1/* Copyright (c) 2012 Massachusetts Institute of Technology 2 * 3 * Permission is hereby granted, free of charge, to any person obtaining a copy 4 * of this software and associated documentation files (the "Software"), to deal 5 * in the Software without restriction, including without limitation the rights 6 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 7 * copies of the Software, and to permit persons to whom the Software is 8 * furnished to do so, subject to the following conditions: 9 * 10 * The above copyright notice and this permission notice shall be included in 11 * all copies or substantial portions of the Software. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 16 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 17 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 18 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 19 * THE SOFTWARE. 20 */ 21 22#include "model/std_cells/AND2.h" 23 24#include <cmath> 25 26#include "model/PortInfo.h" 27#include "model/TransitionInfo.h" 28#include "model/EventInfo.h" 29#include "model/std_cells/StdCellLib.h" 30#include "model/std_cells/CellMacros.h" 31#include "model/timing_graph/ElectricalNet.h" 32#include "model/timing_graph/ElectricalDriver.h" 33#include "model/timing_graph/ElectricalLoad.h" 34#include "model/timing_graph/ElectricalDelay.h" 35 36namespace DSENT 37{ 38 using std::max; 39 40 AND2::AND2(const String& instance_name_, const TechModel* tech_model_) 41 : StdCell(instance_name_, tech_model_) 42 { 43 initProperties(); 44 } 45 46 AND2::~AND2() 47 {} 48 49 void AND2::initProperties() 50 { 51 return; 52 } 53 54 void AND2::constructModel() 55 { 56 // All constructModel should do is create Area/NDDPower/Energy Results as 57 // well as instantiate any sub-instances using only the hard parameters 58 59 createInputPort("A"); 60 createInputPort("B"); 61 createOutputPort("Y"); 62 63 createLoad("A_Cap"); 64 createLoad("B_Cap"); 65 createDelay("A_to_Y_delay"); 66 createDelay("B_to_Y_delay"); 67 createDriver("Y_Ron", true); 68 69 ElectricalLoad* a_cap = getLoad("A_Cap"); 70 ElectricalLoad* b_cap = getLoad("B_Cap"); 71 ElectricalDelay* a_to_y_delay = getDelay("A_to_Y_delay"); 72 ElectricalDelay* b_to_y_delay = getDelay("B_to_Y_delay"); 73 ElectricalDriver* y_ron = getDriver("Y_Ron"); 74 75 getNet("A")->addDownstreamNode(a_cap); 76 getNet("B")->addDownstreamNode(b_cap); 77 a_cap->addDownstreamNode(a_to_y_delay); 78 b_cap->addDownstreamNode(b_to_y_delay); 79 a_to_y_delay->addDownstreamNode(y_ron); 80 b_to_y_delay->addDownstreamNode(y_ron); 81 y_ron->addDownstreamNode(getNet("Y")); 82 83 // Create Area result 84 // Create NDD Power result 85 createElectricalAtomicResults(); 86 getEventInfo("Idle")->setStaticTransitionInfos(); 87 // Create AND Event Energy Result 88 createElectricalEventAtomicResult("AND2"); 89 90 return; 91 } 92 93 void AND2::updateModel() 94 { 95 // All updateModel should do is calculate numbers for the Area/NDDPower/Energy 96 // Results as anything else that needs to be done using either soft or hard parameters 97 98 // Get parameters 99 double drive_strength = getDrivingStrength(); 100 Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache(); 101 102 // Standard cell cache string 103 String cell_name = "AND2_X" + (String) drive_strength; 104 105 // Get timing parameters 106 getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A")); 107 getLoad("B_Cap")->setLoadCap(cache->get(cell_name + "->Cap->B")); 108 getDelay("A_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_Y")); 109 getDelay("B_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_Y")); 110 getDriver("Y_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Y")); 111 112 // Set the cell area 113 getAreaResult("Active")->setValue(cache->get(cell_name + "->ActiveArea")); 114 getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->ActiveArea")); 115 116 return; 117 } 118 119 void AND2::evaluateModel() 120 { 121 return; 122 } 123 124 void AND2::useModel() 125 { 126 // Get parameters 127 double drive_strength = getDrivingStrength(); 128 Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache(); 129 130 // Standard cell cache string 131 String cell_name = "AND2_X" + (String) drive_strength; 132 133 // Propagate the transition info and get the 0->1 transtion count 134 propagateTransitionInfo(); 135 double P_A = getInputPort("A")->getTransitionInfo().getProbability1(); 136 double P_B = getInputPort("B")->getTransitionInfo().getProbability1(); 137 double Y_num_trans_01 = getOutputPort("Y")->getTransitionInfo().getNumberTransitions01(); 138 139 // Calculate leakage 140 double leakage = 0; 141 leakage += cache->get(cell_name + "->Leakage->!A!B") * (1 - P_A) * (1 - P_B); 142 leakage += cache->get(cell_name + "->Leakage->!AB") * (1 - P_A) * P_B; 143 leakage += cache->get(cell_name + "->Leakage->A!B") * P_A * (1 - P_B); 144 leakage += cache->get(cell_name + "->Leakage->AB") * P_A * P_B; 145 getNddPowerResult("Leakage")->setValue(leakage); 146 147 // Get VDD 148 double vdd = getTechModel()->get("Vdd"); 149 150 // Get capacitances 151 double y_b_cap = cache->get(cell_name + "->Cap->Y_b"); 152 double y_cap = cache->get(cell_name + "->Cap->Y"); 153 double y_load_cap = getNet("Y")->getTotalDownstreamCap(); 154 155 // Calculate AND2Event energy 156 double energy_per_trans_01 = (y_b_cap + y_cap + y_load_cap) * vdd * vdd; 157 getEventResult("AND2")->setValue(energy_per_trans_01 * Y_num_trans_01); 158 159 return; 160 } 161 162 void AND2::propagateTransitionInfo() 163 { 164 // Get input signal transition info 165 const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo(); 166 const TransitionInfo& trans_B = getInputPort("B")->getTransitionInfo(); 167 168 double max_freq_mult = max(trans_A.getFrequencyMultiplier(), trans_B.getFrequencyMultiplier()); 169 const TransitionInfo& scaled_trans_A = trans_A.scaleFrequencyMultiplier(max_freq_mult); 170 const TransitionInfo& scaled_trans_B = trans_B.scaleFrequencyMultiplier(max_freq_mult); 171 172 double A_prob_00 = scaled_trans_A.getNumberTransitions00() / max_freq_mult; 173 double A_prob_01 = scaled_trans_A.getNumberTransitions01() / max_freq_mult; 174 double A_prob_10 = A_prob_01; 175 double A_prob_11 = scaled_trans_A.getNumberTransitions11() / max_freq_mult; 176 double B_prob_00 = scaled_trans_B.getNumberTransitions00() / max_freq_mult; 177 double B_prob_01 = scaled_trans_B.getNumberTransitions01() / max_freq_mult; 178 double B_prob_10 = B_prob_01; 179 double B_prob_11 = scaled_trans_B.getNumberTransitions11() / max_freq_mult; 180 181 // Set output transition info 182 double Y_prob_00 = A_prob_00 + 183 A_prob_01 * (B_prob_00 + B_prob_10) + 184 A_prob_10 * (B_prob_00 + B_prob_01) + 185 A_prob_11 * B_prob_00; 186 double Y_prob_01 = A_prob_01 * (B_prob_01 + B_prob_11) + 187 A_prob_11 * B_prob_01; 188 double Y_prob_11 = A_prob_11 * B_prob_11; 189 190 // Check that probabilities add up to 1.0 with some finite tolerance 191 ASSERT(LibUtil::Math::isEqual(Y_prob_00 + Y_prob_01 + Y_prob_01 + Y_prob_11, 1.0), "[Error] " + getInstanceName() + 192 "Output transition probabilities must add up to 1 (" + (String) Y_prob_00 + ", " + 193 (String) Y_prob_01 + ", " + (String) Y_prob_11 + ")!"); 194 195 // Turn probability of transitions per cycle into number of transitions per time unit 196 TransitionInfo trans_Y(Y_prob_00 * max_freq_mult, Y_prob_01 * max_freq_mult, Y_prob_11 * max_freq_mult); 197 getOutputPort("Y")->setTransitionInfo(trans_Y); 198 return; 199 } 200 201 void AND2::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_) 202 { 203 // Standard cell cache string 204 String cell_name = "AND2_X" + (String) drive_strength_; 205 206 Log::printLine("=== " + cell_name + " ==="); 207 208 // Get parameters 209 double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted"); 210 Map<double>* cache = cell_lib_->getStdCellCache(); 211 212 // Now actually build the full standard cell model 213 // Create the two input ports 214 createInputPort("A"); 215 createInputPort("B"); 216 createOutputPort("Y"); 217 218 createNet("Y_b"); 219 220 // Adds macros 221 CellMacros::addNand2(this, "NAND2", false, true, true, "A", "B", "Y_b"); 222 CellMacros::addInverter(this, "INV", false, true, "Y_b", "Y"); 223 CellMacros::updateNand2(this, "NAND2", drive_strength_ * 0.5); 224 CellMacros::updateInverter(this, "INV", drive_strength_ * 1.0); 225 226 // Cache area result 227 double area = 0.0; 228 area += gate_pitch * getTotalHeight() * 1; 229 area += gate_pitch * getTotalHeight() * getGenProperties()->get("NAND2_GatePitches").toDouble(); 230 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV_GatePitches").toDouble(); 231 cache->set(cell_name + "->ActiveArea", area); 232 Log::printLine(cell_name + "->ActiveArea=" + (String) area); 233 234 // -------------------------------------------------------------------- 235 // Leakage Model Calculation 236 // -------------------------------------------------------------------- 237 double leakage_00 = getGenProperties()->get("NAND2_LeakagePower_00").toDouble() + 238 getGenProperties()->get("INV_LeakagePower_0").toDouble(); 239 double leakage_01 = getGenProperties()->get("NAND2_LeakagePower_01").toDouble() + 240 getGenProperties()->get("INV_LeakagePower_0").toDouble(); 241 double leakage_10 = getGenProperties()->get("NAND2_LeakagePower_10").toDouble() + 242 getGenProperties()->get("INV_LeakagePower_0").toDouble(); 243 double leakage_11 = getGenProperties()->get("NAND2_LeakagePower_11").toDouble() + 244 getGenProperties()->get("INV_LeakagePower_1").toDouble(); 245 cache->set(cell_name + "->Leakage->!A!B", leakage_00); 246 cache->set(cell_name + "->Leakage->!AB", leakage_01); 247 cache->set(cell_name + "->Leakage->A!B", leakage_10); 248 cache->set(cell_name + "->Leakage->AB", leakage_11); 249 Log::printLine(cell_name + "->Leakage->!A!B=" + (String) leakage_00); 250 Log::printLine(cell_name + "->Leakage->!AB=" + (String) leakage_01); 251 Log::printLine(cell_name + "->Leakage->A!B=" + (String) leakage_10); 252 Log::printLine(cell_name + "->Leakage->AB=" + (String) leakage_11); 253 // -------------------------------------------------------------------- 254 255 // -------------------------------------------------------------------- 256 // Get Node Capacitances 257 // -------------------------------------------------------------------- 258 double a_cap = getNet("A")->getTotalDownstreamCap(); 259 double b_cap = getNet("B")->getTotalDownstreamCap(); 260 double y_b_cap = getNet("Y_b")->getTotalDownstreamCap(); 261 double y_cap = getNet("Y")->getTotalDownstreamCap(); 262 263 cache->set(cell_name + "->Cap->A", a_cap); 264 cache->set(cell_name + "->Cap->B", b_cap); 265 cache->set(cell_name + "->Cap->Y_b", y_b_cap); 266 cache->set(cell_name + "->Cap->Y", y_cap); 267 Log::printLine(cell_name + "->Cap->A=" + (String) a_cap); 268 Log::printLine(cell_name + "->Cap->B=" + (String) b_cap); 269 Log::printLine(cell_name + "->Cap->Y=" + (String) y_b_cap); 270 Log::printLine(cell_name + "->Cap->Y=" + (String) y_cap); 271 // -------------------------------------------------------------------- 272 273 // -------------------------------------------------------------------- 274 // Build Internal Delay Model 275 // -------------------------------------------------------------------- 276 double y_ron = getDriver("INV_RonZN")->getOutputRes(); 277 double a_to_y_delay = getDriver("NAND2_RonZN")->calculateDelay() + 278 getDriver("INV_RonZN")->calculateDelay(); 279 double b_to_y_delay = getDriver("NAND2_RonZN")->calculateDelay() + 280 getDriver("INV_RonZN")->calculateDelay(); 281 282 cache->set(cell_name + "->DriveRes->Y", y_ron); 283 cache->set(cell_name + "->Delay->A_to_Y", a_to_y_delay); 284 cache->set(cell_name + "->Delay->B_to_Y", b_to_y_delay); 285 Log::printLine(cell_name + "->DriveRes->Y=" + (String) y_ron); 286 Log::printLine(cell_name + "->Delay->A_to_Y=" + (String) a_to_y_delay); 287 Log::printLine(cell_name + "->Delay->B_to_Y=" + (String) b_to_y_delay); 288 // -------------------------------------------------------------------- 289 290 return; 291 292 } 293} // namespace DSENT 294