1/*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2009 Advanced Micro Devices, Inc.
15 * Copyright (c) 2011 Mark D. Hill and David A. Wood
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42#include "cpu/testers/rubytest/RubyTester.hh"
43#include "debug/Config.hh"
44#include "debug/Drain.hh"
45#include "debug/Ruby.hh"
46#include "mem/protocol/AccessPermission.hh"
47#include "mem/ruby/slicc_interface/AbstractController.hh"
48#include "mem/ruby/system/RubyPort.hh"
49#include "sim/system.hh"
50
51RubyPort::RubyPort(const Params *p)
52 : MemObject(p), m_version(p->version), m_controller(NULL),
53 m_mandatory_q_ptr(NULL),
54 pio_port(csprintf("%s-pio-port", name()), this),
55 m_usingRubyTester(p->using_ruby_tester), m_request_cnt(0),
56 drainEvent(NULL), ruby_system(p->ruby_system), system(p->system),
57 waitingOnSequencer(false), access_phys_mem(p->access_phys_mem)
58{
59 assert(m_version != -1);
60
61 // create the slave ports based on the number of connected ports
62 for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
63 slave_ports.push_back(new M5Port(csprintf("%s-slave%d", name(), i),
64 this, ruby_system, access_phys_mem));
65 }
66
67 // create the master ports based on the number of connected ports
68 for (size_t i = 0; i < p->port_master_connection_count; ++i) {
69 master_ports.push_back(new PioPort(csprintf("%s-master%d", name(), i),
70 this));
71 }
72}
73
74void
75RubyPort::init()
76{
77 assert(m_controller != NULL);
78 m_mandatory_q_ptr = m_controller->getMandatoryQueue();
79}
80
81MasterPort &
82RubyPort::getMasterPort(const std::string &if_name, int idx)
83{
84 if (if_name == "pio_port") {
85 return pio_port;
86 }
87
88 // used by the x86 CPUs to connect the interrupt PIO and interrupt slave
89 // port
90 if (if_name != "master") {
91 // pass it along to our super class
92 return MemObject::getMasterPort(if_name, idx);
93 } else {
94 if (idx >= static_cast<int>(master_ports.size())) {
95 panic("RubyPort::getMasterPort: unknown index %d\n", idx);
96 }
97
98 return *master_ports[idx];
99 }
100}
101
102SlavePort &
103RubyPort::getSlavePort(const std::string &if_name, int idx)
104{
105 // used by the CPUs to connect the caches to the interconnect, and
106 // for the x86 case also the interrupt master
107 if (if_name != "slave") {
108 // pass it along to our super class
109 return MemObject::getSlavePort(if_name, idx);
110 } else {
111 if (idx >= static_cast<int>(slave_ports.size())) {
112 panic("RubyPort::getSlavePort: unknown index %d\n", idx);
113 }
114
115 return *slave_ports[idx];
116 }
117}
118
119RubyPort::PioPort::PioPort(const std::string &_name,
120 RubyPort *_port)
121 : QueuedMasterPort(_name, _port, queue), queue(*_port, *this),
122 ruby_port(_port)
123{
124 DPRINTF(RubyPort, "creating master port on ruby sequencer %s\n", _name);
125}
126
127RubyPort::M5Port::M5Port(const std::string &_name, RubyPort *_port,
128 RubySystem *_system, bool _access_phys_mem)
129 : QueuedSlavePort(_name, _port, queue), queue(*_port, *this),
130 ruby_port(_port), ruby_system(_system),
131 _onRetryList(false), access_phys_mem(_access_phys_mem)
132{
133 DPRINTF(RubyPort, "creating slave port on ruby sequencer %s\n", _name);
134}
135
136Tick
137RubyPort::M5Port::recvAtomic(PacketPtr pkt)
138{
139 panic("RubyPort::M5Port::recvAtomic() not implemented!\n");
140 return 0;
141}
142
143
144bool
145RubyPort::PioPort::recvTimingResp(PacketPtr pkt)
146{
147 // In FS mode, ruby memory will receive pio responses from devices
148 // and it must forward these responses back to the particular CPU.
149 DPRINTF(RubyPort, "Pio response for address %#x\n", pkt->getAddr());
150
151 // First we must retrieve the request port from the sender State
152 RubyPort::SenderState *senderState =
153 safe_cast<RubyPort::SenderState *>(pkt->senderState);
154 M5Port *port = senderState->port;
155 assert(port != NULL);
156
157 // pop the sender state from the packet
158 pkt->senderState = senderState->saved;
159 delete senderState;
160
161 port->sendTimingResp(pkt);
162
163 return true;
164}
165
166bool
167RubyPort::M5Port::recvTimingReq(PacketPtr pkt)
168{
169 DPRINTF(RubyPort,
170 "Timing access caught for address %#x\n", pkt->getAddr());
171
172 //dsm: based on SimpleTimingPort::recvTimingReq(pkt);
173
174 // The received packets should only be M5 requests, which should never
175 // get nacked. There used to be code to hanldle nacks here, but
176 // I'm pretty sure it didn't work correctly with the drain code,
177 // so that would need to be fixed if we ever added it back.
178
179 if (pkt->memInhibitAsserted()) {
180 warn("memInhibitAsserted???");
181 // snooper will supply based on copy of packet
182 // still target's responsibility to delete packet
183 delete pkt;
184 return true;
185 }
186
187 // Save the port in the sender state object to be used later to
188 // route the response
189 pkt->senderState = new SenderState(this, pkt->senderState);
190
191 // Check for pio requests and directly send them to the dedicated
192 // pio port.
193 if (!isPhysMemAddress(pkt->getAddr())) {
194 assert(ruby_port->pio_port.isConnected());
195 DPRINTF(RubyPort,
196 "Request for address 0x%#x is assumed to be a pio request\n",
197 pkt->getAddr());
198
199 return ruby_port->pio_port.sendNextCycle(pkt);
200 }
201
202 assert(Address(pkt->getAddr()).getOffset() + pkt->getSize() <=
203 RubySystem::getBlockSizeBytes());
204
205 // Submit the ruby request
206 RequestStatus requestStatus = ruby_port->makeRequest(pkt);
207
208 // If the request successfully issued then we should return true.
209 // Otherwise, we need to delete the senderStatus we just created and return
210 // false.
211 if (requestStatus == RequestStatus_Issued) {
212 DPRINTF(RubyPort, "Request %#x issued\n", pkt->getAddr());
213 return true;
214 }
215
216 //
217 // Unless one is using the ruby tester, record the stalled M5 port for
218 // later retry when the sequencer becomes free.
219 //
220 if (!ruby_port->m_usingRubyTester) {
221 ruby_port->addToRetryList(this);
222 }
223
224 DPRINTF(RubyPort,
225 "Request for address %#x did not issue because %s\n",
226 pkt->getAddr(), RequestStatus_to_string(requestStatus));
227
228 SenderState* senderState = safe_cast<SenderState*>(pkt->senderState);
229 pkt->senderState = senderState->saved;
230 delete senderState;
231 return false;
232}
233
234bool
235RubyPort::M5Port::doFunctionalRead(PacketPtr pkt)
236{
237 Address address(pkt->getAddr());
238 Address line_address(address);
239 line_address.makeLineAddress();
240
241 AccessPermission access_perm = AccessPermission_NotPresent;
242 int num_controllers = ruby_system->m_abs_cntrl_vec.size();
243
244 DPRINTF(RubyPort, "Functional Read request for %s\n",address);
245
246 unsigned int num_ro = 0;
247 unsigned int num_rw = 0;
248 unsigned int num_busy = 0;
249 unsigned int num_backing_store = 0;
250 unsigned int num_invalid = 0;
251
252 // In this loop we count the number of controllers that have the given
253 // address in read only, read write and busy states.
254 for (int i = 0; i < num_controllers; ++i) {
255 access_perm = ruby_system->m_abs_cntrl_vec[i]->
256 getAccessPermission(line_address);
257 if (access_perm == AccessPermission_Read_Only)
258 num_ro++;
259 else if (access_perm == AccessPermission_Read_Write)
260 num_rw++;
261 else if (access_perm == AccessPermission_Busy)
262 num_busy++;
263 else if (access_perm == AccessPermission_Backing_Store)
264 // See RubySlicc_Exports.sm for details, but Backing_Store is meant
265 // to represent blocks in memory *for Broadcast/Snooping protocols*,
266 // where memory has no idea whether it has an exclusive copy of data
267 // or not.
268 num_backing_store++;
269 else if (access_perm == AccessPermission_Invalid ||
270 access_perm == AccessPermission_NotPresent)
271 num_invalid++;
272 }
273 assert(num_rw <= 1);
274
275 uint8* data = pkt->getPtr<uint8_t>(true);
276 unsigned int size_in_bytes = pkt->getSize();
277 unsigned startByte = address.getAddress() - line_address.getAddress();
278
279 // This if case is meant to capture what happens in a Broadcast/Snoop
280 // protocol where the block does not exist in the cache hierarchy. You
281 // only want to read from the Backing_Store memory if there is no copy in
282 // the cache hierarchy, otherwise you want to try to read the RO or RW
283 // copies existing in the cache hierarchy (covered by the else statement).
284 // The reason is because the Backing_Store memory could easily be stale, if
285 // there are copies floating around the cache hierarchy, so you want to read
286 // it only if it's not in the cache hierarchy at all.
287 if (num_invalid == (num_controllers - 1) &&
288 num_backing_store == 1)
289 {
290 DPRINTF(RubyPort, "only copy in Backing_Store memory, read from it\n");
291 for (int i = 0; i < num_controllers; ++i) {
292 access_perm = ruby_system->m_abs_cntrl_vec[i]
293 ->getAccessPermission(line_address);
294 if (access_perm == AccessPermission_Backing_Store) {
295 DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
296 ->getDataBlock(line_address);
297
298 DPRINTF(RubyPort, "reading from %s block %s\n",
299 ruby_system->m_abs_cntrl_vec[i]->name(), block);
300 for (unsigned i = 0; i < size_in_bytes; ++i) {
301 data[i] = block.getByte(i + startByte);
302 }
303 return true;
304 }
305 }
306 } else {
307 // In Broadcast/Snoop protocols, this covers if you know the block
308 // exists somewhere in the caching hierarchy, then you want to read any
309 // valid RO or RW block. In directory protocols, same thing, you want
310 // to read any valid readable copy of the block.
311 DPRINTF(RubyPort, "num_busy = %d, num_ro = %d, num_rw = %d\n",
312 num_busy, num_ro, num_rw);
313 // In this loop, we try to figure which controller has a read only or
314 // a read write copy of the given address. Any valid copy would suffice
315 // for a functional read.
316 for(int i = 0;i < num_controllers;++i) {
317 access_perm = ruby_system->m_abs_cntrl_vec[i]
318 ->getAccessPermission(line_address);
319 if(access_perm == AccessPermission_Read_Only ||
320 access_perm == AccessPermission_Read_Write)
321 {
322 DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
323 ->getDataBlock(line_address);
324
325 DPRINTF(RubyPort, "reading from %s block %s\n",
326 ruby_system->m_abs_cntrl_vec[i]->name(), block);
327 for (unsigned i = 0; i < size_in_bytes; ++i) {
328 data[i] = block.getByte(i + startByte);
329 }
330 return true;
331 }
332 }
333 }
334 return false;
335}
336
337bool
338RubyPort::M5Port::doFunctionalWrite(PacketPtr pkt)
339{
340 Address addr(pkt->getAddr());
341 Address line_addr = line_address(addr);
342 AccessPermission access_perm = AccessPermission_NotPresent;
343 int num_controllers = ruby_system->m_abs_cntrl_vec.size();
344
345 DPRINTF(RubyPort, "Functional Write request for %s\n",addr);
346
347 unsigned int num_ro = 0;
348 unsigned int num_rw = 0;
349 unsigned int num_busy = 0;
350 unsigned int num_backing_store = 0;
351 unsigned int num_invalid = 0;
352
353 // In this loop we count the number of controllers that have the given
354 // address in read only, read write and busy states.
355 for(int i = 0;i < num_controllers;++i) {
356 access_perm = ruby_system->m_abs_cntrl_vec[i]->
357 getAccessPermission(line_addr);
358 if (access_perm == AccessPermission_Read_Only)
359 num_ro++;
360 else if (access_perm == AccessPermission_Read_Write)
361 num_rw++;
362 else if (access_perm == AccessPermission_Busy)
363 num_busy++;
364 else if (access_perm == AccessPermission_Backing_Store)
365 // See RubySlicc_Exports.sm for details, but Backing_Store is meant
366 // to represent blocks in memory *for Broadcast/Snooping protocols*,
367 // where memory has no idea whether it has an exclusive copy of data
368 // or not.
369 num_backing_store++;
370 else if (access_perm == AccessPermission_Invalid ||
371 access_perm == AccessPermission_NotPresent)
372 num_invalid++;
373 }
374
375 // If the number of read write copies is more than 1, then there is bug in
376 // coherence protocol. Otherwise, if all copies are in stable states, i.e.
377 // num_busy == 0, we update all the copies. If there is at least one copy
378 // in busy state, then we check if there is read write copy. If yes, then
379 // also we let the access go through. Or, if there is no copy in the cache
380 // hierarchy at all, we still want to do the write to the memory
381 // (Backing_Store) instead of failing.
382
383 DPRINTF(RubyPort, "num_busy = %d, num_ro = %d, num_rw = %d\n",
384 num_busy, num_ro, num_rw);
385 assert(num_rw <= 1);
386
387 uint8* data = pkt->getPtr<uint8_t>(true);
388 unsigned int size_in_bytes = pkt->getSize();
389 unsigned startByte = addr.getAddress() - line_addr.getAddress();
390
391 if ((num_busy == 0 && num_ro > 0) || num_rw == 1 ||
392 (num_invalid == (num_controllers - 1) && num_backing_store == 1))
393 {
394 for(int i = 0; i < num_controllers;++i) {
395 access_perm = ruby_system->m_abs_cntrl_vec[i]->
396 getAccessPermission(line_addr);
397 if(access_perm == AccessPermission_Read_Only ||
398 access_perm == AccessPermission_Read_Write||
399 access_perm == AccessPermission_Maybe_Stale ||
400 access_perm == AccessPermission_Backing_Store)
401 {
402 DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
403 ->getDataBlock(line_addr);
404
405 DPRINTF(RubyPort, "%s\n",block);
406 for (unsigned i = 0; i < size_in_bytes; ++i) {
407 block.setByte(i + startByte, data[i]);
408 }
409 DPRINTF(RubyPort, "%s\n",block);
410 }
411 }
412 return true;
413 }
414 return false;
415}
416
417void
418RubyPort::M5Port::recvFunctional(PacketPtr pkt)
419{
420 DPRINTF(RubyPort, "Functional access caught for address %#x\n",
421 pkt->getAddr());
422
423 // Check for pio requests and directly send them to the dedicated
424 // pio port.
425 if (!isPhysMemAddress(pkt->getAddr())) {
426 assert(ruby_port->pio_port.isConnected());
427 DPRINTF(RubyPort, "Request for address 0x%#x is a pio request\n",
428 pkt->getAddr());
429 panic("RubyPort::PioPort::recvFunctional() not implemented!\n");
430 }
431
432 assert(pkt->getAddr() + pkt->getSize() <=
433 line_address(Address(pkt->getAddr())).getAddress() +
434 RubySystem::getBlockSizeBytes());
435
436 bool accessSucceeded = false;
437 bool needsResponse = pkt->needsResponse();
438
439 // Do the functional access on ruby memory
440 if (pkt->isRead()) {
441 accessSucceeded = doFunctionalRead(pkt);
442 } else if (pkt->isWrite()) {
443 accessSucceeded = doFunctionalWrite(pkt);
444 } else {
445 panic("RubyPort: unsupported functional command %s\n",
446 pkt->cmdString());
447 }
448
449 // Unless the requester explicitly said otherwise, generate an error if
450 // the functional request failed
451 if (!accessSucceeded && !pkt->suppressFuncError()) {
452 fatal("Ruby functional %s failed for address %#x\n",
453 pkt->isWrite() ? "write" : "read", pkt->getAddr());
454 }
455
456 if (access_phys_mem) {
457 // The attached physmem contains the official version of data.
458 // The following command performs the real functional access.
459 // This line should be removed once Ruby supplies the official version
460 // of data.
461 ruby_port->system->getPhysMem().functionalAccess(pkt);
462 }
463
464 // turn packet around to go back to requester if response expected
465 if (needsResponse) {
466 pkt->setFunctionalResponseStatus(accessSucceeded);
467
468 // @todo There should not be a reverse call since the response is
469 // communicated through the packet pointer
470 // DPRINTF(RubyPort, "Sending packet back over port\n");
471 // sendFunctional(pkt);
472 }
473 DPRINTF(RubyPort, "Functional access %s!\n",
474 accessSucceeded ? "successful":"failed");
475}
476
477void
478RubyPort::ruby_hit_callback(PacketPtr pkt)
479{
480 // Retrieve the request port from the sender State
481 RubyPort::SenderState *senderState =
482 safe_cast<RubyPort::SenderState *>(pkt->senderState);
483 M5Port *port = senderState->port;
484 assert(port != NULL);
485
486 // pop the sender state from the packet
487 pkt->senderState = senderState->saved;
488 delete senderState;
489
490 port->hitCallback(pkt);
491
492 //
493 // If we had to stall the M5Ports, wake them up because the sequencer
494 // likely has free resources now.
495 //
496 if (waitingOnSequencer) {
497 //
498 // Record the current list of ports to retry on a temporary list before
499 // calling sendRetry on those ports. sendRetry will cause an
500 // immediate retry, which may result in the ports being put back on the
501 // list. Therefore we want to clear the retryList before calling
502 // sendRetry.
503 //
504 std::list<M5Port*> curRetryList(retryList);
505
506 retryList.clear();
507 waitingOnSequencer = false;
508
509 for (std::list<M5Port*>::iterator i = curRetryList.begin();
510 i != curRetryList.end(); ++i) {
511 DPRINTF(RubyPort,
512 "Sequencer may now be free. SendRetry to port %s\n",
513 (*i)->name());
514 (*i)->onRetryList(false);
515 (*i)->sendRetry();
516 }
517 }
518
519 testDrainComplete();
520}
521
522void
523RubyPort::testDrainComplete()
524{
525 //If we weren't able to drain before, we might be able to now.
526 if (drainEvent != NULL) {
527 unsigned int drainCount = getDrainCount(drainEvent);
527 DPRINTF(Config, "Drain count: %u\n", drainCount);
528 DPRINTF(Drain, "Drain count: %u\n", drainCount);
529 if (drainCount == 0) {
530 DPRINTF(Drain, "RubyPort done draining, processing drain event\n");
531 drainEvent->process();
532 // Clear the drain event once we're done with it.
533 drainEvent = NULL;
534 }
535 }
536}
537
538unsigned int
539RubyPort::getDrainCount(Event *de)
540{
541 int count = 0;
542 //
543 // If the sequencer is not empty, then requests need to drain.
544 // The outstandingCount is the number of requests outstanding and thus the
545 // number of times M5's timing port will process the drain event.
546 //
547 count += outstandingCount();
548
549 DPRINTF(Config, "outstanding count %d\n", outstandingCount());
550
551 // To simplify the draining process, the sequencer's deadlock detection
552 // event should have been descheduled.
553 assert(isDeadlockEventScheduled() == false);
554
555 if (pio_port.isConnected()) {
556 count += pio_port.drain(de);
557 DPRINTF(Config, "count after pio check %d\n", count);
558 }
559
560 for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
561 count += (*p)->drain(de);
562 DPRINTF(Config, "count after slave port check %d\n", count);
563 }
564
565 for (std::vector<PioPort*>::iterator p = master_ports.begin();
566 p != master_ports.end(); ++p) {
567 count += (*p)->drain(de);
568 DPRINTF(Config, "count after master port check %d\n", count);
569 }
570
571 DPRINTF(Config, "final count %d\n", count);
572
573 return count;
574}
575
576unsigned int
577RubyPort::drain(Event *de)
578{
579 if (isDeadlockEventScheduled()) {
580 descheduleDeadlockEvent();
581 }
582
583 int count = getDrainCount(de);
584
585 // Set status
586 if (count != 0) {
587 drainEvent = de;
588
589 DPRINTF(Drain, "RubyPort not drained\n");
590 changeState(SimObject::Draining);
591 return count;
592 }
593
594 changeState(SimObject::Drained);
595 return 0;
596}
597
598void
599RubyPort::M5Port::hitCallback(PacketPtr pkt)
600{
601 bool needsResponse = pkt->needsResponse();
602
603 //
604 // Unless specified at configuraiton, all responses except failed SC
605 // and Flush operations access M5 physical memory.
606 //
607 bool accessPhysMem = access_phys_mem;
608
609 if (pkt->isLLSC()) {
610 if (pkt->isWrite()) {
611 if (pkt->req->getExtraData() != 0) {
612 //
613 // Successful SC packets convert to normal writes
614 //
615 pkt->convertScToWrite();
616 } else {
617 //
618 // Failed SC packets don't access physical memory and thus
619 // the RubyPort itself must convert it to a response.
620 //
621 accessPhysMem = false;
622 }
623 } else {
624 //
625 // All LL packets convert to normal loads so that M5 PhysMem does
626 // not lock the blocks.
627 //
628 pkt->convertLlToRead();
629 }
630 }
631
632 //
633 // Flush requests don't access physical memory
634 //
635 if (pkt->isFlush()) {
636 accessPhysMem = false;
637 }
638
639 DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);
640
641 if (accessPhysMem) {
642 ruby_port->system->getPhysMem().access(pkt);
643 } else if (needsResponse) {
644 pkt->makeResponse();
645 }
646
647 // turn packet around to go back to requester if response expected
648 if (needsResponse) {
649 DPRINTF(RubyPort, "Sending packet back over port\n");
650 sendNextCycle(pkt);
651 } else {
652 delete pkt;
653 }
654 DPRINTF(RubyPort, "Hit callback done!\n");
655}
656
657bool
658RubyPort::M5Port::sendNextCycle(PacketPtr pkt, bool send_as_snoop)
659{
660 //minimum latency, must be > 0
661 queue.schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()),
662 send_as_snoop);
663 return true;
664}
665
666bool
667RubyPort::PioPort::sendNextCycle(PacketPtr pkt)
668{
669 //minimum latency, must be > 0
670 queue.schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()));
671 return true;
672}
673
674AddrRangeList
675RubyPort::M5Port::getAddrRanges() const
676{
677 // at the moment the assumption is that the master does not care
678 AddrRangeList ranges;
679 return ranges;
680}
681
682bool
683RubyPort::M5Port::isPhysMemAddress(Addr addr)
684{
685 return ruby_port->system->isMemAddr(addr);
686}
687
688unsigned
689RubyPort::M5Port::deviceBlockSize() const
690{
691 return (unsigned) RubySystem::getBlockSizeBytes();
692}
693
694void
695RubyPort::ruby_eviction_callback(const Address& address)
696{
697 DPRINTF(RubyPort, "Sending invalidations.\n");
698 // should this really be using funcMasterId?
699 Request req(address.getAddress(), 0, 0, Request::funcMasterId);
700 for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
701 // check if the connected master port is snooping
702 if ((*p)->isSnooping()) {
703 Packet *pkt = new Packet(&req, MemCmd::InvalidationReq);
704 // send as a snoop request
705 (*p)->sendTimingSnoopReq(pkt);
706 }
707 }
708}