History log of /gem5/src/sim/probe/probe.hh
Revision Date Author Comments
# 11800:54436a1784dc 09-Nov-2016 Brandon Potter <brandon.potter@amd.com>

style: [patch 3/22] reduce include dependencies in some headers

Used cppclean to help identify useless includes and removed them. This
involved erroneously included headers, but also cases where forward
declarations could have been used rather than a full include.


# 10460:20443473c68a 16-Oct-2014 Andreas Sandberg <Andreas.Sandberg@ARM.com>

sim: Add typedefs for PMU probe points

In order to show make PMU probe points usable across different PMU
implementations, we want a common probe interface. This patch the
namespace ProbePoins that contains typedefs for probe points that are
shared between multiple SimObjects. It also adds typedefs for the PMU
probe interface.


# 10365:e2c43045a81b 09-Sep-2014 Andreas Sandberg <Andreas.Sandberg@ARM.com>

sim: Automatically unregister probe listeners

The ProbeListener base class automatically registers itself with a
probe manager. Currently, the class does not unregister a itself when
it is destroyed, which makes removing probes listeners somewhat
cumbersome. This patch adds an automatic call to
manager->removeListener in the ProbeListener destructor, which solves
the problem.


# 10104:ff709c429b7b 07-Mar-2014 Mitch Hayenga <mitch.hayenga@arm.com>

scons: Fixes uninitialized warnings issued by clang

Small fixes to appease recent clang versions.


# 10023:91faf6649de0 24-Jan-2014 Matt Horsnell <matt.horsnell@ARM.com>

base: add support for probe points and common probes

The probe patch is motivated by the desire to move analytical and trace code
away from functional code. This is achieved by the probe interface which is
essentially a glorified observer model.

What this means to users:
* add a probe point and a "notify" call at the source of an "event"
* add an isolated module, that is being used to carry out *your* analysis (e.g. generate a trace)
* register that module as a probe listener
Note: an example is given for reference in src/cpu/o3/simple_trace.[hh|cc] and src/cpu/SimpleTrace.py

What is happening under the hood:
* every SimObject maintains has a ProbeManager.
* during initialization (src/python/m5/simulate.py) first regProbePoints and
the regProbeListeners is called on each SimObject. this hooks up the probe
point notify calls with the listeners.

FAQs:
Why did you develop probe points:
* to remove trace, stats gathering, analytical code out of the functional code.
* the belief that probes could be generically useful.

What is a probe point:
* a probe point is used to notify upon a given event (e.g. cpu commits an instruction)

What is a probe listener:
* a class that handles whatever the user wishes to do when they are notified
about an event.

What can be passed on notify:
* probe points are templates, and so the user can generate probes that pass any
type of argument (by const reference) to a listener.

What relationships can be generated (1:1, 1:N, N:M etc):
* there isn't a restriction. You can hook probe points and listeners up in a
1:1, 1:N, N:M relationship. They become useful when a number of modules
listen to the same probe points. The idea being that you can add a small
number of probes into the source code and develop a larger number of useful
analysis modules that use information passed by the probes.

Can you give examples:
* adding a probe point to the cpu's commit method allows you to build a trace
module (outputting assembler), you could re-use this to gather instruction
distribution (arithmetic, load/store, conditional, control flow) stats.

Why is the probe interface currently restricted to passing a const reference:
* the desire, initially at least, is to allow an interface to observe
functionality, but not to change functionality.
* of course this can be subverted by const-casting.

What is the performance impact of adding probes:
* when nothing is actively listening to the probes they should have a
relatively minor impact. Profiling has suggested even with a large number of
probes (60) the impact of them (when not active) is very minimal (<1%).