#
13665:9c7fe3811b88 |
|
25-Jan-2019 |
Andreas Sandberg <andreas.sandberg@arm.com> |
python: Don't assume SimObjects live in the global namespace
The importer in Python 3 doesn't like the way we import SimObjects from the global namespace. Convert the existing SimObject declarations to import from m5.objects. As a side-effect, this makes these files consistent with configuration files.
Change-Id: I11153502b430822130722839e1fa767b82a027aa Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com> Reviewed-on: https://gem5-review.googlesource.com/c/15981 Reviewed-by: Jason Lowe-Power <jason@lowepower.com> Reviewed-by: Giacomo Travaglini <giacomo.travaglini@arm.com>
|
#
11247:76f75db08e09 |
|
07-Dec-2015 |
Radhika Jagtap <radhika.jagtap@ARM.com> |
proto, probe: Add elastic trace probe to o3 cpu
The elastic trace is a type of probe listener and listens to probe points in multiple stages of the O3CPU. The notify method is called on a probe point typically when an instruction successfully progresses through that stage.
As different listener methods mapped to the different probe points execute, relevant information about the instruction, e.g. timestamps and register accesses, are captured and stored in temporary InstExecInfo class objects. When the instruction progresses through the commit stage, the timing and the dependency information about the instruction is finalised and encapsulated in a struct called TraceInfo. TraceInfo objects are collected in a list instead of writing them out to the trace file one a time. This is required as the trace is processed in chunks to evaluate order dependencies and computational delay in case an instruction does not have any register dependencies. By this we achieve a simpler algorithm during replay because every record in the trace can be hooked onto a record in its past. The instruction dependency trace is written out as a protobuf format file. A second trace containing fetch requests at absolute timestamps is written to a separate protobuf format file.
If the instruction is not executed then it is not added to the trace. The code checks if the instruction had a fault, if it predicated false and thus previous register values were restored or if it was a load/store that did not have a request (e.g. when the size of the request is zero). In all these cases the instruction is set as executed by the Execute stage and is picked up by the commit probe listener. But a request is not issued and registers are not written. So practically, skipping these should not hurt the dependency modelling.
If squashing results in squashing younger instructions, it may happen that the squash probe discards the inst and removes it from the temporary store but execute stage deals with the instruction in the next cycle which results in the execute probe seeing this inst as 'new' inst. A sequence number of the last processed trace record is used to trap these cases and not add to the temporary store.
The elastic instruction trace and fetch request trace can be read in and played back by the TraceCPU.
|