); 221 Log::printLine(cell_name + "->Area->Active=" + (String) area); 222 223 // -------------------------------------------------------------------- 224 // Leakage Model Calculation 225 // -------------------------------------------------------------------- 226 double leakage_00 = getGenProperties()->get("NAND_LeakagePower_00").toDouble(); 227 double leakage_01 = getGenProperties()->get("NAND_LeakagePower_01").toDouble(); 228 double leakage_10 = getGenProperties()->get("NAND_LeakagePower_10").toDouble(); 229 double leakage_11 = getGenProperties()->get("NAND_LeakagePower_11").toDouble(); 230 cache->set(cell_name + "->Leakage->!A!B", leakage_00); 231 cache->set(cell_name + "->Leakage->!AB", leakage_01); 232 cache->set(cell_name + "->Leakage->A!B", leakage_10); 233 cache->set(cell_name + "->Leakage->AB", leakage_11); 234 Log::printLine(cell_name + "->Leakage->!A!B=" + (String) leakage_00); 235 Log::printLine(cell_name + "->Leakage->!AB=" + (String) leakage_01); 236 Log::printLine(cell_name + "->Leakage->A!B=" + (String) leakage_10); 237 Log::printLine(cell_name + "->Leakage->AB=" + (String) leakage_11); 238 // -------------------------------------------------------------------- 239 240 // Cache event energy results 241 /* 242 double event_a_flip = getGenProperties()->get("NAND_A1_Flip").toDouble(); 243 double event_b_flip = getGenProperties()->get("NAND_A2_Flip").toDouble(); 244 double event_y_flip = getGenProperties()->get("NAND_ZN_Flip").toDouble(); 245 246 cache->set(cell_name + "->Event_A_Flip", event_a_flip); 247 cache->set(cell_name + "->Event_B_Flip", event_b_flip); 248 cache->set(cell_name + "->Event_Y_Flip", event_y_flip); 249 Log::printLine(cell_name + "->Event_A_Flip=" + (String) event_a_flip); 250 Log::printLine(cell_name + "->Event_B_Flip=" + (String) event_b_flip); 251 Log::printLine(cell_name + "->Event_Y_Flip=" + (String) event_y_flip); 252 */ 253 // -------------------------------------------------------------------- 254 // Get Node Capacitances 255 // -------------------------------------------------------------------- 256 double a_cap = getNet("A")->getTotalDownstreamCap(); 257 double b_cap = getNet("B")->getTotalDownstreamCap(); 258 double y_cap = getNet("Y")->getTotalDownstreamCap(); 259 260 cache->set(cell_name + "->Cap->A", a_cap); 261 cache->set(cell_name + "->Cap->B", b_cap); 262 cache->set(cell_name + "->Cap->Y", y_cap); 263 Log::printLine(cell_name + "->Cap->A=" + (String) a_cap); 264 Log::printLine(cell_name + "->Cap->B=" + (String) b_cap); 265 Log::printLine(cell_name + "->Cap->Y=" + (String) y_cap); 266 // -------------------------------------------------------------------- 267 268 // -------------------------------------------------------------------- 269 // Build Internal Delay Model 270 // -------------------------------------------------------------------- 271 double y_ron = getDriver("NAND_RonZN")->getOutputRes(); 272 double a_to_y_delay = getDriver("NAND_RonZN")->calculateDelay(); 273 double b_to_y_delay = getDriver("NAND_RonZN")->calculateDelay(); 274 275 cache->set(cell_name + "->DriveRes->Y", y_ron); 276 cache->set(cell_name + "->Delay->A_to_Y", a_to_y_delay); 277 cache->set(cell_name + "->Delay->B_to_Y", b_to_y_delay); 278 Log::printLine(cell_name + "->DriveRes->Y=" + (String) y_ron); 279 Log::printLine(cell_name + "->Delay->A_to_Y=" + (String) a_to_y_delay); 280 Log::printLine(cell_name + "->Delay->B_to_Y=" + (String) b_to_y_delay); 281 // -------------------------------------------------------------------- 282 283 return; 284 285 } 286 287} // namespace DSENT 288 289