History log of /gem5/src/cpu/o3/probe/ElasticTrace.py
Revision Date Author Comments
# 13665:9c7fe3811b88 25-Jan-2019 Andreas Sandberg <andreas.sandberg@arm.com>

python: Don't assume SimObjects live in the global namespace

The importer in Python 3 doesn't like the way we import SimObjects
from the global namespace. Convert the existing SimObject declarations
to import from m5.objects. As a side-effect, this makes these files
consistent with configuration files.

Change-Id: I11153502b430822130722839e1fa767b82a027aa
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/c/15981
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Reviewed-by: Giacomo Travaglini <giacomo.travaglini@arm.com>


# 11253:daf9f91b11e9 07-Dec-2015 Radhika Jagtap <radhika.jagtap@ARM.com>

cpu: Support virtual addr in elastic traces

This patch adds support to optionally capture the virtual address and asid
for load/store instructions in the elastic traces. If they are present in
the traces, Trace CPU will set those fields of the request during replay.


# 11247:76f75db08e09 07-Dec-2015 Radhika Jagtap <radhika.jagtap@ARM.com>

proto, probe: Add elastic trace probe to o3 cpu

The elastic trace is a type of probe listener and listens to probe points
in multiple stages of the O3CPU. The notify method is called on a probe
point typically when an instruction successfully progresses through that
stage.

As different listener methods mapped to the different probe points execute,
relevant information about the instruction, e.g. timestamps and register
accesses, are captured and stored in temporary InstExecInfo class objects.
When the instruction progresses through the commit stage, the timing and the
dependency information about the instruction is finalised and encapsulated in
a struct called TraceInfo. TraceInfo objects are collected in a list instead
of writing them out to the trace file one a time. This is required as the
trace is processed in chunks to evaluate order dependencies and computational
delay in case an instruction does not have any register dependencies. By this
we achieve a simpler algorithm during replay because every record in the
trace can be hooked onto a record in its past. The instruction dependency
trace is written out as a protobuf format file. A second trace containing
fetch requests at absolute timestamps is written to a separate protobuf
format file.

If the instruction is not executed then it is not added to the trace.
The code checks if the instruction had a fault, if it predicated
false and thus previous register values were restored or if it was a
load/store that did not have a request (e.g. when the size of the
request is zero). In all these cases the instruction is set as
executed by the Execute stage and is picked up by the commit probe
listener. But a request is not issued and registers are not written.
So practically, skipping these should not hurt the dependency modelling.

If squashing results in squashing younger instructions, it may happen that
the squash probe discards the inst and removes it from the temporary
store but execute stage deals with the instruction in the next cycle which
results in the execute probe seeing this inst as 'new' inst. A sequence
number of the last processed trace record is used to trap these cases and
not add to the temporary store.

The elastic instruction trace and fetch request trace can be read in and
played back by the TraceCPU.